2 * Copyright (C) 2003-2004 the ffmpeg project
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 * VP3 Video Decoder by Mike Melanson (melanson@pcisys.net)
19 * For more information about the VP3 coding process, visit:
20 * http://www.pcisys.net/~melanson/codecs/
22 * Theora decoder by Alex Beregszaszi
28 * On2 VP3 Video Decoder
39 #include "mpegvideo.h"
43 #define FRAGMENT_PIXELS 8
48 * Define one or more of the following compile-time variables to 1 to obtain
49 * elaborate information about certain aspects of the decoding process.
51 * KEYFRAMES_ONLY: set this to 1 to only see keyframes (VP3 slideshow mode)
52 * DEBUG_VP3: high-level decoding flow
53 * DEBUG_INIT: initialization parameters
54 * DEBUG_DEQUANTIZERS: display how the dequanization tables are built
55 * DEBUG_BLOCK_CODING: unpacking the superblock/macroblock/fragment coding
56 * DEBUG_MODES: unpacking the coding modes for individual fragments
57 * DEBUG_VECTORS: display the motion vectors
58 * DEBUG_TOKEN: display exhaustive information about each DCT token
59 * DEBUG_VLC: display the VLCs as they are extracted from the stream
60 * DEBUG_DC_PRED: display the process of reversing DC prediction
61 * DEBUG_IDCT: show every detail of the IDCT process
64 #define KEYFRAMES_ONLY 0
68 #define DEBUG_DEQUANTIZERS 0
69 #define DEBUG_BLOCK_CODING 0
71 #define DEBUG_VECTORS 0
74 #define DEBUG_DC_PRED 0
78 #define debug_vp3 printf
80 static inline void debug_vp3(const char *format
, ...) { }
84 #define debug_init printf
86 static inline void debug_init(const char *format
, ...) { }
89 #if DEBUG_DEQUANTIZERS
90 #define debug_dequantizers printf
92 static inline void debug_dequantizers(const char *format
, ...) { }
95 #if DEBUG_BLOCK_CODING
96 #define debug_block_coding printf
98 static inline void debug_block_coding(const char *format
, ...) { }
102 #define debug_modes printf
104 static inline void debug_modes(const char *format
, ...) { }
108 #define debug_vectors printf
110 static inline void debug_vectors(const char *format
, ...) { }
114 #define debug_token printf
116 static inline void debug_token(const char *format
, ...) { }
120 #define debug_vlc printf
122 static inline void debug_vlc(const char *format
, ...) { }
126 #define debug_dc_pred printf
128 static inline void debug_dc_pred(const char *format
, ...) { }
132 #define debug_idct printf
134 static inline void debug_idct(const char *format
, ...) { }
137 typedef struct Vp3Fragment
{
144 /* address of first pixel taking into account which plane the fragment
145 * lives on as well as the plane stride */
147 /* this is the macroblock that the fragment belongs to */
151 #define SB_NOT_CODED 0
152 #define SB_PARTIALLY_CODED 1
153 #define SB_FULLY_CODED 2
155 #define MODE_INTER_NO_MV 0
157 #define MODE_INTER_PLUS_MV 2
158 #define MODE_INTER_LAST_MV 3
159 #define MODE_INTER_PRIOR_LAST 4
160 #define MODE_USING_GOLDEN 5
161 #define MODE_GOLDEN_MV 6
162 #define MODE_INTER_FOURMV 7
163 #define CODING_MODE_COUNT 8
165 /* special internal mode */
168 /* There are 6 preset schemes, plus a free-form scheme */
169 static int ModeAlphabet
[7][CODING_MODE_COUNT
] =
171 /* this is the custom scheme */
172 { 0, 0, 0, 0, 0, 0, 0, 0 },
174 /* scheme 1: Last motion vector dominates */
175 { MODE_INTER_LAST_MV
, MODE_INTER_PRIOR_LAST
,
176 MODE_INTER_PLUS_MV
, MODE_INTER_NO_MV
,
177 MODE_INTRA
, MODE_USING_GOLDEN
,
178 MODE_GOLDEN_MV
, MODE_INTER_FOURMV
},
181 { MODE_INTER_LAST_MV
, MODE_INTER_PRIOR_LAST
,
182 MODE_INTER_NO_MV
, MODE_INTER_PLUS_MV
,
183 MODE_INTRA
, MODE_USING_GOLDEN
,
184 MODE_GOLDEN_MV
, MODE_INTER_FOURMV
},
187 { MODE_INTER_LAST_MV
, MODE_INTER_PLUS_MV
,
188 MODE_INTER_PRIOR_LAST
, MODE_INTER_NO_MV
,
189 MODE_INTRA
, MODE_USING_GOLDEN
,
190 MODE_GOLDEN_MV
, MODE_INTER_FOURMV
},
193 { MODE_INTER_LAST_MV
, MODE_INTER_PLUS_MV
,
194 MODE_INTER_NO_MV
, MODE_INTER_PRIOR_LAST
,
195 MODE_INTRA
, MODE_USING_GOLDEN
,
196 MODE_GOLDEN_MV
, MODE_INTER_FOURMV
},
198 /* scheme 5: No motion vector dominates */
199 { MODE_INTER_NO_MV
, MODE_INTER_LAST_MV
,
200 MODE_INTER_PRIOR_LAST
, MODE_INTER_PLUS_MV
,
201 MODE_INTRA
, MODE_USING_GOLDEN
,
202 MODE_GOLDEN_MV
, MODE_INTER_FOURMV
},
205 { MODE_INTER_NO_MV
, MODE_USING_GOLDEN
,
206 MODE_INTER_LAST_MV
, MODE_INTER_PRIOR_LAST
,
207 MODE_INTER_PLUS_MV
, MODE_INTRA
,
208 MODE_GOLDEN_MV
, MODE_INTER_FOURMV
},
212 #define MIN_DEQUANT_VAL 2
214 typedef struct Vp3DecodeContext
{
215 AVCodecContext
*avctx
;
216 int theora
, theora_tables
;
219 AVFrame golden_frame
;
221 AVFrame current_frame
;
227 int last_quality_index
;
229 int superblock_count
;
230 int superblock_width
;
231 int superblock_height
;
232 int y_superblock_width
;
233 int y_superblock_height
;
234 int c_superblock_width
;
235 int c_superblock_height
;
236 int u_superblock_start
;
237 int v_superblock_start
;
238 unsigned char *superblock_coding
;
240 int macroblock_count
;
241 int macroblock_width
;
242 int macroblock_height
;
248 Vp3Fragment
*all_fragments
;
249 int u_fragment_start
;
250 int v_fragment_start
;
253 uint16_t coded_dc_scale_factor
[64];
254 uint32_t coded_ac_scale_factor
[64];
255 uint16_t coded_intra_y_dequant
[64];
256 uint16_t coded_intra_c_dequant
[64];
257 uint16_t coded_inter_dequant
[64];
259 /* this is a list of indices into the all_fragments array indicating
260 * which of the fragments are coded */
261 int *coded_fragment_list
;
262 int coded_fragment_list_index
;
263 int pixel_addresses_inited
;
271 /* these arrays need to be on 16-byte boundaries since SSE2 operations
273 int16_t __align16 intra_y_dequant
[64];
274 int16_t __align16 intra_c_dequant
[64];
275 int16_t __align16 inter_dequant
[64];
277 /* This table contains superblock_count * 16 entries. Each set of 16
278 * numbers corresponds to the fragment indices 0..15 of the superblock.
279 * An entry will be -1 to indicate that no entry corresponds to that
281 int *superblock_fragments
;
283 /* This table contains superblock_count * 4 entries. Each set of 4
284 * numbers corresponds to the macroblock indices 0..3 of the superblock.
285 * An entry will be -1 to indicate that no entry corresponds to that
287 int *superblock_macroblocks
;
289 /* This table contains macroblock_count * 6 entries. Each set of 6
290 * numbers corresponds to the fragment indices 0..5 which comprise
291 * the macroblock (4 Y fragments and 2 C fragments). */
292 int *macroblock_fragments
;
293 /* This is an array that indicates how a particular macroblock
295 unsigned char *macroblock_coding
;
297 int first_coded_y_fragment
;
298 int first_coded_c_fragment
;
299 int last_coded_y_fragment
;
300 int last_coded_c_fragment
;
302 uint8_t edge_emu_buffer
[9*2048]; //FIXME dynamic alloc
303 uint8_t qscale_table
[2048]; //FIXME dynamic alloc (width+15)/16
306 static int theora_decode_comments(AVCodecContext
*avctx
, GetBitContext gb
);
307 static int theora_decode_tables(AVCodecContext
*avctx
, GetBitContext gb
);
309 /************************************************************************
310 * VP3 specific functions
311 ************************************************************************/
314 * This function sets up all of the various blocks mappings:
315 * superblocks <-> fragments, macroblocks <-> fragments,
316 * superblocks <-> macroblocks
318 * Returns 0 is successful; returns 1 if *anything* went wrong.
320 static int init_block_mapping(Vp3DecodeContext
*s
)
323 signed int hilbert_walk_y
[16];
324 signed int hilbert_walk_c
[16];
325 signed int hilbert_walk_mb
[4];
327 int current_fragment
= 0;
328 int current_width
= 0;
329 int current_height
= 0;
332 int superblock_row_inc
= 0;
334 int mapping_index
= 0;
336 int current_macroblock
;
339 signed char travel_width
[16] = {
346 signed char travel_height
[16] = {
353 signed char travel_width_mb
[4] = {
357 signed char travel_height_mb
[4] = {
361 debug_vp3(" vp3: initialize block mapping tables\n");
363 /* figure out hilbert pattern per these frame dimensions */
364 hilbert_walk_y
[0] = 1;
365 hilbert_walk_y
[1] = 1;
366 hilbert_walk_y
[2] = s
->fragment_width
;
367 hilbert_walk_y
[3] = -1;
368 hilbert_walk_y
[4] = s
->fragment_width
;
369 hilbert_walk_y
[5] = s
->fragment_width
;
370 hilbert_walk_y
[6] = 1;
371 hilbert_walk_y
[7] = -s
->fragment_width
;
372 hilbert_walk_y
[8] = 1;
373 hilbert_walk_y
[9] = s
->fragment_width
;
374 hilbert_walk_y
[10] = 1;
375 hilbert_walk_y
[11] = -s
->fragment_width
;
376 hilbert_walk_y
[12] = -s
->fragment_width
;
377 hilbert_walk_y
[13] = -1;
378 hilbert_walk_y
[14] = -s
->fragment_width
;
379 hilbert_walk_y
[15] = 1;
381 hilbert_walk_c
[0] = 1;
382 hilbert_walk_c
[1] = 1;
383 hilbert_walk_c
[2] = s
->fragment_width
/ 2;
384 hilbert_walk_c
[3] = -1;
385 hilbert_walk_c
[4] = s
->fragment_width
/ 2;
386 hilbert_walk_c
[5] = s
->fragment_width
/ 2;
387 hilbert_walk_c
[6] = 1;
388 hilbert_walk_c
[7] = -s
->fragment_width
/ 2;
389 hilbert_walk_c
[8] = 1;
390 hilbert_walk_c
[9] = s
->fragment_width
/ 2;
391 hilbert_walk_c
[10] = 1;
392 hilbert_walk_c
[11] = -s
->fragment_width
/ 2;
393 hilbert_walk_c
[12] = -s
->fragment_width
/ 2;
394 hilbert_walk_c
[13] = -1;
395 hilbert_walk_c
[14] = -s
->fragment_width
/ 2;
396 hilbert_walk_c
[15] = 1;
398 hilbert_walk_mb
[0] = 1;
399 hilbert_walk_mb
[1] = s
->macroblock_width
;
400 hilbert_walk_mb
[2] = 1;
401 hilbert_walk_mb
[3] = -s
->macroblock_width
;
403 /* iterate through each superblock (all planes) and map the fragments */
404 for (i
= 0; i
< s
->superblock_count
; i
++) {
405 debug_init(" superblock %d (u starts @ %d, v starts @ %d)\n",
406 i
, s
->u_superblock_start
, s
->v_superblock_start
);
408 /* time to re-assign the limits? */
411 /* start of Y superblocks */
412 right_edge
= s
->fragment_width
;
413 bottom_edge
= s
->fragment_height
;
416 superblock_row_inc
= 3 * s
->fragment_width
-
417 (s
->y_superblock_width
* 4 - s
->fragment_width
);
418 hilbert
= hilbert_walk_y
;
420 /* the first operation for this variable is to advance by 1 */
421 current_fragment
= -1;
423 } else if (i
== s
->u_superblock_start
) {
425 /* start of U superblocks */
426 right_edge
= s
->fragment_width
/ 2;
427 bottom_edge
= s
->fragment_height
/ 2;
430 superblock_row_inc
= 3 * (s
->fragment_width
/ 2) -
431 (s
->c_superblock_width
* 4 - s
->fragment_width
/ 2);
432 hilbert
= hilbert_walk_c
;
434 /* the first operation for this variable is to advance by 1 */
435 current_fragment
= s
->u_fragment_start
- 1;
437 } else if (i
== s
->v_superblock_start
) {
439 /* start of V superblocks */
440 right_edge
= s
->fragment_width
/ 2;
441 bottom_edge
= s
->fragment_height
/ 2;
444 superblock_row_inc
= 3 * (s
->fragment_width
/ 2) -
445 (s
->c_superblock_width
* 4 - s
->fragment_width
/ 2);
446 hilbert
= hilbert_walk_c
;
448 /* the first operation for this variable is to advance by 1 */
449 current_fragment
= s
->v_fragment_start
- 1;
453 if (current_width
>= right_edge
- 1) {
454 /* reset width and move to next superblock row */
458 /* fragment is now at the start of a new superblock row */
459 current_fragment
+= superblock_row_inc
;
462 /* iterate through all 16 fragments in a superblock */
463 for (j
= 0; j
< 16; j
++) {
464 current_fragment
+= hilbert
[j
];
465 current_width
+= travel_width
[j
];
466 current_height
+= travel_height
[j
];
468 /* check if the fragment is in bounds */
469 if ((current_width
< right_edge
) &&
470 (current_height
< bottom_edge
)) {
471 s
->superblock_fragments
[mapping_index
] = current_fragment
;
472 debug_init(" mapping fragment %d to superblock %d, position %d (%d/%d x %d/%d)\n",
473 s
->superblock_fragments
[mapping_index
], i
, j
,
474 current_width
, right_edge
, current_height
, bottom_edge
);
476 s
->superblock_fragments
[mapping_index
] = -1;
477 debug_init(" superblock %d, position %d has no fragment (%d/%d x %d/%d)\n",
479 current_width
, right_edge
, current_height
, bottom_edge
);
486 /* initialize the superblock <-> macroblock mapping; iterate through
487 * all of the Y plane superblocks to build this mapping */
488 right_edge
= s
->macroblock_width
;
489 bottom_edge
= s
->macroblock_height
;
492 superblock_row_inc
= s
->macroblock_width
-
493 (s
->y_superblock_width
* 2 - s
->macroblock_width
);;
494 hilbert
= hilbert_walk_mb
;
496 current_macroblock
= -1;
497 for (i
= 0; i
< s
->u_superblock_start
; i
++) {
499 if (current_width
>= right_edge
- 1) {
500 /* reset width and move to next superblock row */
504 /* macroblock is now at the start of a new superblock row */
505 current_macroblock
+= superblock_row_inc
;
508 /* iterate through each potential macroblock in the superblock */
509 for (j
= 0; j
< 4; j
++) {
510 current_macroblock
+= hilbert_walk_mb
[j
];
511 current_width
+= travel_width_mb
[j
];
512 current_height
+= travel_height_mb
[j
];
514 /* check if the macroblock is in bounds */
515 if ((current_width
< right_edge
) &&
516 (current_height
< bottom_edge
)) {
517 s
->superblock_macroblocks
[mapping_index
] = current_macroblock
;
518 debug_init(" mapping macroblock %d to superblock %d, position %d (%d/%d x %d/%d)\n",
519 s
->superblock_macroblocks
[mapping_index
], i
, j
,
520 current_width
, right_edge
, current_height
, bottom_edge
);
522 s
->superblock_macroblocks
[mapping_index
] = -1;
523 debug_init(" superblock %d, position %d has no macroblock (%d/%d x %d/%d)\n",
525 current_width
, right_edge
, current_height
, bottom_edge
);
532 /* initialize the macroblock <-> fragment mapping */
533 current_fragment
= 0;
534 current_macroblock
= 0;
536 for (i
= 0; i
< s
->fragment_height
; i
+= 2) {
538 for (j
= 0; j
< s
->fragment_width
; j
+= 2) {
540 debug_init(" macroblock %d contains fragments: ", current_macroblock
);
541 s
->all_fragments
[current_fragment
].macroblock
= current_macroblock
;
542 s
->macroblock_fragments
[mapping_index
++] = current_fragment
;
543 debug_init("%d ", current_fragment
);
545 if (j
+ 1 < s
->fragment_width
) {
546 s
->all_fragments
[current_fragment
+ 1].macroblock
= current_macroblock
;
547 s
->macroblock_fragments
[mapping_index
++] = current_fragment
+ 1;
548 debug_init("%d ", current_fragment
+ 1);
550 s
->macroblock_fragments
[mapping_index
++] = -1;
552 if (i
+ 1 < s
->fragment_height
) {
553 s
->all_fragments
[current_fragment
+ s
->fragment_width
].macroblock
=
555 s
->macroblock_fragments
[mapping_index
++] =
556 current_fragment
+ s
->fragment_width
;
557 debug_init("%d ", current_fragment
+ s
->fragment_width
);
559 s
->macroblock_fragments
[mapping_index
++] = -1;
561 if ((j
+ 1 < s
->fragment_width
) && (i
+ 1 < s
->fragment_height
)) {
562 s
->all_fragments
[current_fragment
+ s
->fragment_width
+ 1].macroblock
=
564 s
->macroblock_fragments
[mapping_index
++] =
565 current_fragment
+ s
->fragment_width
+ 1;
566 debug_init("%d ", current_fragment
+ s
->fragment_width
+ 1);
568 s
->macroblock_fragments
[mapping_index
++] = -1;
571 c_fragment
= s
->u_fragment_start
+
572 (i
* s
->fragment_width
/ 4) + (j
/ 2);
573 s
->all_fragments
[c_fragment
].macroblock
= s
->macroblock_count
;
574 s
->macroblock_fragments
[mapping_index
++] = c_fragment
;
575 debug_init("%d ", c_fragment
);
577 c_fragment
= s
->v_fragment_start
+
578 (i
* s
->fragment_width
/ 4) + (j
/ 2);
579 s
->all_fragments
[c_fragment
].macroblock
= s
->macroblock_count
;
580 s
->macroblock_fragments
[mapping_index
++] = c_fragment
;
581 debug_init("%d ", c_fragment
);
585 if (j
+ 2 <= s
->fragment_width
)
586 current_fragment
+= 2;
589 current_macroblock
++;
592 current_fragment
+= s
->fragment_width
;
595 return 0; /* successful path out */
599 * This function unpacks a single token (which should be in the range 0..31)
600 * and returns a zero run (number of zero coefficients in current DCT matrix
601 * before next non-zero coefficient), the next DCT coefficient, and the
602 * number of consecutive, non-EOB'd DCT blocks to EOB.
604 static void unpack_token(GetBitContext
*gb
, int token
, int *zero_run
,
605 DCTELEM
*coeff
, int *eob_run
)
613 debug_token(" vp3 token %d: ", token
);
617 debug_token("DCT_EOB_TOKEN, EOB next block\n");
622 debug_token("DCT_EOB_PAIR_TOKEN, EOB next 2 blocks\n");
627 debug_token("DCT_EOB_TRIPLE_TOKEN, EOB next 3 blocks\n");
632 debug_token("DCT_REPEAT_RUN_TOKEN, ");
633 *eob_run
= get_bits(gb
, 2) + 4;
634 debug_token("EOB the next %d blocks\n", *eob_run
);
638 debug_token("DCT_REPEAT_RUN2_TOKEN, ");
639 *eob_run
= get_bits(gb
, 3) + 8;
640 debug_token("EOB the next %d blocks\n", *eob_run
);
644 debug_token("DCT_REPEAT_RUN3_TOKEN, ");
645 *eob_run
= get_bits(gb
, 4) + 16;
646 debug_token("EOB the next %d blocks\n", *eob_run
);
650 debug_token("DCT_REPEAT_RUN4_TOKEN, ");
651 *eob_run
= get_bits(gb
, 12);
652 debug_token("EOB the next %d blocks\n", *eob_run
);
656 debug_token("DCT_SHORT_ZRL_TOKEN, ");
657 /* note that this token actually indicates that (3 extra bits) + 1 0s
658 * should be output; this case specifies a run of (3 EBs) 0s and a
659 * coefficient of 0. */
660 *zero_run
= get_bits(gb
, 3);
662 debug_token("skip the next %d positions in output matrix\n", *zero_run
+ 1);
666 debug_token("DCT_ZRL_TOKEN, ");
667 /* note that this token actually indicates that (6 extra bits) + 1 0s
668 * should be output; this case specifies a run of (6 EBs) 0s and a
669 * coefficient of 0. */
670 *zero_run
= get_bits(gb
, 6);
672 debug_token("skip the next %d positions in output matrix\n", *zero_run
+ 1);
676 debug_token("ONE_TOKEN, output 1\n");
681 debug_token("MINUS_ONE_TOKEN, output -1\n");
686 debug_token("TWO_TOKEN, output 2\n");
691 debug_token("MINUS_TWO_TOKEN, output -2\n");
699 debug_token("LOW_VAL_TOKENS, ");
701 *coeff
= -(3 + (token
- 13));
703 *coeff
= 3 + (token
- 13);
704 debug_token("output %d\n", *coeff
);
708 debug_token("DCT_VAL_CATEGORY3, ");
709 sign
= get_bits(gb
, 1);
710 *coeff
= 7 + get_bits(gb
, 1);
713 debug_token("output %d\n", *coeff
);
717 debug_token("DCT_VAL_CATEGORY4, ");
718 sign
= get_bits(gb
, 1);
719 *coeff
= 9 + get_bits(gb
, 2);
722 debug_token("output %d\n", *coeff
);
726 debug_token("DCT_VAL_CATEGORY5, ");
727 sign
= get_bits(gb
, 1);
728 *coeff
= 13 + get_bits(gb
, 3);
731 debug_token("output %d\n", *coeff
);
735 debug_token("DCT_VAL_CATEGORY6, ");
736 sign
= get_bits(gb
, 1);
737 *coeff
= 21 + get_bits(gb
, 4);
740 debug_token("output %d\n", *coeff
);
744 debug_token("DCT_VAL_CATEGORY7, ");
745 sign
= get_bits(gb
, 1);
746 *coeff
= 37 + get_bits(gb
, 5);
749 debug_token("output %d\n", *coeff
);
753 debug_token("DCT_VAL_CATEGORY8, ");
754 sign
= get_bits(gb
, 1);
755 *coeff
= 69 + get_bits(gb
, 9);
758 debug_token("output %d\n", *coeff
);
766 debug_token("DCT_RUN_CATEGORY1, ");
767 *zero_run
= token
- 22;
772 debug_token("output %d 0s, then %d\n", *zero_run
, *coeff
);
776 debug_token("DCT_RUN_CATEGORY1B, ");
781 *zero_run
= 6 + get_bits(gb
, 2);
782 debug_token("output %d 0s, then %d\n", *zero_run
, *coeff
);
786 debug_token("DCT_RUN_CATEGORY1C, ");
791 *zero_run
= 10 + get_bits(gb
, 3);
792 debug_token("output %d 0s, then %d\n", *zero_run
, *coeff
);
796 debug_token("DCT_RUN_CATEGORY2, ");
797 sign
= get_bits(gb
, 1);
798 *coeff
= 2 + get_bits(gb
, 1);
802 debug_token("output %d 0s, then %d\n", *zero_run
, *coeff
);
806 debug_token("DCT_RUN_CATEGORY2, ");
807 sign
= get_bits(gb
, 1);
808 *coeff
= 2 + get_bits(gb
, 1);
811 *zero_run
= 2 + get_bits(gb
, 1);
812 debug_token("output %d 0s, then %d\n", *zero_run
, *coeff
);
816 av_log(NULL
, AV_LOG_ERROR
, " vp3: help! Got a bad token: %d > 31\n", token
);
823 * This function wipes out all of the fragment data.
825 static void init_frame(Vp3DecodeContext
*s
, GetBitContext
*gb
)
829 /* zero out all of the fragment information */
830 s
->coded_fragment_list_index
= 0;
831 for (i
= 0; i
< s
->fragment_count
; i
++) {
832 memset(s
->all_fragments
[i
].coeffs
, 0, 64 * sizeof(DCTELEM
));
833 s
->all_fragments
[i
].coeff_count
= 0;
834 s
->all_fragments
[i
].last_coeff
= 0;
835 s
->all_fragments
[i
].motion_x
= 0xbeef;
836 s
->all_fragments
[i
].motion_y
= 0xbeef;
841 * This function sets of the dequantization tables used for a particular
844 static void init_dequantizer(Vp3DecodeContext
*s
)
847 int ac_scale_factor
= s
->coded_ac_scale_factor
[s
->quality_index
];
848 int dc_scale_factor
= s
->coded_dc_scale_factor
[s
->quality_index
];
851 debug_vp3(" vp3: initializing dequantization tables\n");
854 * Scale dequantizers:
860 * where sf = dc_scale_factor for DC quantizer
861 * or ac_scale_factor for AC quantizer
863 * Then, saturate the result to a lower limit of MIN_DEQUANT_VAL.
867 /* scale DC quantizers */
868 s
->intra_y_dequant
[0] = s
->coded_intra_y_dequant
[0] * dc_scale_factor
/ 100;
869 if (s
->intra_y_dequant
[0] < MIN_DEQUANT_VAL
* 2)
870 s
->intra_y_dequant
[0] = MIN_DEQUANT_VAL
* 2;
871 s
->intra_y_dequant
[0] *= SCALER
;
873 s
->intra_c_dequant
[0] = s
->coded_intra_c_dequant
[0] * dc_scale_factor
/ 100;
874 if (s
->intra_c_dequant
[0] < MIN_DEQUANT_VAL
* 2)
875 s
->intra_c_dequant
[0] = MIN_DEQUANT_VAL
* 2;
876 s
->intra_c_dequant
[0] *= SCALER
;
878 s
->inter_dequant
[0] = s
->coded_inter_dequant
[0] * dc_scale_factor
/ 100;
879 if (s
->inter_dequant
[0] < MIN_DEQUANT_VAL
* 4)
880 s
->inter_dequant
[0] = MIN_DEQUANT_VAL
* 4;
881 s
->inter_dequant
[0] *= SCALER
;
883 /* scale AC quantizers, zigzag at the same time in preparation for
884 * the dequantization phase */
885 for (i
= 1; i
< 64; i
++) {
889 s
->intra_y_dequant
[j
] = s
->coded_intra_y_dequant
[i
] * ac_scale_factor
/ 100;
890 if (s
->intra_y_dequant
[j
] < MIN_DEQUANT_VAL
)
891 s
->intra_y_dequant
[j
] = MIN_DEQUANT_VAL
;
892 s
->intra_y_dequant
[j
] *= SCALER
;
894 s
->intra_c_dequant
[j
] = s
->coded_intra_c_dequant
[i
] * ac_scale_factor
/ 100;
895 if (s
->intra_c_dequant
[j
] < MIN_DEQUANT_VAL
)
896 s
->intra_c_dequant
[j
] = MIN_DEQUANT_VAL
;
897 s
->intra_c_dequant
[j
] *= SCALER
;
899 s
->inter_dequant
[j
] = s
->coded_inter_dequant
[i
] * ac_scale_factor
/ 100;
900 if (s
->inter_dequant
[j
] < MIN_DEQUANT_VAL
* 2)
901 s
->inter_dequant
[j
] = MIN_DEQUANT_VAL
* 2;
902 s
->inter_dequant
[j
] *= SCALER
;
905 memset(s
->qscale_table
, (FFMAX(s
->intra_y_dequant
[1], s
->intra_c_dequant
[1])+8)/16, 512); //FIXME finetune
907 /* print debug information as requested */
908 debug_dequantizers("intra Y dequantizers:\n");
909 for (i
= 0; i
< 8; i
++) {
910 for (j
= i
* 8; j
< i
* 8 + 8; j
++) {
911 debug_dequantizers(" %4d,", s
->intra_y_dequant
[j
]);
913 debug_dequantizers("\n");
915 debug_dequantizers("\n");
917 debug_dequantizers("intra C dequantizers:\n");
918 for (i
= 0; i
< 8; i
++) {
919 for (j
= i
* 8; j
< i
* 8 + 8; j
++) {
920 debug_dequantizers(" %4d,", s
->intra_c_dequant
[j
]);
922 debug_dequantizers("\n");
924 debug_dequantizers("\n");
926 debug_dequantizers("interframe dequantizers:\n");
927 for (i
= 0; i
< 8; i
++) {
928 for (j
= i
* 8; j
< i
* 8 + 8; j
++) {
929 debug_dequantizers(" %4d,", s
->inter_dequant
[j
]);
931 debug_dequantizers("\n");
933 debug_dequantizers("\n");
937 * This function is used to fetch runs of 1s or 0s from the bitstream for
938 * use in determining which superblocks are fully and partially coded.
947 * 111111xxxxxxxxxxxx 34-4129
949 static int get_superblock_run_length(GetBitContext
*gb
)
952 if (get_bits(gb
, 1) == 0)
955 else if (get_bits(gb
, 1) == 0)
956 return (2 + get_bits(gb
, 1));
958 else if (get_bits(gb
, 1) == 0)
959 return (4 + get_bits(gb
, 1));
961 else if (get_bits(gb
, 1) == 0)
962 return (6 + get_bits(gb
, 2));
964 else if (get_bits(gb
, 1) == 0)
965 return (10 + get_bits(gb
, 3));
967 else if (get_bits(gb
, 1) == 0)
968 return (18 + get_bits(gb
, 4));
971 return (34 + get_bits(gb
, 12));
976 * This function is used to fetch runs of 1s or 0s from the bitstream for
977 * use in determining which particular fragments are coded.
987 static int get_fragment_run_length(GetBitContext
*gb
)
990 if (get_bits(gb
, 1) == 0)
991 return (1 + get_bits(gb
, 1));
993 else if (get_bits(gb
, 1) == 0)
994 return (3 + get_bits(gb
, 1));
996 else if (get_bits(gb
, 1) == 0)
997 return (5 + get_bits(gb
, 1));
999 else if (get_bits(gb
, 1) == 0)
1000 return (7 + get_bits(gb
, 2));
1002 else if (get_bits(gb
, 1) == 0)
1003 return (11 + get_bits(gb
, 2));
1006 return (15 + get_bits(gb
, 4));
1011 * This function decodes a VLC from the bitstream and returns a number
1012 * that ranges from 0..7. The number indicates which of the 8 coding
1026 static int get_mode_code(GetBitContext
*gb
)
1029 if (get_bits(gb
, 1) == 0)
1032 else if (get_bits(gb
, 1) == 0)
1035 else if (get_bits(gb
, 1) == 0)
1038 else if (get_bits(gb
, 1) == 0)
1041 else if (get_bits(gb
, 1) == 0)
1044 else if (get_bits(gb
, 1) == 0)
1047 else if (get_bits(gb
, 1) == 0)
1056 * This function extracts a motion vector from the bitstream using a VLC
1057 * scheme. 3 bits are fetched from the bitstream and 1 of 8 actions is
1058 * taken depending on the value on those 3 bits:
1063 * 3: if (next bit is 1) return -2, else return 2
1064 * 4: if (next bit is 1) return -3, else return 3
1065 * 5: return 4 + (next 2 bits), next bit is sign
1066 * 6: return 8 + (next 3 bits), next bit is sign
1067 * 7: return 16 + (next 4 bits), next bit is sign
1069 static int get_motion_vector_vlc(GetBitContext
*gb
)
1073 bits
= get_bits(gb
, 3);
1090 if (get_bits(gb
, 1) == 0)
1097 if (get_bits(gb
, 1) == 0)
1104 bits
= 4 + get_bits(gb
, 2);
1105 if (get_bits(gb
, 1) == 1)
1110 bits
= 8 + get_bits(gb
, 3);
1111 if (get_bits(gb
, 1) == 1)
1116 bits
= 16 + get_bits(gb
, 4);
1117 if (get_bits(gb
, 1) == 1)
1127 * This function fetches a 5-bit number from the stream followed by
1128 * a sign and calls it a motion vector.
1130 static int get_motion_vector_fixed(GetBitContext
*gb
)
1135 bits
= get_bits(gb
, 5);
1137 if (get_bits(gb
, 1) == 1)
1144 * This function unpacks all of the superblock/macroblock/fragment coding
1145 * information from the bitstream.
1147 static int unpack_superblocks(Vp3DecodeContext
*s
, GetBitContext
*gb
)
1150 int current_superblock
= 0;
1151 int current_run
= 0;
1152 int decode_fully_flags
= 0;
1153 int decode_partial_blocks
= 0;
1154 int first_c_fragment_seen
;
1157 int current_fragment
;
1159 debug_vp3(" vp3: unpacking superblock coding\n");
1163 debug_vp3(" keyframe-- all superblocks are fully coded\n");
1164 memset(s
->superblock_coding
, SB_FULLY_CODED
, s
->superblock_count
);
1168 /* unpack the list of partially-coded superblocks */
1169 bit
= get_bits(gb
, 1);
1170 /* toggle the bit because as soon as the first run length is
1171 * fetched the bit will be toggled again */
1173 while (current_superblock
< s
->superblock_count
) {
1174 if (current_run
== 0) {
1176 current_run
= get_superblock_run_length(gb
);
1177 debug_block_coding(" setting superblocks %d..%d to %s\n",
1179 current_superblock
+ current_run
- 1,
1180 (bit
) ?
"partially coded" : "not coded");
1182 /* if any of the superblocks are not partially coded, flag
1183 * a boolean to decode the list of fully-coded superblocks */
1185 decode_fully_flags
= 1;
1188 /* make a note of the fact that there are partially coded
1190 decode_partial_blocks
= 1;
1193 s
->superblock_coding
[current_superblock
++] =
1194 (bit
) ? SB_PARTIALLY_CODED
: SB_NOT_CODED
;
1198 /* unpack the list of fully coded superblocks if any of the blocks were
1199 * not marked as partially coded in the previous step */
1200 if (decode_fully_flags
) {
1202 current_superblock
= 0;
1204 bit
= get_bits(gb
, 1);
1205 /* toggle the bit because as soon as the first run length is
1206 * fetched the bit will be toggled again */
1208 while (current_superblock
< s
->superblock_count
) {
1210 /* skip any superblocks already marked as partially coded */
1211 if (s
->superblock_coding
[current_superblock
] == SB_NOT_CODED
) {
1213 if (current_run
== 0) {
1215 current_run
= get_superblock_run_length(gb
);
1218 debug_block_coding(" setting superblock %d to %s\n",
1220 (bit
) ?
"fully coded" : "not coded");
1221 s
->superblock_coding
[current_superblock
] =
1222 (bit
) ? SB_FULLY_CODED
: SB_NOT_CODED
;
1225 current_superblock
++;
1229 /* if there were partial blocks, initialize bitstream for
1230 * unpacking fragment codings */
1231 if (decode_partial_blocks
) {
1234 bit
= get_bits(gb
, 1);
1235 /* toggle the bit because as soon as the first run length is
1236 * fetched the bit will be toggled again */
1241 /* figure out which fragments are coded; iterate through each
1242 * superblock (all planes) */
1243 s
->coded_fragment_list_index
= 0;
1244 s
->first_coded_y_fragment
= s
->first_coded_c_fragment
= 0;
1245 s
->last_coded_y_fragment
= s
->last_coded_c_fragment
= -1;
1246 first_c_fragment_seen
= 0;
1247 memset(s
->macroblock_coding
, MODE_COPY
, s
->macroblock_count
);
1248 for (i
= 0; i
< s
->superblock_count
; i
++) {
1250 /* iterate through all 16 fragments in a superblock */
1251 for (j
= 0; j
< 16; j
++) {
1253 /* if the fragment is in bounds, check its coding status */
1254 current_fragment
= s
->superblock_fragments
[i
* 16 + j
];
1255 if (current_fragment
>= s
->fragment_count
) {
1256 av_log(s
->avctx
, AV_LOG_ERROR
, " vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
1257 current_fragment
, s
->fragment_count
);
1260 if (current_fragment
!= -1) {
1261 if (s
->superblock_coding
[i
] == SB_NOT_CODED
) {
1263 /* copy all the fragments from the prior frame */
1264 s
->all_fragments
[current_fragment
].coding_method
=
1267 } else if (s
->superblock_coding
[i
] == SB_PARTIALLY_CODED
) {
1269 /* fragment may or may not be coded; this is the case
1270 * that cares about the fragment coding runs */
1271 if (current_run
== 0) {
1273 current_run
= get_fragment_run_length(gb
);
1277 /* default mode; actual mode will be decoded in
1279 s
->all_fragments
[current_fragment
].coding_method
=
1281 s
->coded_fragment_list
[s
->coded_fragment_list_index
] =
1283 if ((current_fragment
>= s
->u_fragment_start
) &&
1284 (s
->last_coded_y_fragment
== -1) &&
1285 (!first_c_fragment_seen
)) {
1286 s
->first_coded_c_fragment
= s
->coded_fragment_list_index
;
1287 s
->last_coded_y_fragment
= s
->first_coded_c_fragment
- 1;
1288 first_c_fragment_seen
= 1;
1290 s
->coded_fragment_list_index
++;
1291 s
->macroblock_coding
[s
->all_fragments
[current_fragment
].macroblock
] = MODE_INTER_NO_MV
;
1292 debug_block_coding(" superblock %d is partially coded, fragment %d is coded\n",
1293 i
, current_fragment
);
1295 /* not coded; copy this fragment from the prior frame */
1296 s
->all_fragments
[current_fragment
].coding_method
=
1298 debug_block_coding(" superblock %d is partially coded, fragment %d is not coded\n",
1299 i
, current_fragment
);
1306 /* fragments are fully coded in this superblock; actual
1307 * coding will be determined in next step */
1308 s
->all_fragments
[current_fragment
].coding_method
=
1310 s
->coded_fragment_list
[s
->coded_fragment_list_index
] =
1312 if ((current_fragment
>= s
->u_fragment_start
) &&
1313 (s
->last_coded_y_fragment
== -1) &&
1314 (!first_c_fragment_seen
)) {
1315 s
->first_coded_c_fragment
= s
->coded_fragment_list_index
;
1316 s
->last_coded_y_fragment
= s
->first_coded_c_fragment
- 1;
1317 first_c_fragment_seen
= 1;
1319 s
->coded_fragment_list_index
++;
1320 s
->macroblock_coding
[s
->all_fragments
[current_fragment
].macroblock
] = MODE_INTER_NO_MV
;
1321 debug_block_coding(" superblock %d is fully coded, fragment %d is coded\n",
1322 i
, current_fragment
);
1328 if (!first_c_fragment_seen
)
1329 /* only Y fragments coded in this frame */
1330 s
->last_coded_y_fragment
= s
->coded_fragment_list_index
- 1;
1332 /* end the list of coded C fragments */
1333 s
->last_coded_c_fragment
= s
->coded_fragment_list_index
- 1;
1335 debug_block_coding(" %d total coded fragments, y: %d -> %d, c: %d -> %d\n",
1336 s
->coded_fragment_list_index
,
1337 s
->first_coded_y_fragment
,
1338 s
->last_coded_y_fragment
,
1339 s
->first_coded_c_fragment
,
1340 s
->last_coded_c_fragment
);
1346 * This function unpacks all the coding mode data for individual macroblocks
1347 * from the bitstream.
1349 static int unpack_modes(Vp3DecodeContext
*s
, GetBitContext
*gb
)
1353 int current_macroblock
;
1354 int current_fragment
;
1357 debug_vp3(" vp3: unpacking encoding modes\n");
1360 debug_vp3(" keyframe-- all blocks are coded as INTRA\n");
1362 for (i
= 0; i
< s
->fragment_count
; i
++)
1363 s
->all_fragments
[i
].coding_method
= MODE_INTRA
;
1367 /* fetch the mode coding scheme for this frame */
1368 scheme
= get_bits(gb
, 3);
1369 debug_modes(" using mode alphabet %d\n", scheme
);
1371 /* is it a custom coding scheme? */
1373 debug_modes(" custom mode alphabet ahead:\n");
1374 for (i
= 0; i
< 8; i
++)
1375 ModeAlphabet
[scheme
][get_bits(gb
, 3)] = i
;
1378 for (i
= 0; i
< 8; i
++)
1379 debug_modes(" mode[%d][%d] = %d\n", scheme
, i
,
1380 ModeAlphabet
[scheme
][i
]);
1382 /* iterate through all of the macroblocks that contain 1 or more
1383 * coded fragments */
1384 for (i
= 0; i
< s
->u_superblock_start
; i
++) {
1386 for (j
= 0; j
< 4; j
++) {
1387 current_macroblock
= s
->superblock_macroblocks
[i
* 4 + j
];
1388 if ((current_macroblock
== -1) ||
1389 (s
->macroblock_coding
[current_macroblock
] == MODE_COPY
))
1391 if (current_macroblock
>= s
->macroblock_count
) {
1392 av_log(s
->avctx
, AV_LOG_ERROR
, " vp3:unpack_modes(): bad macroblock number (%d >= %d)\n",
1393 current_macroblock
, s
->macroblock_count
);
1397 /* mode 7 means get 3 bits for each coding mode */
1399 coding_mode
= get_bits(gb
, 3);
1401 coding_mode
= ModeAlphabet
[scheme
][get_mode_code(gb
)];
1403 s
->macroblock_coding
[current_macroblock
] = coding_mode
;
1404 for (k
= 0; k
< 6; k
++) {
1406 s
->macroblock_fragments
[current_macroblock
* 6 + k
];
1407 if (current_fragment
== -1)
1409 if (current_fragment
>= s
->fragment_count
) {
1410 av_log(s
->avctx
, AV_LOG_ERROR
, " vp3:unpack_modes(): bad fragment number (%d >= %d)\n",
1411 current_fragment
, s
->fragment_count
);
1414 if (s
->all_fragments
[current_fragment
].coding_method
!=
1416 s
->all_fragments
[current_fragment
].coding_method
=
1420 debug_modes(" coding method for macroblock starting @ fragment %d = %d\n",
1421 s
->macroblock_fragments
[current_macroblock
* 6], coding_mode
);
1430 * This function unpacks all the motion vectors for the individual
1431 * macroblocks from the bitstream.
1433 static int unpack_vectors(Vp3DecodeContext
*s
, GetBitContext
*gb
)
1439 int last_motion_x
= 0;
1440 int last_motion_y
= 0;
1441 int prior_last_motion_x
= 0;
1442 int prior_last_motion_y
= 0;
1443 int current_macroblock
;
1444 int current_fragment
;
1446 debug_vp3(" vp3: unpacking motion vectors\n");
1449 debug_vp3(" keyframe-- there are no motion vectors\n");
1453 memset(motion_x
, 0, 6 * sizeof(int));
1454 memset(motion_y
, 0, 6 * sizeof(int));
1456 /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
1457 coding_mode
= get_bits(gb
, 1);
1458 debug_vectors(" using %s scheme for unpacking motion vectors\n",
1459 (coding_mode
== 0) ?
"VLC" : "fixed-length");
1461 /* iterate through all of the macroblocks that contain 1 or more
1462 * coded fragments */
1463 for (i
= 0; i
< s
->u_superblock_start
; i
++) {
1465 for (j
= 0; j
< 4; j
++) {
1466 current_macroblock
= s
->superblock_macroblocks
[i
* 4 + j
];
1467 if ((current_macroblock
== -1) ||
1468 (s
->macroblock_coding
[current_macroblock
] == MODE_COPY
))
1470 if (current_macroblock
>= s
->macroblock_count
) {
1471 av_log(s
->avctx
, AV_LOG_ERROR
, " vp3:unpack_vectors(): bad macroblock number (%d >= %d)\n",
1472 current_macroblock
, s
->macroblock_count
);
1476 current_fragment
= s
->macroblock_fragments
[current_macroblock
* 6];
1477 if (current_fragment
>= s
->fragment_count
) {
1478 av_log(s
->avctx
, AV_LOG_ERROR
, " vp3:unpack_vectors(): bad fragment number (%d >= %d\n",
1479 current_fragment
, s
->fragment_count
);
1482 switch (s
->macroblock_coding
[current_macroblock
]) {
1484 case MODE_INTER_PLUS_MV
:
1485 case MODE_GOLDEN_MV
:
1486 /* all 6 fragments use the same motion vector */
1487 if (coding_mode
== 0) {
1488 motion_x
[0] = get_motion_vector_vlc(gb
);
1489 motion_y
[0] = get_motion_vector_vlc(gb
);
1491 motion_x
[0] = get_motion_vector_fixed(gb
);
1492 motion_y
[0] = get_motion_vector_fixed(gb
);
1494 for (k
= 1; k
< 6; k
++) {
1495 motion_x
[k
] = motion_x
[0];
1496 motion_y
[k
] = motion_y
[0];
1499 /* vector maintenance, only on MODE_INTER_PLUS_MV */
1500 if (s
->macroblock_coding
[current_macroblock
] ==
1501 MODE_INTER_PLUS_MV
) {
1502 prior_last_motion_x
= last_motion_x
;
1503 prior_last_motion_y
= last_motion_y
;
1504 last_motion_x
= motion_x
[0];
1505 last_motion_y
= motion_y
[0];
1509 case MODE_INTER_FOURMV
:
1510 /* fetch 4 vectors from the bitstream, one for each
1511 * Y fragment, then average for the C fragment vectors */
1512 motion_x
[4] = motion_y
[4] = 0;
1513 for (k
= 0; k
< 4; k
++) {
1514 if (coding_mode
== 0) {
1515 motion_x
[k
] = get_motion_vector_vlc(gb
);
1516 motion_y
[k
] = get_motion_vector_vlc(gb
);
1518 motion_x
[k
] = get_motion_vector_fixed(gb
);
1519 motion_y
[k
] = get_motion_vector_fixed(gb
);
1521 motion_x
[4] += motion_x
[k
];
1522 motion_y
[4] += motion_y
[k
];
1525 if (motion_x
[4] >= 0)
1526 motion_x
[4] = (motion_x
[4] + 2) / 4;
1528 motion_x
[4] = (motion_x
[4] - 2) / 4;
1529 motion_x
[5] = motion_x
[4];
1531 if (motion_y
[4] >= 0)
1532 motion_y
[4] = (motion_y
[4] + 2) / 4;
1534 motion_y
[4] = (motion_y
[4] - 2) / 4;
1535 motion_y
[5] = motion_y
[4];
1537 /* vector maintenance; vector[3] is treated as the
1538 * last vector in this case */
1539 prior_last_motion_x
= last_motion_x
;
1540 prior_last_motion_y
= last_motion_y
;
1541 last_motion_x
= motion_x
[3];
1542 last_motion_y
= motion_y
[3];
1545 case MODE_INTER_LAST_MV
:
1546 /* all 6 fragments use the last motion vector */
1547 motion_x
[0] = last_motion_x
;
1548 motion_y
[0] = last_motion_y
;
1549 for (k
= 1; k
< 6; k
++) {
1550 motion_x
[k
] = motion_x
[0];
1551 motion_y
[k
] = motion_y
[0];
1554 /* no vector maintenance (last vector remains the
1558 case MODE_INTER_PRIOR_LAST
:
1559 /* all 6 fragments use the motion vector prior to the
1560 * last motion vector */
1561 motion_x
[0] = prior_last_motion_x
;
1562 motion_y
[0] = prior_last_motion_y
;
1563 for (k
= 1; k
< 6; k
++) {
1564 motion_x
[k
] = motion_x
[0];
1565 motion_y
[k
] = motion_y
[0];
1568 /* vector maintenance */
1569 prior_last_motion_x
= last_motion_x
;
1570 prior_last_motion_y
= last_motion_y
;
1571 last_motion_x
= motion_x
[0];
1572 last_motion_y
= motion_y
[0];
1576 /* covers intra, inter without MV, golden without MV */
1577 memset(motion_x
, 0, 6 * sizeof(int));
1578 memset(motion_y
, 0, 6 * sizeof(int));
1580 /* no vector maintenance */
1584 /* assign the motion vectors to the correct fragments */
1585 debug_vectors(" vectors for macroblock starting @ fragment %d (coding method %d):\n",
1587 s
->macroblock_coding
[current_macroblock
]);
1588 for (k
= 0; k
< 6; k
++) {
1590 s
->macroblock_fragments
[current_macroblock
* 6 + k
];
1591 if (current_fragment
== -1)
1593 if (current_fragment
>= s
->fragment_count
) {
1594 av_log(s
->avctx
, AV_LOG_ERROR
, " vp3:unpack_vectors(): bad fragment number (%d >= %d)\n",
1595 current_fragment
, s
->fragment_count
);
1598 s
->all_fragments
[current_fragment
].motion_x
= motion_x
[k
];
1599 s
->all_fragments
[current_fragment
].motion_y
= motion_y
[k
];
1600 debug_vectors(" vector %d: fragment %d = (%d, %d)\n",
1601 k
, current_fragment
, motion_x
[k
], motion_y
[k
]);
1611 * This function is called by unpack_dct_coeffs() to extract the VLCs from
1612 * the bitstream. The VLCs encode tokens which are used to unpack DCT
1613 * data. This function unpacks all the VLCs for either the Y plane or both
1614 * C planes, and is called for DC coefficients or different AC coefficient
1615 * levels (since different coefficient types require different VLC tables.
1617 * This function returns a residual eob run. E.g, if a particular token gave
1618 * instructions to EOB the next 5 fragments and there were only 2 fragments
1619 * left in the current fragment range, 3 would be returned so that it could
1620 * be passed into the next call to this same function.
1622 static int unpack_vlcs(Vp3DecodeContext
*s
, GetBitContext
*gb
,
1623 VLC
*table
, int coeff_index
,
1624 int first_fragment
, int last_fragment
,
1631 Vp3Fragment
*fragment
;
1633 if ((first_fragment
>= s
->fragment_count
) ||
1634 (last_fragment
>= s
->fragment_count
)) {
1636 av_log(s
->avctx
, AV_LOG_ERROR
, " vp3:unpack_vlcs(): bad fragment number (%d -> %d ?)\n",
1637 first_fragment
, last_fragment
);
1641 for (i
= first_fragment
; i
<= last_fragment
; i
++) {
1643 fragment
= &s
->all_fragments
[s
->coded_fragment_list
[i
]];
1644 if (fragment
->coeff_count
> coeff_index
)
1648 /* decode a VLC into a token */
1649 token
= get_vlc2(gb
, table
->table
, 5, 3);
1650 debug_vlc(" token = %2d, ", token
);
1651 /* use the token to get a zero run, a coefficient, and an eob run */
1652 unpack_token(gb
, token
, &zero_run
, &coeff
, &eob_run
);
1656 fragment
->coeff_count
+= zero_run
;
1657 if (fragment
->coeff_count
< 64)
1658 fragment
->coeffs
[fragment
->coeff_count
++] = coeff
;
1659 debug_vlc(" fragment %d coeff = %d\n",
1660 s
->coded_fragment_list
[i
], fragment
->coeffs
[coeff_index
]);
1662 fragment
->last_coeff
= fragment
->coeff_count
;
1663 fragment
->coeff_count
= 64;
1664 debug_vlc(" fragment %d eob with %d coefficients\n",
1665 s
->coded_fragment_list
[i
], fragment
->last_coeff
);
1674 * This function unpacks all of the DCT coefficient data from the
1677 static int unpack_dct_coeffs(Vp3DecodeContext
*s
, GetBitContext
*gb
)
1684 int residual_eob_run
= 0;
1686 /* fetch the DC table indices */
1687 dc_y_table
= get_bits(gb
, 4);
1688 dc_c_table
= get_bits(gb
, 4);
1690 /* unpack the Y plane DC coefficients */
1691 debug_vp3(" vp3: unpacking Y plane DC coefficients using table %d\n",
1693 residual_eob_run
= unpack_vlcs(s
, gb
, &s
->dc_vlc
[dc_y_table
], 0,
1694 s
->first_coded_y_fragment
, s
->last_coded_y_fragment
, residual_eob_run
);
1696 /* unpack the C plane DC coefficients */
1697 debug_vp3(" vp3: unpacking C plane DC coefficients using table %d\n",
1699 residual_eob_run
= unpack_vlcs(s
, gb
, &s
->dc_vlc
[dc_c_table
], 0,
1700 s
->first_coded_c_fragment
, s
->last_coded_c_fragment
, residual_eob_run
);
1702 /* fetch the AC table indices */
1703 ac_y_table
= get_bits(gb
, 4);
1704 ac_c_table
= get_bits(gb
, 4);
1706 /* unpack the group 1 AC coefficients (coeffs 1-5) */
1707 for (i
= 1; i
<= 5; i
++) {
1709 debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n",
1711 residual_eob_run
= unpack_vlcs(s
, gb
, &s
->ac_vlc_1
[ac_y_table
], i
,
1712 s
->first_coded_y_fragment
, s
->last_coded_y_fragment
, residual_eob_run
);
1714 debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n",
1716 residual_eob_run
= unpack_vlcs(s
, gb
, &s
->ac_vlc_1
[ac_c_table
], i
,
1717 s
->first_coded_c_fragment
, s
->last_coded_c_fragment
, residual_eob_run
);
1720 /* unpack the group 2 AC coefficients (coeffs 6-14) */
1721 for (i
= 6; i
<= 14; i
++) {
1723 debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n",
1725 residual_eob_run
= unpack_vlcs(s
, gb
, &s
->ac_vlc_2
[ac_y_table
], i
,
1726 s
->first_coded_y_fragment
, s
->last_coded_y_fragment
, residual_eob_run
);
1728 debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n",
1730 residual_eob_run
= unpack_vlcs(s
, gb
, &s
->ac_vlc_2
[ac_c_table
], i
,
1731 s
->first_coded_c_fragment
, s
->last_coded_c_fragment
, residual_eob_run
);
1734 /* unpack the group 3 AC coefficients (coeffs 15-27) */
1735 for (i
= 15; i
<= 27; i
++) {
1737 debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n",
1739 residual_eob_run
= unpack_vlcs(s
, gb
, &s
->ac_vlc_3
[ac_y_table
], i
,
1740 s
->first_coded_y_fragment
, s
->last_coded_y_fragment
, residual_eob_run
);
1742 debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n",
1744 residual_eob_run
= unpack_vlcs(s
, gb
, &s
->ac_vlc_3
[ac_c_table
], i
,
1745 s
->first_coded_c_fragment
, s
->last_coded_c_fragment
, residual_eob_run
);
1748 /* unpack the group 4 AC coefficients (coeffs 28-63) */
1749 for (i
= 28; i
<= 63; i
++) {
1751 debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n",
1753 residual_eob_run
= unpack_vlcs(s
, gb
, &s
->ac_vlc_4
[ac_y_table
], i
,
1754 s
->first_coded_y_fragment
, s
->last_coded_y_fragment
, residual_eob_run
);
1756 debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n",
1758 residual_eob_run
= unpack_vlcs(s
, gb
, &s
->ac_vlc_4
[ac_c_table
], i
,
1759 s
->first_coded_c_fragment
, s
->last_coded_c_fragment
, residual_eob_run
);
1766 * This function reverses the DC prediction for each coded fragment in
1767 * the frame. Much of this function is adapted directly from the original
1770 #define COMPATIBLE_FRAME(x) \
1771 (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1772 #define FRAME_CODED(x) (s->all_fragments[x].coding_method != MODE_COPY)
1773 static inline int iabs (int x
) { return ((x
< 0) ?
-x
: x
); }
1775 static void reverse_dc_prediction(Vp3DecodeContext
*s
,
1778 int fragment_height
)
1787 int i
= first_fragment
;
1790 * Fragment prediction groups:
1798 * Note: Groups 5 and 7 do not exist as it would mean that the
1799 * fragment's x coordinate is both 0 and (width - 1) at the same time.
1801 int predictor_group
;
1804 /* validity flags for the left, up-left, up, and up-right fragments */
1805 int fl
, ful
, fu
, fur
;
1807 /* DC values for the left, up-left, up, and up-right fragments */
1808 int vl
, vul
, vu
, vur
;
1810 /* indices for the left, up-left, up, and up-right fragments */
1814 * The 6 fields mean:
1815 * 0: up-left multiplier
1817 * 2: up-right multiplier
1818 * 3: left multiplier
1820 * 5: right bit shift divisor (e.g., 7 means >>=7, a.k.a. div by 128)
1822 int predictor_transform
[16][6] = {
1823 { 0, 0, 0, 0, 0, 0 },
1824 { 0, 0, 0, 1, 0, 0 }, // PL
1825 { 0, 0, 1, 0, 0, 0 }, // PUR
1826 { 0, 0, 53, 75, 127, 7 }, // PUR|PL
1827 { 0, 1, 0, 0, 0, 0 }, // PU
1828 { 0, 1, 0, 1, 1, 1 }, // PU|PL
1829 { 0, 1, 0, 0, 0, 0 }, // PU|PUR
1830 { 0, 0, 53, 75, 127, 7 }, // PU|PUR|PL
1831 { 1, 0, 0, 0, 0, 0 }, // PUL
1832 { 0, 0, 0, 1, 0, 0 }, // PUL|PL
1833 { 1, 0, 1, 0, 1, 1 }, // PUL|PUR
1834 { 0, 0, 53, 75, 127, 7 }, // PUL|PUR|PL
1835 { 0, 1, 0, 0, 0, 0 }, // PUL|PU
1836 {-26, 29, 0, 29, 31, 5 }, // PUL|PU|PL
1837 { 3, 10, 3, 0, 15, 4 }, // PUL|PU|PUR
1838 {-26, 29, 0, 29, 31, 5 } // PUL|PU|PUR|PL
1841 /* This table shows which types of blocks can use other blocks for
1842 * prediction. For example, INTRA is the only mode in this table to
1843 * have a frame number of 0. That means INTRA blocks can only predict
1844 * from other INTRA blocks. There are 2 golden frame coding types;
1845 * blocks encoding in these modes can only predict from other blocks
1846 * that were encoded with these 1 of these 2 modes. */
1847 unsigned char compatible_frame
[8] = {
1848 1, /* MODE_INTER_NO_MV */
1850 1, /* MODE_INTER_PLUS_MV */
1851 1, /* MODE_INTER_LAST_MV */
1852 1, /* MODE_INTER_PRIOR_MV */
1853 2, /* MODE_USING_GOLDEN */
1854 2, /* MODE_GOLDEN_MV */
1855 1 /* MODE_INTER_FOUR_MV */
1857 int current_frame_type
;
1859 /* there is a last DC predictor for each of the 3 frame types */
1864 debug_vp3(" vp3: reversing DC prediction\n");
1866 vul
= vu
= vur
= vl
= 0;
1867 last_dc
[0] = last_dc
[1] = last_dc
[2] = 0;
1869 /* for each fragment row... */
1870 for (y
= 0; y
< fragment_height
; y
++) {
1872 /* for each fragment in a row... */
1873 for (x
= 0; x
< fragment_width
; x
++, i
++) {
1875 /* reverse prediction if this block was coded */
1876 if (s
->all_fragments
[i
].coding_method
!= MODE_COPY
) {
1878 current_frame_type
=
1879 compatible_frame
[s
->all_fragments
[i
].coding_method
];
1880 predictor_group
= (x
== 0) + ((y
== 0) << 1) +
1881 ((x
+ 1 == fragment_width
) << 2);
1882 debug_dc_pred(" frag %d: group %d, orig DC = %d, ",
1883 i
, predictor_group
, s
->all_fragments
[i
].coeffs
[0]);
1885 switch (predictor_group
) {
1888 /* main body of fragments; consider all 4 possible
1889 * fragments for prediction */
1891 /* calculate the indices of the predicting fragments */
1892 ul
= i
- fragment_width
- 1;
1893 u
= i
- fragment_width
;
1894 ur
= i
- fragment_width
+ 1;
1897 /* fetch the DC values for the predicting fragments */
1898 vul
= s
->all_fragments
[ul
].coeffs
[0];
1899 vu
= s
->all_fragments
[u
].coeffs
[0];
1900 vur
= s
->all_fragments
[ur
].coeffs
[0];
1901 vl
= s
->all_fragments
[l
].coeffs
[0];
1903 /* figure out which fragments are valid */
1904 ful
= FRAME_CODED(ul
) && COMPATIBLE_FRAME(ul
);
1905 fu
= FRAME_CODED(u
) && COMPATIBLE_FRAME(u
);
1906 fur
= FRAME_CODED(ur
) && COMPATIBLE_FRAME(ur
);
1907 fl
= FRAME_CODED(l
) && COMPATIBLE_FRAME(l
);
1909 /* decide which predictor transform to use */
1910 transform
= (fl
*PL
) | (fu
*PU
) | (ful
*PUL
) | (fur
*PUR
);
1915 /* left column of fragments, not including top corner;
1916 * only consider up and up-right fragments */
1918 /* calculate the indices of the predicting fragments */
1919 u
= i
- fragment_width
;
1920 ur
= i
- fragment_width
+ 1;
1922 /* fetch the DC values for the predicting fragments */
1923 vu
= s
->all_fragments
[u
].coeffs
[0];
1924 vur
= s
->all_fragments
[ur
].coeffs
[0];
1926 /* figure out which fragments are valid */
1927 fur
= FRAME_CODED(ur
) && COMPATIBLE_FRAME(ur
);
1928 fu
= FRAME_CODED(u
) && COMPATIBLE_FRAME(u
);
1930 /* decide which predictor transform to use */
1931 transform
= (fu
*PU
) | (fur
*PUR
);
1937 /* top row of fragments, not including top-left frag;
1938 * only consider the left fragment for prediction */
1940 /* calculate the indices of the predicting fragments */
1943 /* fetch the DC values for the predicting fragments */
1944 vl
= s
->all_fragments
[l
].coeffs
[0];
1946 /* figure out which fragments are valid */
1947 fl
= FRAME_CODED(l
) && COMPATIBLE_FRAME(l
);
1949 /* decide which predictor transform to use */
1950 transform
= (fl
*PL
);
1955 /* top-left fragment */
1957 /* nothing to predict from in this case */
1963 /* right column of fragments, not including top corner;
1964 * consider up-left, up, and left fragments for
1967 /* calculate the indices of the predicting fragments */
1968 ul
= i
- fragment_width
- 1;
1969 u
= i
- fragment_width
;
1972 /* fetch the DC values for the predicting fragments */
1973 vul
= s
->all_fragments
[ul
].coeffs
[0];
1974 vu
= s
->all_fragments
[u
].coeffs
[0];
1975 vl
= s
->all_fragments
[l
].coeffs
[0];
1977 /* figure out which fragments are valid */
1978 ful
= FRAME_CODED(ul
) && COMPATIBLE_FRAME(ul
);
1979 fu
= FRAME_CODED(u
) && COMPATIBLE_FRAME(u
);
1980 fl
= FRAME_CODED(l
) && COMPATIBLE_FRAME(l
);
1982 /* decide which predictor transform to use */
1983 transform
= (fl
*PL
) | (fu
*PU
) | (ful
*PUL
);
1989 debug_dc_pred("transform = %d, ", transform
);
1991 if (transform
== 0) {
1993 /* if there were no fragments to predict from, use last
1995 s
->all_fragments
[i
].coeffs
[0] += last_dc
[current_frame_type
];
1996 debug_dc_pred("from last DC (%d) = %d\n",
1997 current_frame_type
, s
->all_fragments
[i
].coeffs
[0]);
2001 /* apply the appropriate predictor transform */
2003 (predictor_transform
[transform
][0] * vul
) +
2004 (predictor_transform
[transform
][1] * vu
) +
2005 (predictor_transform
[transform
][2] * vur
) +
2006 (predictor_transform
[transform
][3] * vl
);
2008 /* if there is a shift value in the transform, add
2009 * the sign bit before the shift */
2010 if (predictor_transform
[transform
][5] != 0) {
2011 predicted_dc
+= ((predicted_dc
>> 15) &
2012 predictor_transform
[transform
][4]);
2013 predicted_dc
>>= predictor_transform
[transform
][5];
2016 /* check for outranging on the [ul u l] and
2017 * [ul u ur l] predictors */
2018 if ((transform
== 13) || (transform
== 15)) {
2019 if (iabs(predicted_dc
- vu
) > 128)
2021 else if (iabs(predicted_dc
- vl
) > 128)
2023 else if (iabs(predicted_dc
- vul
) > 128)
2027 /* at long last, apply the predictor */
2028 s
->all_fragments
[i
].coeffs
[0] += predicted_dc
;
2029 debug_dc_pred("from pred DC = %d\n",
2030 s
->all_fragments
[i
].coeffs
[0]);
2034 last_dc
[current_frame_type
] = s
->all_fragments
[i
].coeffs
[0];
2041 * This function performs the final rendering of each fragment's data
2042 * onto the output frame.
2044 static void render_fragments(Vp3DecodeContext
*s
,
2048 int plane
/* 0 = Y, 1 = U, 2 = V */)
2052 int i
= first_fragment
;
2053 int16_t *dequantizer
;
2054 DCTELEM __align16 output_samples
[64];
2055 unsigned char *output_plane
;
2056 unsigned char *last_plane
;
2057 unsigned char *golden_plane
;
2059 int motion_x
= 0xdeadbeef, motion_y
= 0xdeadbeef;
2060 int upper_motion_limit
, lower_motion_limit
;
2061 int motion_halfpel_index
;
2062 uint8_t *motion_source
;
2064 debug_vp3(" vp3: rendering final fragments for %s\n",
2065 (plane
== 0) ?
"Y plane" : (plane
== 1) ?
"U plane" : "V plane");
2067 /* set up plane-specific parameters */
2069 dequantizer
= s
->intra_y_dequant
;
2070 output_plane
= s
->current_frame
.data
[0];
2071 last_plane
= s
->last_frame
.data
[0];
2072 golden_plane
= s
->golden_frame
.data
[0];
2073 stride
= s
->current_frame
.linesize
[0];
2074 if (!s
->flipped_image
) stride
= -stride
;
2075 upper_motion_limit
= 7 * s
->current_frame
.linesize
[0];
2076 lower_motion_limit
= height
* s
->current_frame
.linesize
[0] + width
- 8;
2077 } else if (plane
== 1) {
2078 dequantizer
= s
->intra_c_dequant
;
2079 output_plane
= s
->current_frame
.data
[1];
2080 last_plane
= s
->last_frame
.data
[1];
2081 golden_plane
= s
->golden_frame
.data
[1];
2082 stride
= s
->current_frame
.linesize
[1];
2083 if (!s
->flipped_image
) stride
= -stride
;
2084 upper_motion_limit
= 7 * s
->current_frame
.linesize
[1];
2085 lower_motion_limit
= height
* s
->current_frame
.linesize
[1] + width
- 8;
2087 dequantizer
= s
->intra_c_dequant
;
2088 output_plane
= s
->current_frame
.data
[2];
2089 last_plane
= s
->last_frame
.data
[2];
2090 golden_plane
= s
->golden_frame
.data
[2];
2091 stride
= s
->current_frame
.linesize
[2];
2092 if (!s
->flipped_image
) stride
= -stride
;
2093 upper_motion_limit
= 7 * s
->current_frame
.linesize
[2];
2094 lower_motion_limit
= height
* s
->current_frame
.linesize
[2] + width
- 8;
2097 if(ABS(stride
) > 2048)
2098 return; //various tables are fixed size
2100 /* for each fragment row... */
2101 for (y
= 0; y
< height
; y
+= 8) {
2103 /* for each fragment in a row... */
2104 for (x
= 0; x
< width
; x
+= 8, i
++) {
2106 if ((i
< 0) || (i
>= s
->fragment_count
)) {
2107 av_log(s
->avctx
, AV_LOG_ERROR
, " vp3:render_fragments(): bad fragment number (%d)\n", i
);
2111 /* transform if this block was coded */
2112 if ((s
->all_fragments
[i
].coding_method
!= MODE_COPY
) &&
2113 !((s
->avctx
->flags
& CODEC_FLAG_GRAY
) && plane
)) {
2115 if ((s
->all_fragments
[i
].coding_method
== MODE_USING_GOLDEN
) ||
2116 (s
->all_fragments
[i
].coding_method
== MODE_GOLDEN_MV
))
2117 motion_source
= golden_plane
;
2119 motion_source
= last_plane
;
2121 motion_source
+= s
->all_fragments
[i
].first_pixel
;
2122 motion_halfpel_index
= 0;
2124 /* sort out the motion vector if this fragment is coded
2125 * using a motion vector method */
2126 if ((s
->all_fragments
[i
].coding_method
> MODE_INTRA
) &&
2127 (s
->all_fragments
[i
].coding_method
!= MODE_USING_GOLDEN
)) {
2129 motion_x
= s
->all_fragments
[i
].motion_x
;
2130 motion_y
= s
->all_fragments
[i
].motion_y
;
2132 motion_x
= (motion_x
>>1) | (motion_x
&1);
2133 motion_y
= (motion_y
>>1) | (motion_y
&1);
2136 src_x
= (motion_x
>>1) + x
;
2137 src_y
= (motion_y
>>1) + y
;
2138 if ((motion_x
== 0xbeef) || (motion_y
== 0xbeef))
2139 av_log(s
->avctx
, AV_LOG_ERROR
, " help! got beefy vector! (%X, %X)\n", motion_x
, motion_y
);
2141 motion_halfpel_index
= motion_x
& 0x01;
2142 motion_source
+= (motion_x
>> 1);
2144 // motion_y = -motion_y;
2145 motion_halfpel_index
|= (motion_y
& 0x01) << 1;
2146 motion_source
+= ((motion_y
>> 1) * stride
);
2148 if(src_x
<0 || src_y
<0 || src_x
+ 9 >= width
|| src_y
+ 9 >= height
){
2149 uint8_t *temp
= s
->edge_emu_buffer
;
2150 if(stride
<0) temp
-= 9*stride
;
2151 else temp
+= 9*stride
;
2153 ff_emulated_edge_mc(temp
, motion_source
, stride
, 9, 9, src_x
, src_y
, width
, height
);
2154 motion_source
= temp
;
2159 /* first, take care of copying a block from either the
2160 * previous or the golden frame */
2161 if (s
->all_fragments
[i
].coding_method
!= MODE_INTRA
) {
2162 //Note, it is possible to implement all MC cases with put_no_rnd_pixels_l2 which would look more like the VP3 source but this would be slower as put_no_rnd_pixels_tab is better optimzed
2163 if(motion_halfpel_index
!= 3){
2164 s
->dsp
.put_no_rnd_pixels_tab
[1][motion_halfpel_index
](
2165 output_plane
+ s
->all_fragments
[i
].first_pixel
,
2166 motion_source
, stride
, 8);
2168 int d
= (motion_x
^ motion_y
)>>31; // d is 0 if motion_x and _y have the same sign, else -1
2169 s
->dsp
.put_no_rnd_pixels_l2
[1](
2170 output_plane
+ s
->all_fragments
[i
].first_pixel
,
2172 motion_source
+ stride
+ 1 + d
,
2177 /* dequantize the DCT coefficients */
2178 debug_idct("fragment %d, coding mode %d, DC = %d, dequant = %d:\n",
2179 i
, s
->all_fragments
[i
].coding_method
,
2180 s
->all_fragments
[i
].coeffs
[0], dequantizer
[0]);
2182 /* invert DCT and place (or add) in final output */
2183 s
->dsp
.vp3_idct(s
->all_fragments
[i
].coeffs
,
2185 s
->all_fragments
[i
].coeff_count
,
2187 if (s
->all_fragments
[i
].coding_method
== MODE_INTRA
) {
2188 s
->dsp
.put_signed_pixels_clamped(output_samples
,
2189 output_plane
+ s
->all_fragments
[i
].first_pixel
,
2192 s
->dsp
.add_pixels_clamped(output_samples
,
2193 output_plane
+ s
->all_fragments
[i
].first_pixel
,
2197 debug_idct("block after idct_%s():\n",
2198 (s
->all_fragments
[i
].coding_method
== MODE_INTRA
)?
2200 for (m
= 0; m
< 8; m
++) {
2201 for (n
= 0; n
< 8; n
++) {
2202 debug_idct(" %3d", *(output_plane
+
2203 s
->all_fragments
[i
].first_pixel
+ (m
* stride
+ n
)));
2211 /* copy directly from the previous frame */
2212 s
->dsp
.put_pixels_tab
[1][0](
2213 output_plane
+ s
->all_fragments
[i
].first_pixel
,
2214 last_plane
+ s
->all_fragments
[i
].first_pixel
,
2224 #define SATURATE_U8(x) ((x) < 0) ? 0 : ((x) > 255) ? 255 : x
2226 static void horizontal_filter(unsigned char *first_pixel
, int stride
,
2227 int *bounding_values
)
2232 for (i
= 0; i
< 8; i
++, first_pixel
+= stride
) {
2234 (first_pixel
[-2] * 1) -
2235 (first_pixel
[-1] * 3) +
2236 (first_pixel
[ 0] * 3) -
2237 (first_pixel
[ 1] * 1);
2238 filter_value
= bounding_values
[(filter_value
+ 4) >> 3];
2239 first_pixel
[-1] = SATURATE_U8(first_pixel
[-1] + filter_value
);
2240 first_pixel
[ 0] = SATURATE_U8(first_pixel
[ 0] - filter_value
);
2244 static void vertical_filter(unsigned char *first_pixel
, int stride
,
2245 int *bounding_values
)
2250 for (i
= 0; i
< 8; i
++, first_pixel
++) {
2252 (first_pixel
[-(2 * stride
)] * 1) -
2253 (first_pixel
[-(1 * stride
)] * 3) +
2254 (first_pixel
[ (0 )] * 3) -
2255 (first_pixel
[ (1 * stride
)] * 1);
2256 filter_value
= bounding_values
[(filter_value
+ 4) >> 3];
2257 first_pixel
[-(1 * stride
)] = SATURATE_U8(first_pixel
[-(1 * stride
)] + filter_value
);
2258 first_pixel
[0] = SATURATE_U8(first_pixel
[0] - filter_value
);
2262 static void apply_loop_filter(Vp3DecodeContext
*s
)
2268 unsigned char *plane_data
;
2269 int bounding_values
[256];
2272 /* find the right loop limit value */
2273 for (x
= 63; x
>= 0; x
--) {
2274 if (vp31_ac_scale_factor
[x
] >= s
->quality_index
)
2277 filter_limit
= vp31_filter_limit_values
[x
];
2279 /* set up the bounding values */
2280 memset(bounding_values
, 0, 256 * sizeof(int));
2281 for (x
= 0; x
< filter_limit
; x
++) {
2282 bounding_values
[-x
- filter_limit
] = -filter_limit
+ x
;
2283 bounding_values
[-x
] = -x
;
2284 bounding_values
[x
] = x
;
2285 bounding_values
[x
+ filter_limit
] = filter_limit
- x
;
2288 for (plane
= 0; plane
< 3; plane
++) {
2291 /* Y plane parameters */
2293 width
= s
->fragment_width
;
2294 height
= s
->fragment_height
;
2295 stride
= s
->current_frame
.linesize
[0];
2296 plane_data
= s
->current_frame
.data
[0];
2297 } else if (plane
== 1) {
2298 /* U plane parameters */
2299 fragment
= s
->u_fragment_start
;
2300 width
= s
->fragment_width
/ 2;
2301 height
= s
->fragment_height
/ 2;
2302 stride
= s
->current_frame
.linesize
[1];
2303 plane_data
= s
->current_frame
.data
[1];
2305 /* V plane parameters */
2306 fragment
= s
->v_fragment_start
;
2307 width
= s
->fragment_width
/ 2;
2308 height
= s
->fragment_height
/ 2;
2309 stride
= s
->current_frame
.linesize
[2];
2310 plane_data
= s
->current_frame
.data
[2];
2313 for (y
= 0; y
< height
; y
++) {
2315 for (x
= 0; x
< width
; x
++) {
2317 /* do not perform left edge filter for left columns frags */
2319 (s
->all_fragments
[fragment
].coding_method
!= MODE_COPY
)) {
2321 plane_data
+ s
->all_fragments
[fragment
].first_pixel
,
2322 stride
, bounding_values
);
2325 /* do not perform top edge filter for top row fragments */
2327 (s
->all_fragments
[fragment
].coding_method
!= MODE_COPY
)) {
2329 plane_data
+ s
->all_fragments
[fragment
].first_pixel
,
2330 stride
, bounding_values
);
2333 /* do not perform right edge filter for right column
2334 * fragments or if right fragment neighbor is also coded
2335 * in this frame (it will be filtered in next iteration) */
2336 if ((x
< width
- 1) &&
2337 (s
->all_fragments
[fragment
].coding_method
!= MODE_COPY
) &&
2338 (s
->all_fragments
[fragment
+ 1].coding_method
== MODE_COPY
)) {
2340 plane_data
+ s
->all_fragments
[fragment
+ 1].first_pixel
,
2341 stride
, bounding_values
);
2344 /* do not perform bottom edge filter for bottom row
2345 * fragments or if bottom fragment neighbor is also coded
2346 * in this frame (it will be filtered in the next row) */
2347 if ((y
< height
- 1) &&
2348 (s
->all_fragments
[fragment
].coding_method
!= MODE_COPY
) &&
2349 (s
->all_fragments
[fragment
+ width
].coding_method
== MODE_COPY
)) {
2351 plane_data
+ s
->all_fragments
[fragment
+ width
].first_pixel
,
2352 stride
, bounding_values
);
2362 * This function computes the first pixel addresses for each fragment.
2363 * This function needs to be invoked after the first frame is allocated
2364 * so that it has access to the plane strides.
2366 static void vp3_calculate_pixel_addresses(Vp3DecodeContext
*s
)
2371 /* figure out the first pixel addresses for each of the fragments */
2374 for (y
= s
->fragment_height
; y
> 0; y
--) {
2375 for (x
= 0; x
< s
->fragment_width
; x
++) {
2376 s
->all_fragments
[i
++].first_pixel
=
2377 s
->golden_frame
.linesize
[0] * y
* FRAGMENT_PIXELS
-
2378 s
->golden_frame
.linesize
[0] +
2379 x
* FRAGMENT_PIXELS
;
2380 debug_init(" fragment %d, first pixel @ %d\n",
2381 i
-1, s
->all_fragments
[i
-1].first_pixel
);
2386 i
= s
->u_fragment_start
;
2387 for (y
= s
->fragment_height
/ 2; y
> 0; y
--) {
2388 for (x
= 0; x
< s
->fragment_width
/ 2; x
++) {
2389 s
->all_fragments
[i
++].first_pixel
=
2390 s
->golden_frame
.linesize
[1] * y
* FRAGMENT_PIXELS
-
2391 s
->golden_frame
.linesize
[1] +
2392 x
* FRAGMENT_PIXELS
;
2393 debug_init(" fragment %d, first pixel @ %d\n",
2394 i
-1, s
->all_fragments
[i
-1].first_pixel
);
2399 i
= s
->v_fragment_start
;
2400 for (y
= s
->fragment_height
/ 2; y
> 0; y
--) {
2401 for (x
= 0; x
< s
->fragment_width
/ 2; x
++) {
2402 s
->all_fragments
[i
++].first_pixel
=
2403 s
->golden_frame
.linesize
[2] * y
* FRAGMENT_PIXELS
-
2404 s
->golden_frame
.linesize
[2] +
2405 x
* FRAGMENT_PIXELS
;
2406 debug_init(" fragment %d, first pixel @ %d\n",
2407 i
-1, s
->all_fragments
[i
-1].first_pixel
);
2412 /* FIXME: this should be merged with the above! */
2413 static void theora_calculate_pixel_addresses(Vp3DecodeContext
*s
)
2418 /* figure out the first pixel addresses for each of the fragments */
2421 for (y
= 1; y
<= s
->fragment_height
; y
++) {
2422 for (x
= 0; x
< s
->fragment_width
; x
++) {
2423 s
->all_fragments
[i
++].first_pixel
=
2424 s
->golden_frame
.linesize
[0] * y
* FRAGMENT_PIXELS
-
2425 s
->golden_frame
.linesize
[0] +
2426 x
* FRAGMENT_PIXELS
;
2427 debug_init(" fragment %d, first pixel @ %d\n",
2428 i
-1, s
->all_fragments
[i
-1].first_pixel
);
2433 i
= s
->u_fragment_start
;
2434 for (y
= 1; y
<= s
->fragment_height
/ 2; y
++) {
2435 for (x
= 0; x
< s
->fragment_width
/ 2; x
++) {
2436 s
->all_fragments
[i
++].first_pixel
=
2437 s
->golden_frame
.linesize
[1] * y
* FRAGMENT_PIXELS
-
2438 s
->golden_frame
.linesize
[1] +
2439 x
* FRAGMENT_PIXELS
;
2440 debug_init(" fragment %d, first pixel @ %d\n",
2441 i
-1, s
->all_fragments
[i
-1].first_pixel
);
2446 i
= s
->v_fragment_start
;
2447 for (y
= 1; y
<= s
->fragment_height
/ 2; y
++) {
2448 for (x
= 0; x
< s
->fragment_width
/ 2; x
++) {
2449 s
->all_fragments
[i
++].first_pixel
=
2450 s
->golden_frame
.linesize
[2] * y
* FRAGMENT_PIXELS
-
2451 s
->golden_frame
.linesize
[2] +
2452 x
* FRAGMENT_PIXELS
;
2453 debug_init(" fragment %d, first pixel @ %d\n",
2454 i
-1, s
->all_fragments
[i
-1].first_pixel
);
2460 * This is the ffmpeg/libavcodec API init function.
2462 static int vp3_decode_init(AVCodecContext
*avctx
)
2464 Vp3DecodeContext
*s
= avctx
->priv_data
;
2468 int y_superblock_count
;
2469 int c_superblock_count
;
2471 if (avctx
->codec_tag
== MKTAG('V','P','3','0'))
2478 s
->width
= avctx
->width
;
2479 s
->height
= avctx
->height
;
2481 s
->width
= (avctx
->width
+ 15) & 0xFFFFFFF0;
2482 s
->height
= (avctx
->height
+ 15) & 0xFFFFFFF0;
2484 avctx
->pix_fmt
= PIX_FMT_YUV420P
;
2485 avctx
->has_b_frames
= 0;
2486 dsputil_init(&s
->dsp
, avctx
);
2487 s
->dsp
.vp3_dsp_init();
2489 /* initialize to an impossible value which will force a recalculation
2490 * in the first frame decode */
2491 s
->quality_index
= -1;
2493 s
->y_superblock_width
= (s
->width
+ 31) / 32;
2494 s
->y_superblock_height
= (s
->height
+ 31) / 32;
2495 y_superblock_count
= s
->y_superblock_width
* s
->y_superblock_height
;
2497 /* work out the dimensions for the C planes */
2498 c_width
= s
->width
/ 2;
2499 c_height
= s
->height
/ 2;
2500 s
->c_superblock_width
= (c_width
+ 31) / 32;
2501 s
->c_superblock_height
= (c_height
+ 31) / 32;
2502 c_superblock_count
= s
->c_superblock_width
* s
->c_superblock_height
;
2504 s
->superblock_count
= y_superblock_count
+ (c_superblock_count
* 2);
2505 s
->u_superblock_start
= y_superblock_count
;
2506 s
->v_superblock_start
= s
->u_superblock_start
+ c_superblock_count
;
2507 s
->superblock_coding
= av_malloc(s
->superblock_count
);
2509 s
->macroblock_width
= (s
->width
+ 15) / 16;
2510 s
->macroblock_height
= (s
->height
+ 15) / 16;
2511 s
->macroblock_count
= s
->macroblock_width
* s
->macroblock_height
;
2513 s
->fragment_width
= s
->width
/ FRAGMENT_PIXELS
;
2514 s
->fragment_height
= s
->height
/ FRAGMENT_PIXELS
;
2516 /* fragment count covers all 8x8 blocks for all 3 planes */
2517 s
->fragment_count
= s
->fragment_width
* s
->fragment_height
* 3 / 2;
2518 s
->u_fragment_start
= s
->fragment_width
* s
->fragment_height
;
2519 s
->v_fragment_start
= s
->fragment_width
* s
->fragment_height
* 5 / 4;
2521 debug_init(" Y plane: %d x %d\n", s
->width
, s
->height
);
2522 debug_init(" C plane: %d x %d\n", c_width
, c_height
);
2523 debug_init(" Y superblocks: %d x %d, %d total\n",
2524 s
->y_superblock_width
, s
->y_superblock_height
, y_superblock_count
);
2525 debug_init(" C superblocks: %d x %d, %d total\n",
2526 s
->c_superblock_width
, s
->c_superblock_height
, c_superblock_count
);
2527 debug_init(" total superblocks = %d, U starts @ %d, V starts @ %d\n",
2528 s
->superblock_count
, s
->u_superblock_start
, s
->v_superblock_start
);
2529 debug_init(" macroblocks: %d x %d, %d total\n",
2530 s
->macroblock_width
, s
->macroblock_height
, s
->macroblock_count
);
2531 debug_init(" %d fragments, %d x %d, u starts @ %d, v starts @ %d\n",
2535 s
->u_fragment_start
,
2536 s
->v_fragment_start
);
2538 s
->all_fragments
= av_malloc(s
->fragment_count
* sizeof(Vp3Fragment
));
2539 s
->coded_fragment_list
= av_malloc(s
->fragment_count
* sizeof(int));
2540 s
->pixel_addresses_inited
= 0;
2542 if (!s
->theora_tables
)
2544 for (i
= 0; i
< 64; i
++)
2545 s
->coded_dc_scale_factor
[i
] = vp31_dc_scale_factor
[i
];
2546 for (i
= 0; i
< 64; i
++)
2547 s
->coded_ac_scale_factor
[i
] = vp31_ac_scale_factor
[i
];
2548 for (i
= 0; i
< 64; i
++)
2549 s
->coded_intra_y_dequant
[i
] = vp31_intra_y_dequant
[i
];
2550 for (i
= 0; i
< 64; i
++)
2551 s
->coded_intra_c_dequant
[i
] = vp31_intra_c_dequant
[i
];
2552 for (i
= 0; i
< 64; i
++)
2553 s
->coded_inter_dequant
[i
] = vp31_inter_dequant
[i
];
2556 /* init VLC tables */
2557 for (i
= 0; i
< 16; i
++) {
2560 init_vlc(&s
->dc_vlc
[i
], 5, 32,
2561 &dc_bias
[i
][0][1], 4, 2,
2562 &dc_bias
[i
][0][0], 4, 2, 0);
2564 /* group 1 AC histograms */
2565 init_vlc(&s
->ac_vlc_1
[i
], 5, 32,
2566 &ac_bias_0
[i
][0][1], 4, 2,
2567 &ac_bias_0
[i
][0][0], 4, 2, 0);
2569 /* group 2 AC histograms */
2570 init_vlc(&s
->ac_vlc_2
[i
], 5, 32,
2571 &ac_bias_1
[i
][0][1], 4, 2,
2572 &ac_bias_1
[i
][0][0], 4, 2, 0);
2574 /* group 3 AC histograms */
2575 init_vlc(&s
->ac_vlc_3
[i
], 5, 32,
2576 &ac_bias_2
[i
][0][1], 4, 2,
2577 &ac_bias_2
[i
][0][0], 4, 2, 0);
2579 /* group 4 AC histograms */
2580 init_vlc(&s
->ac_vlc_4
[i
], 5, 32,
2581 &ac_bias_3
[i
][0][1], 4, 2,
2582 &ac_bias_3
[i
][0][0], 4, 2, 0);
2585 /* build quantization zigzag table */
2586 for (i
= 0; i
< 64; i
++)
2587 zigzag_index
[dezigzag_index
[i
]] = i
;
2589 /* work out the block mapping tables */
2590 s
->superblock_fragments
= av_malloc(s
->superblock_count
* 16 * sizeof(int));
2591 s
->superblock_macroblocks
= av_malloc(s
->superblock_count
* 4 * sizeof(int));
2592 s
->macroblock_fragments
= av_malloc(s
->macroblock_count
* 6 * sizeof(int));
2593 s
->macroblock_coding
= av_malloc(s
->macroblock_count
+ 1);
2594 init_block_mapping(s
);
2596 for (i
= 0; i
< 3; i
++) {
2597 s
->current_frame
.data
[i
] = NULL
;
2598 s
->last_frame
.data
[i
] = NULL
;
2599 s
->golden_frame
.data
[i
] = NULL
;
2606 * This is the ffmpeg/libavcodec API frame decode function.
2608 static int vp3_decode_frame(AVCodecContext
*avctx
,
2609 void *data
, int *data_size
,
2610 uint8_t *buf
, int buf_size
)
2612 Vp3DecodeContext
*s
= avctx
->priv_data
;
2614 static int counter
= 0;
2616 init_get_bits(&gb
, buf
, buf_size
* 8);
2618 if (s
->theora
&& get_bits1(&gb
))
2620 int ptype
= get_bits(&gb
, 7);
2622 skip_bits(&gb
, 6*8); /* "theora" */
2627 theora_decode_comments(avctx
, gb
);
2630 theora_decode_tables(avctx
, gb
);
2631 init_dequantizer(s
);
2634 av_log(avctx
, AV_LOG_ERROR
, "Unknown Theora config packet: %d\n", ptype
);
2639 s
->keyframe
= !get_bits1(&gb
);
2642 s
->last_quality_index
= s
->quality_index
;
2643 s
->quality_index
= get_bits(&gb
, 6);
2644 if (s
->theora
>= 0x030200)
2647 if (s
->avctx
->debug
& FF_DEBUG_PICT_INFO
)
2648 av_log(s
->avctx
, AV_LOG_INFO
, " VP3 %sframe #%d: Q index = %d\n",
2649 s
->keyframe?
"key":"", counter
, s
->quality_index
);
2652 if (s
->quality_index
!= s
->last_quality_index
)
2653 init_dequantizer(s
);
2658 skip_bits(&gb
, 4); /* width code */
2659 skip_bits(&gb
, 4); /* height code */
2662 s
->version
= get_bits(&gb
, 5);
2664 av_log(s
->avctx
, AV_LOG_DEBUG
, "VP version: %d\n", s
->version
);
2667 if (s
->version
|| s
->theora
)
2670 av_log(s
->avctx
, AV_LOG_ERROR
, "Warning, unsupported keyframe coding type?!\n");
2671 skip_bits(&gb
, 2); /* reserved? */
2674 if (s
->last_frame
.data
[0] == s
->golden_frame
.data
[0]) {
2675 if (s
->golden_frame
.data
[0])
2676 avctx
->release_buffer(avctx
, &s
->golden_frame
);
2677 s
->last_frame
= s
->golden_frame
; /* ensure that we catch any access to this released frame */
2679 if (s
->golden_frame
.data
[0])
2680 avctx
->release_buffer(avctx
, &s
->golden_frame
);
2681 if (s
->last_frame
.data
[0])
2682 avctx
->release_buffer(avctx
, &s
->last_frame
);
2685 s
->golden_frame
.reference
= 3;
2686 if(avctx
->get_buffer(avctx
, &s
->golden_frame
) < 0) {
2687 av_log(s
->avctx
, AV_LOG_ERROR
, "vp3: get_buffer() failed\n");
2691 /* golden frame is also the current frame */
2692 memcpy(&s
->current_frame
, &s
->golden_frame
, sizeof(AVFrame
));
2694 /* time to figure out pixel addresses? */
2695 if (!s
->pixel_addresses_inited
)
2697 if (!s
->flipped_image
)
2698 vp3_calculate_pixel_addresses(s
);
2700 theora_calculate_pixel_addresses(s
);
2703 /* allocate a new current frame */
2704 s
->current_frame
.reference
= 3;
2705 if(avctx
->get_buffer(avctx
, &s
->current_frame
) < 0) {
2706 av_log(s
->avctx
, AV_LOG_ERROR
, "vp3: get_buffer() failed\n");
2711 s
->current_frame
.qscale_table
= s
->qscale_table
; //FIXME allocate individual tables per AVFrame
2712 s
->current_frame
.qstride
= 0;
2719 memcpy(s
->current_frame
.data
[0], s
->golden_frame
.data
[0],
2720 s
->current_frame
.linesize
[0] * s
->height
);
2721 memcpy(s
->current_frame
.data
[1], s
->golden_frame
.data
[1],
2722 s
->current_frame
.linesize
[1] * s
->height
/ 2);
2723 memcpy(s
->current_frame
.data
[2], s
->golden_frame
.data
[2],
2724 s
->current_frame
.linesize
[2] * s
->height
/ 2);
2729 if (unpack_superblocks(s
, &gb
) ||
2730 unpack_modes(s
, &gb
) ||
2731 unpack_vectors(s
, &gb
) ||
2732 unpack_dct_coeffs(s
, &gb
)) {
2734 av_log(s
->avctx
, AV_LOG_ERROR
, " vp3: could not decode frame\n");
2738 reverse_dc_prediction(s
, 0, s
->fragment_width
, s
->fragment_height
);
2739 render_fragments(s
, 0, s
->width
, s
->height
, 0);
2740 // apply_loop_filter(s);
2742 if ((avctx
->flags
& CODEC_FLAG_GRAY
) == 0) {
2743 reverse_dc_prediction(s
, s
->u_fragment_start
,
2744 s
->fragment_width
/ 2, s
->fragment_height
/ 2);
2745 reverse_dc_prediction(s
, s
->v_fragment_start
,
2746 s
->fragment_width
/ 2, s
->fragment_height
/ 2);
2747 render_fragments(s
, s
->u_fragment_start
, s
->width
/ 2, s
->height
/ 2, 1);
2748 render_fragments(s
, s
->v_fragment_start
, s
->width
/ 2, s
->height
/ 2, 2);
2750 memset(s
->current_frame
.data
[1], 0x80, s
->width
* s
->height
/ 4);
2751 memset(s
->current_frame
.data
[2], 0x80, s
->width
* s
->height
/ 4);
2758 *data_size
=sizeof(AVFrame
);
2759 *(AVFrame
*)data
= s
->current_frame
;
2761 /* release the last frame, if it is allocated and if it is not the
2763 if ((s
->last_frame
.data
[0]) &&
2764 (s
->last_frame
.data
[0] != s
->golden_frame
.data
[0]))
2765 avctx
->release_buffer(avctx
, &s
->last_frame
);
2767 /* shuffle frames (last = current) */
2768 memcpy(&s
->last_frame
, &s
->current_frame
, sizeof(AVFrame
));
2769 s
->current_frame
.data
[0]= NULL
; /* ensure that we catch any access to this released frame */
2775 * This is the ffmpeg/libavcodec API module cleanup function.
2777 static int vp3_decode_end(AVCodecContext
*avctx
)
2779 Vp3DecodeContext
*s
= avctx
->priv_data
;
2781 av_free(s
->all_fragments
);
2782 av_free(s
->coded_fragment_list
);
2783 av_free(s
->superblock_fragments
);
2784 av_free(s
->superblock_macroblocks
);
2785 av_free(s
->macroblock_fragments
);
2786 av_free(s
->macroblock_coding
);
2788 /* release all frames */
2789 if (s
->golden_frame
.data
[0] && s
->golden_frame
.data
[0] != s
->last_frame
.data
[0])
2790 avctx
->release_buffer(avctx
, &s
->golden_frame
);
2791 if (s
->last_frame
.data
[0])
2792 avctx
->release_buffer(avctx
, &s
->last_frame
);
2793 /* no need to release the current_frame since it will always be pointing
2794 * to the same frame as either the golden or last frame */
2799 static int theora_decode_header(AVCodecContext
*avctx
, GetBitContext gb
)
2801 Vp3DecodeContext
*s
= avctx
->priv_data
;
2802 int major
, minor
, micro
;
2804 major
= get_bits(&gb
, 8); /* version major */
2805 minor
= get_bits(&gb
, 8); /* version minor */
2806 micro
= get_bits(&gb
, 8); /* version micro */
2807 av_log(avctx
, AV_LOG_INFO
, "Theora bitstream version %d.%d.%d\n",
2808 major
, minor
, micro
);
2810 /* FIXME: endianess? */
2811 s
->theora
= (major
<< 16) | (minor
<< 8) | micro
;
2813 /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
2814 /* but previous versions have the image flipped relative to vp3 */
2815 if (s
->theora
< 0x030200)
2817 s
->flipped_image
= 1;
2818 av_log(avctx
, AV_LOG_DEBUG
, "Old (<alpha3) Theora bitstream, flipped image\n");
2821 s
->width
= get_bits(&gb
, 16) << 4;
2822 s
->height
= get_bits(&gb
, 16) << 4;
2824 if(avcodec_check_dimensions(avctx
, s
->width
, s
->height
)){
2825 s
->width
= s
->height
= 0;
2829 skip_bits(&gb
, 24); /* frame width */
2830 skip_bits(&gb
, 24); /* frame height */
2832 skip_bits(&gb
, 8); /* offset x */
2833 skip_bits(&gb
, 8); /* offset y */
2835 skip_bits(&gb
, 32); /* fps numerator */
2836 skip_bits(&gb
, 32); /* fps denumerator */
2837 skip_bits(&gb
, 24); /* aspect numerator */
2838 skip_bits(&gb
, 24); /* aspect denumerator */
2840 if (s
->theora
< 0x030200)
2841 skip_bits(&gb
, 5); /* keyframe frequency force */
2842 skip_bits(&gb
, 8); /* colorspace */
2843 skip_bits(&gb
, 24); /* bitrate */
2845 skip_bits(&gb
, 6); /* last(?) quality index */
2847 if (s
->theora
>= 0x030200)
2849 skip_bits(&gb
, 5); /* keyframe frequency force */
2850 skip_bits(&gb
, 5); /* spare bits */
2853 // align_get_bits(&gb);
2855 avctx
->width
= s
->width
;
2856 avctx
->height
= s
->height
;
2861 static int theora_decode_comments(AVCodecContext
*avctx
, GetBitContext gb
)
2863 int nb_comments
, i
, tmp
;
2865 tmp
= get_bits_long(&gb
, 32);
2866 tmp
= be2me_32(tmp
);
2870 nb_comments
= get_bits_long(&gb
, 32);
2871 nb_comments
= be2me_32(nb_comments
);
2872 for (i
= 0; i
< nb_comments
; i
++)
2874 tmp
= get_bits_long(&gb
, 32);
2875 tmp
= be2me_32(tmp
);
2883 static int theora_decode_tables(AVCodecContext
*avctx
, GetBitContext gb
)
2885 Vp3DecodeContext
*s
= avctx
->priv_data
;
2888 if (s
->theora
>= 0x030200) {
2889 n
= get_bits(&gb
, 3);
2890 /* loop filter table */
2891 for (i
= 0; i
< 64; i
++)
2895 if (s
->theora
>= 0x030200)
2896 n
= get_bits(&gb
, 4) + 1;
2899 /* quality threshold table */
2900 for (i
= 0; i
< 64; i
++)
2901 s
->coded_ac_scale_factor
[i
] = get_bits(&gb
, n
);
2903 if (s
->theora
>= 0x030200)
2904 n
= get_bits(&gb
, 4) + 1;
2907 /* dc scale factor table */
2908 for (i
= 0; i
< 64; i
++)
2909 s
->coded_dc_scale_factor
[i
] = get_bits(&gb
, n
);
2911 if (s
->theora
>= 0x030200)
2912 n
= get_bits(&gb
, 9) + 1;
2916 av_log(NULL
,AV_LOG_ERROR
, "unsupported nbms : %d\n", n
);
2920 for (i
= 0; i
< 64; i
++)
2921 s
->coded_intra_y_dequant
[i
] = get_bits(&gb
, 8);
2924 for (i
= 0; i
< 64; i
++)
2925 s
->coded_intra_c_dequant
[i
] = get_bits(&gb
, 8);
2928 for (i
= 0; i
< 64; i
++)
2929 s
->coded_inter_dequant
[i
] = get_bits(&gb
, 8);
2931 /* FIXME: read huffmann tree.. */
2933 s
->theora_tables
= 1;
2938 static int theora_decode_init(AVCodecContext
*avctx
)
2940 Vp3DecodeContext
*s
= avctx
->priv_data
;
2943 uint8_t *p
= avctx
->extradata
;
2948 if (!avctx
->extradata_size
)
2952 op_bytes
= *(p
++)<<8;
2955 init_get_bits(&gb
, p
, op_bytes
);
2958 ptype
= get_bits(&gb
, 8);
2959 debug_vp3("Theora headerpacket type: %x\n", ptype
);
2961 if (!(ptype
& 0x80))
2964 skip_bits(&gb
, 6*8); /* "theora" */
2969 theora_decode_header(avctx
, gb
);
2972 theora_decode_comments(avctx
, gb
);
2975 theora_decode_tables(avctx
, gb
);
2980 vp3_decode_init(avctx
);
2984 AVCodec vp3_decoder
= {
2988 sizeof(Vp3DecodeContext
),
2997 #ifndef CONFIG_LIBTHEORA
2998 AVCodec theora_decoder
= {
3002 sizeof(Vp3DecodeContext
),