Add ff_ prefix to data symbols of encoders, decoders, hwaccel, parsers, bsf.
[libav.git] / libavcodec / vp3.c
1 /*
2 * Copyright (C) 2003-2004 the ffmpeg project
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 /**
22 * @file
23 * On2 VP3 Video Decoder
24 *
25 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
26 * For more information about the VP3 coding process, visit:
27 * http://wiki.multimedia.cx/index.php?title=On2_VP3
28 *
29 * Theora decoder by Alex Beregszaszi
30 */
31
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <string.h>
35
36 #include "libavcore/imgutils.h"
37 #include "avcodec.h"
38 #include "dsputil.h"
39 #include "get_bits.h"
40
41 #include "vp3data.h"
42 #include "xiph.h"
43
44 #define FRAGMENT_PIXELS 8
45
46 static av_cold int vp3_decode_end(AVCodecContext *avctx);
47
48 //FIXME split things out into their own arrays
49 typedef struct Vp3Fragment {
50 int16_t dc;
51 uint8_t coding_method;
52 uint8_t qpi;
53 } Vp3Fragment;
54
55 #define SB_NOT_CODED 0
56 #define SB_PARTIALLY_CODED 1
57 #define SB_FULLY_CODED 2
58
59 // This is the maximum length of a single long bit run that can be encoded
60 // for superblock coding or block qps. Theora special-cases this to read a
61 // bit instead of flipping the current bit to allow for runs longer than 4129.
62 #define MAXIMUM_LONG_BIT_RUN 4129
63
64 #define MODE_INTER_NO_MV 0
65 #define MODE_INTRA 1
66 #define MODE_INTER_PLUS_MV 2
67 #define MODE_INTER_LAST_MV 3
68 #define MODE_INTER_PRIOR_LAST 4
69 #define MODE_USING_GOLDEN 5
70 #define MODE_GOLDEN_MV 6
71 #define MODE_INTER_FOURMV 7
72 #define CODING_MODE_COUNT 8
73
74 /* special internal mode */
75 #define MODE_COPY 8
76
77 /* There are 6 preset schemes, plus a free-form scheme */
78 static const int ModeAlphabet[6][CODING_MODE_COUNT] =
79 {
80 /* scheme 1: Last motion vector dominates */
81 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
82 MODE_INTER_PLUS_MV, MODE_INTER_NO_MV,
83 MODE_INTRA, MODE_USING_GOLDEN,
84 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
85
86 /* scheme 2 */
87 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
88 MODE_INTER_NO_MV, MODE_INTER_PLUS_MV,
89 MODE_INTRA, MODE_USING_GOLDEN,
90 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
91
92 /* scheme 3 */
93 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
94 MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
95 MODE_INTRA, MODE_USING_GOLDEN,
96 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
97
98 /* scheme 4 */
99 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
100 MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST,
101 MODE_INTRA, MODE_USING_GOLDEN,
102 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
103
104 /* scheme 5: No motion vector dominates */
105 { MODE_INTER_NO_MV, MODE_INTER_LAST_MV,
106 MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
107 MODE_INTRA, MODE_USING_GOLDEN,
108 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
109
110 /* scheme 6 */
111 { MODE_INTER_NO_MV, MODE_USING_GOLDEN,
112 MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
113 MODE_INTER_PLUS_MV, MODE_INTRA,
114 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
115
116 };
117
118 static const uint8_t hilbert_offset[16][2] = {
119 {0,0}, {1,0}, {1,1}, {0,1},
120 {0,2}, {0,3}, {1,3}, {1,2},
121 {2,2}, {2,3}, {3,3}, {3,2},
122 {3,1}, {2,1}, {2,0}, {3,0}
123 };
124
125 #define MIN_DEQUANT_VAL 2
126
127 typedef struct Vp3DecodeContext {
128 AVCodecContext *avctx;
129 int theora, theora_tables;
130 int version;
131 int width, height;
132 int chroma_x_shift, chroma_y_shift;
133 AVFrame golden_frame;
134 AVFrame last_frame;
135 AVFrame current_frame;
136 int keyframe;
137 DSPContext dsp;
138 int flipped_image;
139 int last_slice_end;
140 int skip_loop_filter;
141
142 int qps[3];
143 int nqps;
144 int last_qps[3];
145
146 int superblock_count;
147 int y_superblock_width;
148 int y_superblock_height;
149 int y_superblock_count;
150 int c_superblock_width;
151 int c_superblock_height;
152 int c_superblock_count;
153 int u_superblock_start;
154 int v_superblock_start;
155 unsigned char *superblock_coding;
156
157 int macroblock_count;
158 int macroblock_width;
159 int macroblock_height;
160
161 int fragment_count;
162 int fragment_width[2];
163 int fragment_height[2];
164
165 Vp3Fragment *all_fragments;
166 int fragment_start[3];
167 int data_offset[3];
168
169 int8_t (*motion_val[2])[2];
170
171 ScanTable scantable;
172
173 /* tables */
174 uint16_t coded_dc_scale_factor[64];
175 uint32_t coded_ac_scale_factor[64];
176 uint8_t base_matrix[384][64];
177 uint8_t qr_count[2][3];
178 uint8_t qr_size [2][3][64];
179 uint16_t qr_base[2][3][64];
180
181 /**
182 * This is a list of all tokens in bitstream order. Reordering takes place
183 * by pulling from each level during IDCT. As a consequence, IDCT must be
184 * in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32
185 * otherwise. The 32 different tokens with up to 12 bits of extradata are
186 * collapsed into 3 types, packed as follows:
187 * (from the low to high bits)
188 *
189 * 2 bits: type (0,1,2)
190 * 0: EOB run, 14 bits for run length (12 needed)
191 * 1: zero run, 7 bits for run length
192 * 7 bits for the next coefficient (3 needed)
193 * 2: coefficient, 14 bits (11 needed)
194 *
195 * Coefficients are signed, so are packed in the highest bits for automatic
196 * sign extension.
197 */
198 int16_t *dct_tokens[3][64];
199 int16_t *dct_tokens_base;
200 #define TOKEN_EOB(eob_run) ((eob_run) << 2)
201 #define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) << 9) + ((zero_run) << 2) + 1)
202 #define TOKEN_COEFF(coeff) (((coeff) << 2) + 2)
203
204 /**
205 * number of blocks that contain DCT coefficients at the given level or higher
206 */
207 int num_coded_frags[3][64];
208 int total_num_coded_frags;
209
210 /* this is a list of indexes into the all_fragments array indicating
211 * which of the fragments are coded */
212 int *coded_fragment_list[3];
213
214 VLC dc_vlc[16];
215 VLC ac_vlc_1[16];
216 VLC ac_vlc_2[16];
217 VLC ac_vlc_3[16];
218 VLC ac_vlc_4[16];
219
220 VLC superblock_run_length_vlc;
221 VLC fragment_run_length_vlc;
222 VLC mode_code_vlc;
223 VLC motion_vector_vlc;
224
225 /* these arrays need to be on 16-byte boundaries since SSE2 operations
226 * index into them */
227 DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64]; //<qmat[qpi][is_inter][plane]
228
229 /* This table contains superblock_count * 16 entries. Each set of 16
230 * numbers corresponds to the fragment indexes 0..15 of the superblock.
231 * An entry will be -1 to indicate that no entry corresponds to that
232 * index. */
233 int *superblock_fragments;
234
235 /* This is an array that indicates how a particular macroblock
236 * is coded. */
237 unsigned char *macroblock_coding;
238
239 uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
240 int8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
241
242 /* Huffman decode */
243 int hti;
244 unsigned int hbits;
245 int entries;
246 int huff_code_size;
247 uint32_t huffman_table[80][32][2];
248
249 uint8_t filter_limit_values[64];
250 DECLARE_ALIGNED(8, int, bounding_values_array)[256+2];
251 } Vp3DecodeContext;
252
253 /************************************************************************
254 * VP3 specific functions
255 ************************************************************************/
256
257 /*
258 * This function sets up all of the various blocks mappings:
259 * superblocks <-> fragments, macroblocks <-> fragments,
260 * superblocks <-> macroblocks
261 *
262 * @return 0 is successful; returns 1 if *anything* went wrong.
263 */
264 static int init_block_mapping(Vp3DecodeContext *s)
265 {
266 int sb_x, sb_y, plane;
267 int x, y, i, j = 0;
268
269 for (plane = 0; plane < 3; plane++) {
270 int sb_width = plane ? s->c_superblock_width : s->y_superblock_width;
271 int sb_height = plane ? s->c_superblock_height : s->y_superblock_height;
272 int frag_width = s->fragment_width[!!plane];
273 int frag_height = s->fragment_height[!!plane];
274
275 for (sb_y = 0; sb_y < sb_height; sb_y++)
276 for (sb_x = 0; sb_x < sb_width; sb_x++)
277 for (i = 0; i < 16; i++) {
278 x = 4*sb_x + hilbert_offset[i][0];
279 y = 4*sb_y + hilbert_offset[i][1];
280
281 if (x < frag_width && y < frag_height)
282 s->superblock_fragments[j++] = s->fragment_start[plane] + y*frag_width + x;
283 else
284 s->superblock_fragments[j++] = -1;
285 }
286 }
287
288 return 0; /* successful path out */
289 }
290
291 /*
292 * This function sets up the dequantization tables used for a particular
293 * frame.
294 */
295 static void init_dequantizer(Vp3DecodeContext *s, int qpi)
296 {
297 int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
298 int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
299 int i, plane, inter, qri, bmi, bmj, qistart;
300
301 for(inter=0; inter<2; inter++){
302 for(plane=0; plane<3; plane++){
303 int sum=0;
304 for(qri=0; qri<s->qr_count[inter][plane]; qri++){
305 sum+= s->qr_size[inter][plane][qri];
306 if(s->qps[qpi] <= sum)
307 break;
308 }
309 qistart= sum - s->qr_size[inter][plane][qri];
310 bmi= s->qr_base[inter][plane][qri ];
311 bmj= s->qr_base[inter][plane][qri+1];
312 for(i=0; i<64; i++){
313 int coeff= ( 2*(sum -s->qps[qpi])*s->base_matrix[bmi][i]
314 - 2*(qistart-s->qps[qpi])*s->base_matrix[bmj][i]
315 + s->qr_size[inter][plane][qri])
316 / (2*s->qr_size[inter][plane][qri]);
317
318 int qmin= 8<<(inter + !i);
319 int qscale= i ? ac_scale_factor : dc_scale_factor;
320
321 s->qmat[qpi][inter][plane][s->dsp.idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096);
322 }
323 // all DC coefficients use the same quant so as not to interfere with DC prediction
324 s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
325 }
326 }
327
328 memset(s->qscale_table, (FFMAX(s->qmat[0][0][0][1], s->qmat[0][0][1][1])+8)/16, 512); //FIXME finetune
329 }
330
331 /*
332 * This function initializes the loop filter boundary limits if the frame's
333 * quality index is different from the previous frame's.
334 *
335 * The filter_limit_values may not be larger than 127.
336 */
337 static void init_loop_filter(Vp3DecodeContext *s)
338 {
339 int *bounding_values= s->bounding_values_array+127;
340 int filter_limit;
341 int x;
342 int value;
343
344 filter_limit = s->filter_limit_values[s->qps[0]];
345
346 /* set up the bounding values */
347 memset(s->bounding_values_array, 0, 256 * sizeof(int));
348 for (x = 0; x < filter_limit; x++) {
349 bounding_values[-x] = -x;
350 bounding_values[x] = x;
351 }
352 for (x = value = filter_limit; x < 128 && value; x++, value--) {
353 bounding_values[ x] = value;
354 bounding_values[-x] = -value;
355 }
356 if (value)
357 bounding_values[128] = value;
358 bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
359 }
360
361 /*
362 * This function unpacks all of the superblock/macroblock/fragment coding
363 * information from the bitstream.
364 */
365 static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
366 {
367 int superblock_starts[3] = { 0, s->u_superblock_start, s->v_superblock_start };
368 int bit = 0;
369 int current_superblock = 0;
370 int current_run = 0;
371 int num_partial_superblocks = 0;
372
373 int i, j;
374 int current_fragment;
375 int plane;
376
377 if (s->keyframe) {
378 memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
379
380 } else {
381
382 /* unpack the list of partially-coded superblocks */
383 bit = get_bits1(gb) ^ 1;
384 current_run = 0;
385
386 while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) {
387 if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
388 bit = get_bits1(gb);
389 else
390 bit ^= 1;
391
392 current_run = get_vlc2(gb,
393 s->superblock_run_length_vlc.table, 6, 2) + 1;
394 if (current_run == 34)
395 current_run += get_bits(gb, 12);
396
397 if (current_superblock + current_run > s->superblock_count) {
398 av_log(s->avctx, AV_LOG_ERROR, "Invalid partially coded superblock run length\n");
399 return -1;
400 }
401
402 memset(s->superblock_coding + current_superblock, bit, current_run);
403
404 current_superblock += current_run;
405 if (bit)
406 num_partial_superblocks += current_run;
407 }
408
409 /* unpack the list of fully coded superblocks if any of the blocks were
410 * not marked as partially coded in the previous step */
411 if (num_partial_superblocks < s->superblock_count) {
412 int superblocks_decoded = 0;
413
414 current_superblock = 0;
415 bit = get_bits1(gb) ^ 1;
416 current_run = 0;
417
418 while (superblocks_decoded < s->superblock_count - num_partial_superblocks
419 && get_bits_left(gb) > 0) {
420
421 if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
422 bit = get_bits1(gb);
423 else
424 bit ^= 1;
425
426 current_run = get_vlc2(gb,
427 s->superblock_run_length_vlc.table, 6, 2) + 1;
428 if (current_run == 34)
429 current_run += get_bits(gb, 12);
430
431 for (j = 0; j < current_run; current_superblock++) {
432 if (current_superblock >= s->superblock_count) {
433 av_log(s->avctx, AV_LOG_ERROR, "Invalid fully coded superblock run length\n");
434 return -1;
435 }
436
437 /* skip any superblocks already marked as partially coded */
438 if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
439 s->superblock_coding[current_superblock] = 2*bit;
440 j++;
441 }
442 }
443 superblocks_decoded += current_run;
444 }
445 }
446
447 /* if there were partial blocks, initialize bitstream for
448 * unpacking fragment codings */
449 if (num_partial_superblocks) {
450
451 current_run = 0;
452 bit = get_bits1(gb);
453 /* toggle the bit because as soon as the first run length is
454 * fetched the bit will be toggled again */
455 bit ^= 1;
456 }
457 }
458
459 /* figure out which fragments are coded; iterate through each
460 * superblock (all planes) */
461 s->total_num_coded_frags = 0;
462 memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
463
464 for (plane = 0; plane < 3; plane++) {
465 int sb_start = superblock_starts[plane];
466 int sb_end = sb_start + (plane ? s->c_superblock_count : s->y_superblock_count);
467 int num_coded_frags = 0;
468
469 for (i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) {
470
471 /* iterate through all 16 fragments in a superblock */
472 for (j = 0; j < 16; j++) {
473
474 /* if the fragment is in bounds, check its coding status */
475 current_fragment = s->superblock_fragments[i * 16 + j];
476 if (current_fragment != -1) {
477 int coded = s->superblock_coding[i];
478
479 if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
480
481 /* fragment may or may not be coded; this is the case
482 * that cares about the fragment coding runs */
483 if (current_run-- == 0) {
484 bit ^= 1;
485 current_run = get_vlc2(gb,
486 s->fragment_run_length_vlc.table, 5, 2);
487 }
488 coded = bit;
489 }
490
491 if (coded) {
492 /* default mode; actual mode will be decoded in
493 * the next phase */
494 s->all_fragments[current_fragment].coding_method =
495 MODE_INTER_NO_MV;
496 s->coded_fragment_list[plane][num_coded_frags++] =
497 current_fragment;
498 } else {
499 /* not coded; copy this fragment from the prior frame */
500 s->all_fragments[current_fragment].coding_method =
501 MODE_COPY;
502 }
503 }
504 }
505 }
506 s->total_num_coded_frags += num_coded_frags;
507 for (i = 0; i < 64; i++)
508 s->num_coded_frags[plane][i] = num_coded_frags;
509 if (plane < 2)
510 s->coded_fragment_list[plane+1] = s->coded_fragment_list[plane] + num_coded_frags;
511 }
512 return 0;
513 }
514
515 /*
516 * This function unpacks all the coding mode data for individual macroblocks
517 * from the bitstream.
518 */
519 static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
520 {
521 int i, j, k, sb_x, sb_y;
522 int scheme;
523 int current_macroblock;
524 int current_fragment;
525 int coding_mode;
526 int custom_mode_alphabet[CODING_MODE_COUNT];
527 const int *alphabet;
528 Vp3Fragment *frag;
529
530 if (s->keyframe) {
531 for (i = 0; i < s->fragment_count; i++)
532 s->all_fragments[i].coding_method = MODE_INTRA;
533
534 } else {
535
536 /* fetch the mode coding scheme for this frame */
537 scheme = get_bits(gb, 3);
538
539 /* is it a custom coding scheme? */
540 if (scheme == 0) {
541 for (i = 0; i < 8; i++)
542 custom_mode_alphabet[i] = MODE_INTER_NO_MV;
543 for (i = 0; i < 8; i++)
544 custom_mode_alphabet[get_bits(gb, 3)] = i;
545 alphabet = custom_mode_alphabet;
546 } else
547 alphabet = ModeAlphabet[scheme-1];
548
549 /* iterate through all of the macroblocks that contain 1 or more
550 * coded fragments */
551 for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
552 for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
553 if (get_bits_left(gb) <= 0)
554 return -1;
555
556 for (j = 0; j < 4; j++) {
557 int mb_x = 2*sb_x + (j>>1);
558 int mb_y = 2*sb_y + (((j>>1)+j)&1);
559 current_macroblock = mb_y * s->macroblock_width + mb_x;
560
561 if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height)
562 continue;
563
564 #define BLOCK_X (2*mb_x + (k&1))
565 #define BLOCK_Y (2*mb_y + (k>>1))
566 /* coding modes are only stored if the macroblock has at least one
567 * luma block coded, otherwise it must be INTER_NO_MV */
568 for (k = 0; k < 4; k++) {
569 current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X;
570 if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
571 break;
572 }
573 if (k == 4) {
574 s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
575 continue;
576 }
577
578 /* mode 7 means get 3 bits for each coding mode */
579 if (scheme == 7)
580 coding_mode = get_bits(gb, 3);
581 else
582 coding_mode = alphabet
583 [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
584
585 s->macroblock_coding[current_macroblock] = coding_mode;
586 for (k = 0; k < 4; k++) {
587 frag = s->all_fragments + BLOCK_Y*s->fragment_width[0] + BLOCK_X;
588 if (frag->coding_method != MODE_COPY)
589 frag->coding_method = coding_mode;
590 }
591
592 #define SET_CHROMA_MODES \
593 if (frag[s->fragment_start[1]].coding_method != MODE_COPY) \
594 frag[s->fragment_start[1]].coding_method = coding_mode;\
595 if (frag[s->fragment_start[2]].coding_method != MODE_COPY) \
596 frag[s->fragment_start[2]].coding_method = coding_mode;
597
598 if (s->chroma_y_shift) {
599 frag = s->all_fragments + mb_y*s->fragment_width[1] + mb_x;
600 SET_CHROMA_MODES
601 } else if (s->chroma_x_shift) {
602 frag = s->all_fragments + 2*mb_y*s->fragment_width[1] + mb_x;
603 for (k = 0; k < 2; k++) {
604 SET_CHROMA_MODES
605 frag += s->fragment_width[1];
606 }
607 } else {
608 for (k = 0; k < 4; k++) {
609 frag = s->all_fragments + BLOCK_Y*s->fragment_width[1] + BLOCK_X;
610 SET_CHROMA_MODES
611 }
612 }
613 }
614 }
615 }
616 }
617
618 return 0;
619 }
620
621 /*
622 * This function unpacks all the motion vectors for the individual
623 * macroblocks from the bitstream.
624 */
625 static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
626 {
627 int j, k, sb_x, sb_y;
628 int coding_mode;
629 int motion_x[4];
630 int motion_y[4];
631 int last_motion_x = 0;
632 int last_motion_y = 0;
633 int prior_last_motion_x = 0;
634 int prior_last_motion_y = 0;
635 int current_macroblock;
636 int current_fragment;
637 int frag;
638
639 if (s->keyframe)
640 return 0;
641
642 /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
643 coding_mode = get_bits1(gb);
644
645 /* iterate through all of the macroblocks that contain 1 or more
646 * coded fragments */
647 for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
648 for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
649 if (get_bits_left(gb) <= 0)
650 return -1;
651
652 for (j = 0; j < 4; j++) {
653 int mb_x = 2*sb_x + (j>>1);
654 int mb_y = 2*sb_y + (((j>>1)+j)&1);
655 current_macroblock = mb_y * s->macroblock_width + mb_x;
656
657 if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height ||
658 (s->macroblock_coding[current_macroblock] == MODE_COPY))
659 continue;
660
661 switch (s->macroblock_coding[current_macroblock]) {
662
663 case MODE_INTER_PLUS_MV:
664 case MODE_GOLDEN_MV:
665 /* all 6 fragments use the same motion vector */
666 if (coding_mode == 0) {
667 motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
668 motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
669 } else {
670 motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
671 motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
672 }
673
674 /* vector maintenance, only on MODE_INTER_PLUS_MV */
675 if (s->macroblock_coding[current_macroblock] ==
676 MODE_INTER_PLUS_MV) {
677 prior_last_motion_x = last_motion_x;
678 prior_last_motion_y = last_motion_y;
679 last_motion_x = motion_x[0];
680 last_motion_y = motion_y[0];
681 }
682 break;
683
684 case MODE_INTER_FOURMV:
685 /* vector maintenance */
686 prior_last_motion_x = last_motion_x;
687 prior_last_motion_y = last_motion_y;
688
689 /* fetch 4 vectors from the bitstream, one for each
690 * Y fragment, then average for the C fragment vectors */
691 for (k = 0; k < 4; k++) {
692 current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X;
693 if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
694 if (coding_mode == 0) {
695 motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
696 motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
697 } else {
698 motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
699 motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
700 }
701 last_motion_x = motion_x[k];
702 last_motion_y = motion_y[k];
703 } else {
704 motion_x[k] = 0;
705 motion_y[k] = 0;
706 }
707 }
708 break;
709
710 case MODE_INTER_LAST_MV:
711 /* all 6 fragments use the last motion vector */
712 motion_x[0] = last_motion_x;
713 motion_y[0] = last_motion_y;
714
715 /* no vector maintenance (last vector remains the
716 * last vector) */
717 break;
718
719 case MODE_INTER_PRIOR_LAST:
720 /* all 6 fragments use the motion vector prior to the
721 * last motion vector */
722 motion_x[0] = prior_last_motion_x;
723 motion_y[0] = prior_last_motion_y;
724
725 /* vector maintenance */
726 prior_last_motion_x = last_motion_x;
727 prior_last_motion_y = last_motion_y;
728 last_motion_x = motion_x[0];
729 last_motion_y = motion_y[0];
730 break;
731
732 default:
733 /* covers intra, inter without MV, golden without MV */
734 motion_x[0] = 0;
735 motion_y[0] = 0;
736
737 /* no vector maintenance */
738 break;
739 }
740
741 /* assign the motion vectors to the correct fragments */
742 for (k = 0; k < 4; k++) {
743 current_fragment =
744 BLOCK_Y*s->fragment_width[0] + BLOCK_X;
745 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
746 s->motion_val[0][current_fragment][0] = motion_x[k];
747 s->motion_val[0][current_fragment][1] = motion_y[k];
748 } else {
749 s->motion_val[0][current_fragment][0] = motion_x[0];
750 s->motion_val[0][current_fragment][1] = motion_y[0];
751 }
752 }
753
754 if (s->chroma_y_shift) {
755 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
756 motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] + motion_x[2] + motion_x[3], 2);
757 motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] + motion_y[2] + motion_y[3], 2);
758 }
759 motion_x[0] = (motion_x[0]>>1) | (motion_x[0]&1);
760 motion_y[0] = (motion_y[0]>>1) | (motion_y[0]&1);
761 frag = mb_y*s->fragment_width[1] + mb_x;
762 s->motion_val[1][frag][0] = motion_x[0];
763 s->motion_val[1][frag][1] = motion_y[0];
764 } else if (s->chroma_x_shift) {
765 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
766 motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1);
767 motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1);
768 motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1);
769 motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1);
770 } else {
771 motion_x[1] = motion_x[0];
772 motion_y[1] = motion_y[0];
773 }
774 motion_x[0] = (motion_x[0]>>1) | (motion_x[0]&1);
775 motion_x[1] = (motion_x[1]>>1) | (motion_x[1]&1);
776
777 frag = 2*mb_y*s->fragment_width[1] + mb_x;
778 for (k = 0; k < 2; k++) {
779 s->motion_val[1][frag][0] = motion_x[k];
780 s->motion_val[1][frag][1] = motion_y[k];
781 frag += s->fragment_width[1];
782 }
783 } else {
784 for (k = 0; k < 4; k++) {
785 frag = BLOCK_Y*s->fragment_width[1] + BLOCK_X;
786 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
787 s->motion_val[1][frag][0] = motion_x[k];
788 s->motion_val[1][frag][1] = motion_y[k];
789 } else {
790 s->motion_val[1][frag][0] = motion_x[0];
791 s->motion_val[1][frag][1] = motion_y[0];
792 }
793 }
794 }
795 }
796 }
797 }
798
799 return 0;
800 }
801
802 static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
803 {
804 int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
805 int num_blocks = s->total_num_coded_frags;
806
807 for (qpi = 0; qpi < s->nqps-1 && num_blocks > 0; qpi++) {
808 i = blocks_decoded = num_blocks_at_qpi = 0;
809
810 bit = get_bits1(gb) ^ 1;
811 run_length = 0;
812
813 do {
814 if (run_length == MAXIMUM_LONG_BIT_RUN)
815 bit = get_bits1(gb);
816 else
817 bit ^= 1;
818
819 run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
820 if (run_length == 34)
821 run_length += get_bits(gb, 12);
822 blocks_decoded += run_length;
823
824 if (!bit)
825 num_blocks_at_qpi += run_length;
826
827 for (j = 0; j < run_length; i++) {
828 if (i >= s->total_num_coded_frags)
829 return -1;
830
831 if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) {
832 s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit;
833 j++;
834 }
835 }
836 } while (blocks_decoded < num_blocks && get_bits_left(gb) > 0);
837
838 num_blocks -= num_blocks_at_qpi;
839 }
840
841 return 0;
842 }
843
844 /*
845 * This function is called by unpack_dct_coeffs() to extract the VLCs from
846 * the bitstream. The VLCs encode tokens which are used to unpack DCT
847 * data. This function unpacks all the VLCs for either the Y plane or both
848 * C planes, and is called for DC coefficients or different AC coefficient
849 * levels (since different coefficient types require different VLC tables.
850 *
851 * This function returns a residual eob run. E.g, if a particular token gave
852 * instructions to EOB the next 5 fragments and there were only 2 fragments
853 * left in the current fragment range, 3 would be returned so that it could
854 * be passed into the next call to this same function.
855 */
856 static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
857 VLC *table, int coeff_index,
858 int plane,
859 int eob_run)
860 {
861 int i, j = 0;
862 int token;
863 int zero_run = 0;
864 DCTELEM coeff = 0;
865 int bits_to_get;
866 int blocks_ended;
867 int coeff_i = 0;
868 int num_coeffs = s->num_coded_frags[plane][coeff_index];
869 int16_t *dct_tokens = s->dct_tokens[plane][coeff_index];
870
871 /* local references to structure members to avoid repeated deferences */
872 int *coded_fragment_list = s->coded_fragment_list[plane];
873 Vp3Fragment *all_fragments = s->all_fragments;
874 VLC_TYPE (*vlc_table)[2] = table->table;
875
876 if (num_coeffs < 0)
877 av_log(s->avctx, AV_LOG_ERROR, "Invalid number of coefficents at level %d\n", coeff_index);
878
879 if (eob_run > num_coeffs) {
880 coeff_i = blocks_ended = num_coeffs;
881 eob_run -= num_coeffs;
882 } else {
883 coeff_i = blocks_ended = eob_run;
884 eob_run = 0;
885 }
886
887 // insert fake EOB token to cover the split between planes or zzi
888 if (blocks_ended)
889 dct_tokens[j++] = blocks_ended << 2;
890
891 while (coeff_i < num_coeffs && get_bits_left(gb) > 0) {
892 /* decode a VLC into a token */
893 token = get_vlc2(gb, vlc_table, 11, 3);
894 /* use the token to get a zero run, a coefficient, and an eob run */
895 if (token <= 6) {
896 eob_run = eob_run_base[token];
897 if (eob_run_get_bits[token])
898 eob_run += get_bits(gb, eob_run_get_bits[token]);
899
900 // record only the number of blocks ended in this plane,
901 // any spill will be recorded in the next plane.
902 if (eob_run > num_coeffs - coeff_i) {
903 dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i);
904 blocks_ended += num_coeffs - coeff_i;
905 eob_run -= num_coeffs - coeff_i;
906 coeff_i = num_coeffs;
907 } else {
908 dct_tokens[j++] = TOKEN_EOB(eob_run);
909 blocks_ended += eob_run;
910 coeff_i += eob_run;
911 eob_run = 0;
912 }
913 } else {
914 bits_to_get = coeff_get_bits[token];
915 if (bits_to_get)
916 bits_to_get = get_bits(gb, bits_to_get);
917 coeff = coeff_tables[token][bits_to_get];
918
919 zero_run = zero_run_base[token];
920 if (zero_run_get_bits[token])
921 zero_run += get_bits(gb, zero_run_get_bits[token]);
922
923 if (zero_run) {
924 dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run);
925 } else {
926 // Save DC into the fragment structure. DC prediction is
927 // done in raster order, so the actual DC can't be in with
928 // other tokens. We still need the token in dct_tokens[]
929 // however, or else the structure collapses on itself.
930 if (!coeff_index)
931 all_fragments[coded_fragment_list[coeff_i]].dc = coeff;
932
933 dct_tokens[j++] = TOKEN_COEFF(coeff);
934 }
935
936 if (coeff_index + zero_run > 64) {
937 av_log(s->avctx, AV_LOG_DEBUG, "Invalid zero run of %d with"
938 " %d coeffs left\n", zero_run, 64-coeff_index);
939 zero_run = 64 - coeff_index;
940 }
941
942 // zero runs code multiple coefficients,
943 // so don't try to decode coeffs for those higher levels
944 for (i = coeff_index+1; i <= coeff_index+zero_run; i++)
945 s->num_coded_frags[plane][i]--;
946 coeff_i++;
947 }
948 }
949
950 if (blocks_ended > s->num_coded_frags[plane][coeff_index])
951 av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n");
952
953 // decrement the number of blocks that have higher coeffecients for each
954 // EOB run at this level
955 if (blocks_ended)
956 for (i = coeff_index+1; i < 64; i++)
957 s->num_coded_frags[plane][i] -= blocks_ended;
958
959 // setup the next buffer
960 if (plane < 2)
961 s->dct_tokens[plane+1][coeff_index] = dct_tokens + j;
962 else if (coeff_index < 63)
963 s->dct_tokens[0][coeff_index+1] = dct_tokens + j;
964
965 return eob_run;
966 }
967
968 static void reverse_dc_prediction(Vp3DecodeContext *s,
969 int first_fragment,
970 int fragment_width,
971 int fragment_height);
972 /*
973 * This function unpacks all of the DCT coefficient data from the
974 * bitstream.
975 */
976 static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
977 {
978 int i;
979 int dc_y_table;
980 int dc_c_table;
981 int ac_y_table;
982 int ac_c_table;
983 int residual_eob_run = 0;
984 VLC *y_tables[64];
985 VLC *c_tables[64];
986
987 s->dct_tokens[0][0] = s->dct_tokens_base;
988
989 /* fetch the DC table indexes */
990 dc_y_table = get_bits(gb, 4);
991 dc_c_table = get_bits(gb, 4);
992
993 /* unpack the Y plane DC coefficients */
994 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
995 0, residual_eob_run);
996
997 /* reverse prediction of the Y-plane DC coefficients */
998 reverse_dc_prediction(s, 0, s->fragment_width[0], s->fragment_height[0]);
999
1000 /* unpack the C plane DC coefficients */
1001 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1002 1, residual_eob_run);
1003 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1004 2, residual_eob_run);
1005
1006 /* reverse prediction of the C-plane DC coefficients */
1007 if (!(s->avctx->flags & CODEC_FLAG_GRAY))
1008 {
1009 reverse_dc_prediction(s, s->fragment_start[1],
1010 s->fragment_width[1], s->fragment_height[1]);
1011 reverse_dc_prediction(s, s->fragment_start[2],
1012 s->fragment_width[1], s->fragment_height[1]);
1013 }
1014
1015 /* fetch the AC table indexes */
1016 ac_y_table = get_bits(gb, 4);
1017 ac_c_table = get_bits(gb, 4);
1018
1019 /* build tables of AC VLC tables */
1020 for (i = 1; i <= 5; i++) {
1021 y_tables[i] = &s->ac_vlc_1[ac_y_table];
1022 c_tables[i] = &s->ac_vlc_1[ac_c_table];
1023 }
1024 for (i = 6; i <= 14; i++) {
1025 y_tables[i] = &s->ac_vlc_2[ac_y_table];
1026 c_tables[i] = &s->ac_vlc_2[ac_c_table];
1027 }
1028 for (i = 15; i <= 27; i++) {
1029 y_tables[i] = &s->ac_vlc_3[ac_y_table];
1030 c_tables[i] = &s->ac_vlc_3[ac_c_table];
1031 }
1032 for (i = 28; i <= 63; i++) {
1033 y_tables[i] = &s->ac_vlc_4[ac_y_table];
1034 c_tables[i] = &s->ac_vlc_4[ac_c_table];
1035 }
1036
1037 /* decode all AC coefficents */
1038 for (i = 1; i <= 63; i++) {
1039 residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
1040 0, residual_eob_run);
1041
1042 residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1043 1, residual_eob_run);
1044 residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1045 2, residual_eob_run);
1046 }
1047
1048 return 0;
1049 }
1050
1051 /*
1052 * This function reverses the DC prediction for each coded fragment in
1053 * the frame. Much of this function is adapted directly from the original
1054 * VP3 source code.
1055 */
1056 #define COMPATIBLE_FRAME(x) \
1057 (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1058 #define DC_COEFF(u) s->all_fragments[u].dc
1059
1060 static void reverse_dc_prediction(Vp3DecodeContext *s,
1061 int first_fragment,
1062 int fragment_width,
1063 int fragment_height)
1064 {
1065
1066 #define PUL 8
1067 #define PU 4
1068 #define PUR 2
1069 #define PL 1
1070
1071 int x, y;
1072 int i = first_fragment;
1073
1074 int predicted_dc;
1075
1076 /* DC values for the left, up-left, up, and up-right fragments */
1077 int vl, vul, vu, vur;
1078
1079 /* indexes for the left, up-left, up, and up-right fragments */
1080 int l, ul, u, ur;
1081
1082 /*
1083 * The 6 fields mean:
1084 * 0: up-left multiplier
1085 * 1: up multiplier
1086 * 2: up-right multiplier
1087 * 3: left multiplier
1088 */
1089 static const int predictor_transform[16][4] = {
1090 { 0, 0, 0, 0},
1091 { 0, 0, 0,128}, // PL
1092 { 0, 0,128, 0}, // PUR
1093 { 0, 0, 53, 75}, // PUR|PL
1094 { 0,128, 0, 0}, // PU
1095 { 0, 64, 0, 64}, // PU|PL
1096 { 0,128, 0, 0}, // PU|PUR
1097 { 0, 0, 53, 75}, // PU|PUR|PL
1098 {128, 0, 0, 0}, // PUL
1099 { 0, 0, 0,128}, // PUL|PL
1100 { 64, 0, 64, 0}, // PUL|PUR
1101 { 0, 0, 53, 75}, // PUL|PUR|PL
1102 { 0,128, 0, 0}, // PUL|PU
1103 {-104,116, 0,116}, // PUL|PU|PL
1104 { 24, 80, 24, 0}, // PUL|PU|PUR
1105 {-104,116, 0,116} // PUL|PU|PUR|PL
1106 };
1107
1108 /* This table shows which types of blocks can use other blocks for
1109 * prediction. For example, INTRA is the only mode in this table to
1110 * have a frame number of 0. That means INTRA blocks can only predict
1111 * from other INTRA blocks. There are 2 golden frame coding types;
1112 * blocks encoding in these modes can only predict from other blocks
1113 * that were encoded with these 1 of these 2 modes. */
1114 static const unsigned char compatible_frame[9] = {
1115 1, /* MODE_INTER_NO_MV */
1116 0, /* MODE_INTRA */
1117 1, /* MODE_INTER_PLUS_MV */
1118 1, /* MODE_INTER_LAST_MV */
1119 1, /* MODE_INTER_PRIOR_MV */
1120 2, /* MODE_USING_GOLDEN */
1121 2, /* MODE_GOLDEN_MV */
1122 1, /* MODE_INTER_FOUR_MV */
1123 3 /* MODE_COPY */
1124 };
1125 int current_frame_type;
1126
1127 /* there is a last DC predictor for each of the 3 frame types */
1128 short last_dc[3];
1129
1130 int transform = 0;
1131
1132 vul = vu = vur = vl = 0;
1133 last_dc[0] = last_dc[1] = last_dc[2] = 0;
1134
1135 /* for each fragment row... */
1136 for (y = 0; y < fragment_height; y++) {
1137
1138 /* for each fragment in a row... */
1139 for (x = 0; x < fragment_width; x++, i++) {
1140
1141 /* reverse prediction if this block was coded */
1142 if (s->all_fragments[i].coding_method != MODE_COPY) {
1143
1144 current_frame_type =
1145 compatible_frame[s->all_fragments[i].coding_method];
1146
1147 transform= 0;
1148 if(x){
1149 l= i-1;
1150 vl = DC_COEFF(l);
1151 if(COMPATIBLE_FRAME(l))
1152 transform |= PL;
1153 }
1154 if(y){
1155 u= i-fragment_width;
1156 vu = DC_COEFF(u);
1157 if(COMPATIBLE_FRAME(u))
1158 transform |= PU;
1159 if(x){
1160 ul= i-fragment_width-1;
1161 vul = DC_COEFF(ul);
1162 if(COMPATIBLE_FRAME(ul))
1163 transform |= PUL;
1164 }
1165 if(x + 1 < fragment_width){
1166 ur= i-fragment_width+1;
1167 vur = DC_COEFF(ur);
1168 if(COMPATIBLE_FRAME(ur))
1169 transform |= PUR;
1170 }
1171 }
1172
1173 if (transform == 0) {
1174
1175 /* if there were no fragments to predict from, use last
1176 * DC saved */
1177 predicted_dc = last_dc[current_frame_type];
1178 } else {
1179
1180 /* apply the appropriate predictor transform */
1181 predicted_dc =
1182 (predictor_transform[transform][0] * vul) +
1183 (predictor_transform[transform][1] * vu) +
1184 (predictor_transform[transform][2] * vur) +
1185 (predictor_transform[transform][3] * vl);
1186
1187 predicted_dc /= 128;
1188
1189 /* check for outranging on the [ul u l] and
1190 * [ul u ur l] predictors */
1191 if ((transform == 15) || (transform == 13)) {
1192 if (FFABS(predicted_dc - vu) > 128)
1193 predicted_dc = vu;
1194 else if (FFABS(predicted_dc - vl) > 128)
1195 predicted_dc = vl;
1196 else if (FFABS(predicted_dc - vul) > 128)
1197 predicted_dc = vul;
1198 }
1199 }
1200
1201 /* at long last, apply the predictor */
1202 DC_COEFF(i) += predicted_dc;
1203 /* save the DC */
1204 last_dc[current_frame_type] = DC_COEFF(i);
1205 }
1206 }
1207 }
1208 }
1209
1210 static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend)
1211 {
1212 int x, y;
1213 int *bounding_values= s->bounding_values_array+127;
1214
1215 int width = s->fragment_width[!!plane];
1216 int height = s->fragment_height[!!plane];
1217 int fragment = s->fragment_start [plane] + ystart * width;
1218 int stride = s->current_frame.linesize[plane];
1219 uint8_t *plane_data = s->current_frame.data [plane];
1220 if (!s->flipped_image) stride = -stride;
1221 plane_data += s->data_offset[plane] + 8*ystart*stride;
1222
1223 for (y = ystart; y < yend; y++) {
1224
1225 for (x = 0; x < width; x++) {
1226 /* This code basically just deblocks on the edges of coded blocks.
1227 * However, it has to be much more complicated because of the
1228 * braindamaged deblock ordering used in VP3/Theora. Order matters
1229 * because some pixels get filtered twice. */
1230 if( s->all_fragments[fragment].coding_method != MODE_COPY )
1231 {
1232 /* do not perform left edge filter for left columns frags */
1233 if (x > 0) {
1234 s->dsp.vp3_h_loop_filter(
1235 plane_data + 8*x,
1236 stride, bounding_values);
1237 }
1238
1239 /* do not perform top edge filter for top row fragments */
1240 if (y > 0) {
1241 s->dsp.vp3_v_loop_filter(
1242 plane_data + 8*x,
1243 stride, bounding_values);
1244 }
1245
1246 /* do not perform right edge filter for right column
1247 * fragments or if right fragment neighbor is also coded
1248 * in this frame (it will be filtered in next iteration) */
1249 if ((x < width - 1) &&
1250 (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1251 s->dsp.vp3_h_loop_filter(
1252 plane_data + 8*x + 8,
1253 stride, bounding_values);
1254 }
1255
1256 /* do not perform bottom edge filter for bottom row
1257 * fragments or if bottom fragment neighbor is also coded
1258 * in this frame (it will be filtered in the next row) */
1259 if ((y < height - 1) &&
1260 (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1261 s->dsp.vp3_v_loop_filter(
1262 plane_data + 8*x + 8*stride,
1263 stride, bounding_values);
1264 }
1265 }
1266
1267 fragment++;
1268 }
1269 plane_data += 8*stride;
1270 }
1271 }
1272
1273 /**
1274 * Pull DCT tokens from the 64 levels to decode and dequant the coefficients
1275 * for the next block in coding order
1276 */
1277 static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag,
1278 int plane, int inter, DCTELEM block[64])
1279 {
1280 int16_t *dequantizer = s->qmat[frag->qpi][inter][plane];
1281 uint8_t *perm = s->scantable.permutated;
1282 int i = 0;
1283
1284 do {
1285 int token = *s->dct_tokens[plane][i];
1286 switch (token & 3) {
1287 case 0: // EOB
1288 if (--token < 4) // 0-3 are token types, so the EOB run must now be 0
1289 s->dct_tokens[plane][i]++;
1290 else
1291 *s->dct_tokens[plane][i] = token & ~3;
1292 goto end;
1293 case 1: // zero run
1294 s->dct_tokens[plane][i]++;
1295 i += (token >> 2) & 0x7f;
1296 block[perm[i]] = (token >> 9) * dequantizer[perm[i]];
1297 i++;
1298 break;
1299 case 2: // coeff
1300 block[perm[i]] = (token >> 2) * dequantizer[perm[i]];
1301 s->dct_tokens[plane][i++]++;
1302 break;
1303 default: // shouldn't happen
1304 return i;
1305 }
1306 } while (i < 64);
1307 end:
1308 // the actual DC+prediction is in the fragment structure
1309 block[0] = frag->dc * s->qmat[0][inter][plane][0];
1310 return i;
1311 }
1312
1313 /**
1314 * called when all pixels up to row y are complete
1315 */
1316 static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
1317 {
1318 int h, cy;
1319 int offset[4];
1320
1321 if(s->avctx->draw_horiz_band==NULL)
1322 return;
1323
1324 h= y - s->last_slice_end;
1325 s->last_slice_end= y;
1326 y -= h;
1327
1328 if (!s->flipped_image) {
1329 y = s->avctx->height - y - h;
1330 }
1331
1332 cy = y >> s->chroma_y_shift;
1333 offset[0] = s->current_frame.linesize[0]*y;
1334 offset[1] = s->current_frame.linesize[1]*cy;
1335 offset[2] = s->current_frame.linesize[2]*cy;
1336 offset[3] = 0;
1337
1338 emms_c();
1339 s->avctx->draw_horiz_band(s->avctx, &s->current_frame, offset, y, 3, h);
1340 }
1341
1342 /*
1343 * Perform the final rendering for a particular slice of data.
1344 * The slice number ranges from 0..(c_superblock_height - 1).
1345 */
1346 static void render_slice(Vp3DecodeContext *s, int slice)
1347 {
1348 int x, y, i, j;
1349 LOCAL_ALIGNED_16(DCTELEM, block, [64]);
1350 int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1351 int motion_halfpel_index;
1352 uint8_t *motion_source;
1353 int plane, first_pixel;
1354
1355 if (slice >= s->c_superblock_height)
1356 return;
1357
1358 for (plane = 0; plane < 3; plane++) {
1359 uint8_t *output_plane = s->current_frame.data [plane] + s->data_offset[plane];
1360 uint8_t * last_plane = s-> last_frame.data [plane] + s->data_offset[plane];
1361 uint8_t *golden_plane = s-> golden_frame.data [plane] + s->data_offset[plane];
1362 int stride = s->current_frame.linesize[plane];
1363 int plane_width = s->width >> (plane && s->chroma_x_shift);
1364 int plane_height = s->height >> (plane && s->chroma_y_shift);
1365 int8_t (*motion_val)[2] = s->motion_val[!!plane];
1366
1367 int sb_x, sb_y = slice << (!plane && s->chroma_y_shift);
1368 int slice_height = sb_y + 1 + (!plane && s->chroma_y_shift);
1369 int slice_width = plane ? s->c_superblock_width : s->y_superblock_width;
1370
1371 int fragment_width = s->fragment_width[!!plane];
1372 int fragment_height = s->fragment_height[!!plane];
1373 int fragment_start = s->fragment_start[plane];
1374
1375 if (!s->flipped_image) stride = -stride;
1376 if (CONFIG_GRAY && plane && (s->avctx->flags & CODEC_FLAG_GRAY))
1377 continue;
1378
1379
1380 if(FFABS(stride) > 2048)
1381 return; //various tables are fixed size
1382
1383 /* for each superblock row in the slice (both of them)... */
1384 for (; sb_y < slice_height; sb_y++) {
1385
1386 /* for each superblock in a row... */
1387 for (sb_x = 0; sb_x < slice_width; sb_x++) {
1388
1389 /* for each block in a superblock... */
1390 for (j = 0; j < 16; j++) {
1391 x = 4*sb_x + hilbert_offset[j][0];
1392 y = 4*sb_y + hilbert_offset[j][1];
1393
1394 i = fragment_start + y*fragment_width + x;
1395
1396 // bounds check
1397 if (x >= fragment_width || y >= fragment_height)
1398 continue;
1399
1400 first_pixel = 8*y*stride + 8*x;
1401
1402 /* transform if this block was coded */
1403 if (s->all_fragments[i].coding_method != MODE_COPY) {
1404 if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
1405 (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
1406 motion_source= golden_plane;
1407 else
1408 motion_source= last_plane;
1409
1410 motion_source += first_pixel;
1411 motion_halfpel_index = 0;
1412
1413 /* sort out the motion vector if this fragment is coded
1414 * using a motion vector method */
1415 if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1416 (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
1417 int src_x, src_y;
1418 motion_x = motion_val[y*fragment_width + x][0];
1419 motion_y = motion_val[y*fragment_width + x][1];
1420
1421 src_x= (motion_x>>1) + 8*x;
1422 src_y= (motion_y>>1) + 8*y;
1423
1424 motion_halfpel_index = motion_x & 0x01;
1425 motion_source += (motion_x >> 1);
1426
1427 motion_halfpel_index |= (motion_y & 0x01) << 1;
1428 motion_source += ((motion_y >> 1) * stride);
1429
1430 if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
1431 uint8_t *temp= s->edge_emu_buffer;
1432 if(stride<0) temp -= 9*stride;
1433 else temp += 9*stride;
1434
1435 ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
1436 motion_source= temp;
1437 }
1438 }
1439
1440
1441 /* first, take care of copying a block from either the
1442 * previous or the golden frame */
1443 if (s->all_fragments[i].coding_method != MODE_INTRA) {
1444 /* Note, it is possible to implement all MC cases with
1445 put_no_rnd_pixels_l2 which would look more like the
1446 VP3 source but this would be slower as
1447 put_no_rnd_pixels_tab is better optimzed */
1448 if(motion_halfpel_index != 3){
1449 s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1450 output_plane + first_pixel,
1451 motion_source, stride, 8);
1452 }else{
1453 int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
1454 s->dsp.put_no_rnd_pixels_l2[1](
1455 output_plane + first_pixel,
1456 motion_source - d,
1457 motion_source + stride + 1 + d,
1458 stride, 8);
1459 }
1460 }
1461
1462 s->dsp.clear_block(block);
1463
1464 /* invert DCT and place (or add) in final output */
1465
1466 if (s->all_fragments[i].coding_method == MODE_INTRA) {
1467 vp3_dequant(s, s->all_fragments + i, plane, 0, block);
1468 if(s->avctx->idct_algo!=FF_IDCT_VP3)
1469 block[0] += 128<<3;
1470 s->dsp.idct_put(
1471 output_plane + first_pixel,
1472 stride,
1473 block);
1474 } else {
1475 if (vp3_dequant(s, s->all_fragments + i, plane, 1, block)) {
1476 s->dsp.idct_add(
1477 output_plane + first_pixel,
1478 stride,
1479 block);
1480 } else {
1481 s->dsp.vp3_idct_dc_add(output_plane + first_pixel, stride, block);
1482 }
1483 }
1484 } else {
1485
1486 /* copy directly from the previous frame */
1487 s->dsp.put_pixels_tab[1][0](
1488 output_plane + first_pixel,
1489 last_plane + first_pixel,
1490 stride, 8);
1491
1492 }
1493 }
1494 }
1495
1496 // Filter up to the last row in the superblock row
1497 if (!s->skip_loop_filter)
1498 apply_loop_filter(s, plane, 4*sb_y - !!sb_y, FFMIN(4*sb_y+3, fragment_height-1));
1499 }
1500 }
1501
1502 /* this looks like a good place for slice dispatch... */
1503 /* algorithm:
1504 * if (slice == s->macroblock_height - 1)
1505 * dispatch (both last slice & 2nd-to-last slice);
1506 * else if (slice > 0)
1507 * dispatch (slice - 1);
1508 */
1509
1510 vp3_draw_horiz_band(s, FFMIN((32 << s->chroma_y_shift) * (slice + 1) -16, s->height-16));
1511 }
1512
1513 /*
1514 * This is the ffmpeg/libavcodec API init function.
1515 */
1516 static av_cold int vp3_decode_init(AVCodecContext *avctx)
1517 {
1518 Vp3DecodeContext *s = avctx->priv_data;
1519 int i, inter, plane;
1520 int c_width;
1521 int c_height;
1522 int y_fragment_count, c_fragment_count;
1523
1524 if (avctx->codec_tag == MKTAG('V','P','3','0'))
1525 s->version = 0;
1526 else
1527 s->version = 1;
1528
1529 s->avctx = avctx;
1530 s->width = FFALIGN(avctx->width, 16);
1531 s->height = FFALIGN(avctx->height, 16);
1532 if (avctx->pix_fmt == PIX_FMT_NONE)
1533 avctx->pix_fmt = PIX_FMT_YUV420P;
1534 avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
1535 if(avctx->idct_algo==FF_IDCT_AUTO)
1536 avctx->idct_algo=FF_IDCT_VP3;
1537 dsputil_init(&s->dsp, avctx);
1538
1539 ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
1540
1541 /* initialize to an impossible value which will force a recalculation
1542 * in the first frame decode */
1543 for (i = 0; i < 3; i++)
1544 s->qps[i] = -1;
1545
1546 avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
1547
1548 s->y_superblock_width = (s->width + 31) / 32;
1549 s->y_superblock_height = (s->height + 31) / 32;
1550 s->y_superblock_count = s->y_superblock_width * s->y_superblock_height;
1551
1552 /* work out the dimensions for the C planes */
1553 c_width = s->width >> s->chroma_x_shift;
1554 c_height = s->height >> s->chroma_y_shift;
1555 s->c_superblock_width = (c_width + 31) / 32;
1556 s->c_superblock_height = (c_height + 31) / 32;
1557 s->c_superblock_count = s->c_superblock_width * s->c_superblock_height;
1558
1559 s->superblock_count = s->y_superblock_count + (s->c_superblock_count * 2);
1560 s->u_superblock_start = s->y_superblock_count;
1561 s->v_superblock_start = s->u_superblock_start + s->c_superblock_count;
1562 s->superblock_coding = av_malloc(s->superblock_count);
1563
1564 s->macroblock_width = (s->width + 15) / 16;
1565 s->macroblock_height = (s->height + 15) / 16;
1566 s->macroblock_count = s->macroblock_width * s->macroblock_height;
1567
1568 s->fragment_width[0] = s->width / FRAGMENT_PIXELS;
1569 s->fragment_height[0] = s->height / FRAGMENT_PIXELS;
1570 s->fragment_width[1] = s->fragment_width[0] >> s->chroma_x_shift;
1571 s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift;
1572
1573 /* fragment count covers all 8x8 blocks for all 3 planes */
1574 y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
1575 c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
1576 s->fragment_count = y_fragment_count + 2*c_fragment_count;
1577 s->fragment_start[1] = y_fragment_count;
1578 s->fragment_start[2] = y_fragment_count + c_fragment_count;
1579
1580 s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
1581 s->coded_fragment_list[0] = av_malloc(s->fragment_count * sizeof(int));
1582 s->dct_tokens_base = av_malloc(64*s->fragment_count * sizeof(*s->dct_tokens_base));
1583 s->motion_val[0] = av_malloc(y_fragment_count * sizeof(*s->motion_val[0]));
1584 s->motion_val[1] = av_malloc(c_fragment_count * sizeof(*s->motion_val[1]));
1585
1586 if (!s->superblock_coding || !s->all_fragments || !s->dct_tokens_base ||
1587 !s->coded_fragment_list[0] || !s->motion_val[0] || !s->motion_val[1]) {
1588 vp3_decode_end(avctx);
1589 return -1;
1590 }
1591
1592 if (!s->theora_tables)
1593 {
1594 for (i = 0; i < 64; i++) {
1595 s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
1596 s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
1597 s->base_matrix[0][i] = vp31_intra_y_dequant[i];
1598 s->base_matrix[1][i] = vp31_intra_c_dequant[i];
1599 s->base_matrix[2][i] = vp31_inter_dequant[i];
1600 s->filter_limit_values[i] = vp31_filter_limit_values[i];
1601 }
1602
1603 for(inter=0; inter<2; inter++){
1604 for(plane=0; plane<3; plane++){
1605 s->qr_count[inter][plane]= 1;
1606 s->qr_size [inter][plane][0]= 63;
1607 s->qr_base [inter][plane][0]=
1608 s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
1609 }
1610 }
1611
1612 /* init VLC tables */
1613 for (i = 0; i < 16; i++) {
1614
1615 /* DC histograms */
1616 init_vlc(&s->dc_vlc[i], 11, 32,
1617 &dc_bias[i][0][1], 4, 2,
1618 &dc_bias[i][0][0], 4, 2, 0);
1619
1620 /* group 1 AC histograms */
1621 init_vlc(&s->ac_vlc_1[i], 11, 32,
1622 &ac_bias_0[i][0][1], 4, 2,
1623 &ac_bias_0[i][0][0], 4, 2, 0);
1624
1625 /* group 2 AC histograms */
1626 init_vlc(&s->ac_vlc_2[i], 11, 32,
1627 &ac_bias_1[i][0][1], 4, 2,
1628 &ac_bias_1[i][0][0], 4, 2, 0);
1629
1630 /* group 3 AC histograms */
1631 init_vlc(&s->ac_vlc_3[i], 11, 32,
1632 &ac_bias_2[i][0][1], 4, 2,
1633 &ac_bias_2[i][0][0], 4, 2, 0);
1634
1635 /* group 4 AC histograms */
1636 init_vlc(&s->ac_vlc_4[i], 11, 32,
1637 &ac_bias_3[i][0][1], 4, 2,
1638 &ac_bias_3[i][0][0], 4, 2, 0);
1639 }
1640 } else {
1641
1642 for (i = 0; i < 16; i++) {
1643 /* DC histograms */
1644 if (init_vlc(&s->dc_vlc[i], 11, 32,
1645 &s->huffman_table[i][0][1], 8, 4,
1646 &s->huffman_table[i][0][0], 8, 4, 0) < 0)
1647 goto vlc_fail;
1648
1649 /* group 1 AC histograms */
1650 if (init_vlc(&s->ac_vlc_1[i], 11, 32,
1651 &s->huffman_table[i+16][0][1], 8, 4,
1652 &s->huffman_table[i+16][0][0], 8, 4, 0) < 0)
1653 goto vlc_fail;
1654
1655 /* group 2 AC histograms */
1656 if (init_vlc(&s->ac_vlc_2[i], 11, 32,
1657 &s->huffman_table[i+16*2][0][1], 8, 4,
1658 &s->huffman_table[i+16*2][0][0], 8, 4, 0) < 0)
1659 goto vlc_fail;
1660
1661 /* group 3 AC histograms */
1662 if (init_vlc(&s->ac_vlc_3[i], 11, 32,
1663 &s->huffman_table[i+16*3][0][1], 8, 4,
1664 &s->huffman_table[i+16*3][0][0], 8, 4, 0) < 0)
1665 goto vlc_fail;
1666
1667 /* group 4 AC histograms */
1668 if (init_vlc(&s->ac_vlc_4[i], 11, 32,
1669 &s->huffman_table[i+16*4][0][1], 8, 4,
1670 &s->huffman_table[i+16*4][0][0], 8, 4, 0) < 0)
1671 goto vlc_fail;
1672 }
1673 }
1674
1675 init_vlc(&s->superblock_run_length_vlc, 6, 34,
1676 &superblock_run_length_vlc_table[0][1], 4, 2,
1677 &superblock_run_length_vlc_table[0][0], 4, 2, 0);
1678
1679 init_vlc(&s->fragment_run_length_vlc, 5, 30,
1680 &fragment_run_length_vlc_table[0][1], 4, 2,
1681 &fragment_run_length_vlc_table[0][0], 4, 2, 0);
1682
1683 init_vlc(&s->mode_code_vlc, 3, 8,
1684 &mode_code_vlc_table[0][1], 2, 1,
1685 &mode_code_vlc_table[0][0], 2, 1, 0);
1686
1687 init_vlc(&s->motion_vector_vlc, 6, 63,
1688 &motion_vector_vlc_table[0][1], 2, 1,
1689 &motion_vector_vlc_table[0][0], 2, 1, 0);
1690
1691 /* work out the block mapping tables */
1692 s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
1693 s->macroblock_coding = av_malloc(s->macroblock_count + 1);
1694 if (!s->superblock_fragments || !s->macroblock_coding) {
1695 vp3_decode_end(avctx);
1696 return -1;
1697 }
1698 init_block_mapping(s);
1699
1700 for (i = 0; i < 3; i++) {
1701 s->current_frame.data[i] = NULL;
1702 s->last_frame.data[i] = NULL;
1703 s->golden_frame.data[i] = NULL;
1704 }
1705
1706 return 0;
1707
1708 vlc_fail:
1709 av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
1710 return -1;
1711 }
1712
1713 /*
1714 * This is the ffmpeg/libavcodec API frame decode function.
1715 */
1716 static int vp3_decode_frame(AVCodecContext *avctx,
1717 void *data, int *data_size,
1718 AVPacket *avpkt)
1719 {
1720 const uint8_t *buf = avpkt->data;
1721 int buf_size = avpkt->size;
1722 Vp3DecodeContext *s = avctx->priv_data;
1723 GetBitContext gb;
1724 int i;
1725
1726 init_get_bits(&gb, buf, buf_size * 8);
1727
1728 if (s->theora && get_bits1(&gb))
1729 {
1730 av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
1731 return -1;
1732 }
1733
1734 s->keyframe = !get_bits1(&gb);
1735 if (!s->theora)
1736 skip_bits(&gb, 1);
1737 for (i = 0; i < 3; i++)
1738 s->last_qps[i] = s->qps[i];
1739
1740 s->nqps=0;
1741 do{
1742 s->qps[s->nqps++]= get_bits(&gb, 6);
1743 } while(s->theora >= 0x030200 && s->nqps<3 && get_bits1(&gb));
1744 for (i = s->nqps; i < 3; i++)
1745 s->qps[i] = -1;
1746
1747 if (s->avctx->debug & FF_DEBUG_PICT_INFO)
1748 av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
1749 s->keyframe?"key":"", avctx->frame_number+1, s->qps[0]);
1750
1751 s->skip_loop_filter = !s->filter_limit_values[s->qps[0]] ||
1752 avctx->skip_loop_filter >= (s->keyframe ? AVDISCARD_ALL : AVDISCARD_NONKEY);
1753
1754 if (s->qps[0] != s->last_qps[0])
1755 init_loop_filter(s);
1756
1757 for (i = 0; i < s->nqps; i++)
1758 // reinit all dequantizers if the first one changed, because
1759 // the DC of the first quantizer must be used for all matrices
1760 if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
1761 init_dequantizer(s, i);
1762
1763 if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
1764 return buf_size;
1765
1766 s->current_frame.reference = 3;
1767 s->current_frame.pict_type = s->keyframe ? FF_I_TYPE : FF_P_TYPE;
1768 if (avctx->get_buffer(avctx, &s->current_frame) < 0) {
1769 av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
1770 goto error;
1771 }
1772
1773 if (s->keyframe) {
1774 if (!s->theora)
1775 {
1776 skip_bits(&gb, 4); /* width code */
1777 skip_bits(&gb, 4); /* height code */
1778 if (s->version)
1779 {
1780 s->version = get_bits(&gb, 5);
1781 if (avctx->frame_number == 0)
1782 av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
1783 }
1784 }
1785 if (s->version || s->theora)
1786 {
1787 if (get_bits1(&gb))
1788 av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
1789 skip_bits(&gb, 2); /* reserved? */
1790 }
1791 } else {
1792 if (!s->golden_frame.data[0]) {
1793 av_log(s->avctx, AV_LOG_WARNING, "vp3: first frame not a keyframe\n");
1794
1795 s->golden_frame.reference = 3;
1796 s->golden_frame.pict_type = FF_I_TYPE;
1797 if (avctx->get_buffer(avctx, &s->golden_frame) < 0) {
1798 av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
1799 goto error;
1800 }
1801 s->last_frame = s->golden_frame;
1802 s->last_frame.type = FF_BUFFER_TYPE_COPY;
1803 }
1804 }
1805
1806 s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
1807 s->current_frame.qstride= 0;
1808
1809 memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment));
1810
1811 if (unpack_superblocks(s, &gb)){
1812 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
1813 goto error;
1814 }
1815 if (unpack_modes(s, &gb)){
1816 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
1817 goto error;
1818 }
1819 if (unpack_vectors(s, &gb)){
1820 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
1821 goto error;
1822 }
1823 if (unpack_block_qpis(s, &gb)){
1824 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
1825 goto error;
1826 }
1827 if (unpack_dct_coeffs(s, &gb)){
1828 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
1829 goto error;
1830 }
1831
1832 for (i = 0; i < 3; i++) {
1833 int height = s->height >> (i && s->chroma_y_shift);
1834 if (s->flipped_image)
1835 s->data_offset[i] = 0;
1836 else
1837 s->data_offset[i] = (height-1) * s->current_frame.linesize[i];
1838 }
1839
1840 s->last_slice_end = 0;
1841 for (i = 0; i < s->c_superblock_height; i++)
1842 render_slice(s, i);
1843
1844 // filter the last row
1845 for (i = 0; i < 3; i++) {
1846 int row = (s->height >> (3+(i && s->chroma_y_shift))) - 1;
1847 apply_loop_filter(s, i, row, row+1);
1848 }
1849 vp3_draw_horiz_band(s, s->avctx->height);
1850
1851 *data_size=sizeof(AVFrame);
1852 *(AVFrame*)data= s->current_frame;
1853
1854 /* release the last frame, if it is allocated and if it is not the
1855 * golden frame */
1856 if (s->last_frame.data[0] && s->last_frame.type != FF_BUFFER_TYPE_COPY)
1857 avctx->release_buffer(avctx, &s->last_frame);
1858
1859 /* shuffle frames (last = current) */
1860 s->last_frame= s->current_frame;
1861
1862 if (s->keyframe) {
1863 if (s->golden_frame.data[0])
1864 avctx->release_buffer(avctx, &s->golden_frame);
1865 s->golden_frame = s->current_frame;
1866 s->last_frame.type = FF_BUFFER_TYPE_COPY;
1867 }
1868
1869 s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
1870
1871 return buf_size;
1872
1873 error:
1874 if (s->current_frame.data[0])
1875 avctx->release_buffer(avctx, &s->current_frame);
1876 return -1;
1877 }
1878
1879 /*
1880 * This is the ffmpeg/libavcodec API module cleanup function.
1881 */
1882 static av_cold int vp3_decode_end(AVCodecContext *avctx)
1883 {
1884 Vp3DecodeContext *s = avctx->priv_data;
1885 int i;
1886
1887 av_free(s->superblock_coding);
1888 av_free(s->all_fragments);
1889 av_free(s->coded_fragment_list[0]);
1890 av_free(s->dct_tokens_base);
1891 av_free(s->superblock_fragments);
1892 av_free(s->macroblock_coding);
1893 av_free(s->motion_val[0]);
1894 av_free(s->motion_val[1]);
1895
1896 for (i = 0; i < 16; i++) {
1897 free_vlc(&s->dc_vlc[i]);
1898 free_vlc(&s->ac_vlc_1[i]);
1899 free_vlc(&s->ac_vlc_2[i]);
1900 free_vlc(&s->ac_vlc_3[i]);
1901 free_vlc(&s->ac_vlc_4[i]);
1902 }
1903
1904 free_vlc(&s->superblock_run_length_vlc);
1905 free_vlc(&s->fragment_run_length_vlc);
1906 free_vlc(&s->mode_code_vlc);
1907 free_vlc(&s->motion_vector_vlc);
1908
1909 /* release all frames */
1910 if (s->golden_frame.data[0])
1911 avctx->release_buffer(avctx, &s->golden_frame);
1912 if (s->last_frame.data[0] && s->last_frame.type != FF_BUFFER_TYPE_COPY)
1913 avctx->release_buffer(avctx, &s->last_frame);
1914 /* no need to release the current_frame since it will always be pointing
1915 * to the same frame as either the golden or last frame */
1916
1917 return 0;
1918 }
1919
1920 static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
1921 {
1922 Vp3DecodeContext *s = avctx->priv_data;
1923
1924 if (get_bits1(gb)) {
1925 int token;
1926 if (s->entries >= 32) { /* overflow */
1927 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
1928 return -1;
1929 }
1930 token = get_bits(gb, 5);
1931 //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
1932 s->huffman_table[s->hti][token][0] = s->hbits;
1933 s->huffman_table[s->hti][token][1] = s->huff_code_size;
1934 s->entries++;
1935 }
1936 else {
1937 if (s->huff_code_size >= 32) {/* overflow */
1938 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
1939 return -1;
1940 }
1941 s->huff_code_size++;
1942 s->hbits <<= 1;
1943 if (read_huffman_tree(avctx, gb))
1944 return -1;
1945 s->hbits |= 1;
1946 if (read_huffman_tree(avctx, gb))
1947 return -1;
1948 s->hbits >>= 1;
1949 s->huff_code_size--;
1950 }
1951 return 0;
1952 }
1953
1954 #if CONFIG_THEORA_DECODER
1955 static const enum PixelFormat theora_pix_fmts[4] = {
1956 PIX_FMT_YUV420P, PIX_FMT_NONE, PIX_FMT_YUV422P, PIX_FMT_YUV444P
1957 };
1958
1959 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
1960 {
1961 Vp3DecodeContext *s = avctx->priv_data;
1962 int visible_width, visible_height, colorspace;
1963 int offset_x = 0, offset_y = 0;
1964 AVRational fps, aspect;
1965
1966 s->theora = get_bits_long(gb, 24);
1967 av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
1968
1969 /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
1970 /* but previous versions have the image flipped relative to vp3 */
1971 if (s->theora < 0x030200)
1972 {
1973 s->flipped_image = 1;
1974 av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
1975 }
1976
1977 visible_width = s->width = get_bits(gb, 16) << 4;
1978 visible_height = s->height = get_bits(gb, 16) << 4;
1979
1980 if(av_image_check_size(s->width, s->height, 0, avctx)){
1981 av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
1982 s->width= s->height= 0;
1983 return -1;
1984 }
1985
1986 if (s->theora >= 0x030200) {
1987 visible_width = get_bits_long(gb, 24);
1988 visible_height = get_bits_long(gb, 24);
1989
1990 offset_x = get_bits(gb, 8); /* offset x */
1991 offset_y = get_bits(gb, 8); /* offset y, from bottom */
1992 }
1993
1994 fps.num = get_bits_long(gb, 32);
1995 fps.den = get_bits_long(gb, 32);
1996 if (fps.num && fps.den) {
1997 av_reduce(&avctx->time_base.num, &avctx->time_base.den,
1998 fps.den, fps.num, 1<<30);
1999 }
2000
2001 aspect.num = get_bits_long(gb, 24);
2002 aspect.den = get_bits_long(gb, 24);
2003 if (aspect.num && aspect.den) {
2004 av_reduce(&avctx->sample_aspect_ratio.num,
2005 &avctx->sample_aspect_ratio.den,
2006 aspect.num, aspect.den, 1<<30);
2007 }
2008
2009 if (s->theora < 0x030200)
2010 skip_bits(gb, 5); /* keyframe frequency force */
2011 colorspace = get_bits(gb, 8);
2012 skip_bits(gb, 24); /* bitrate */
2013
2014 skip_bits(gb, 6); /* quality hint */
2015
2016 if (s->theora >= 0x030200)
2017 {
2018 skip_bits(gb, 5); /* keyframe frequency force */
2019 avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)];
2020 skip_bits(gb, 3); /* reserved */
2021 }
2022
2023 // align_get_bits(gb);
2024
2025 if ( visible_width <= s->width && visible_width > s->width-16
2026 && visible_height <= s->height && visible_height > s->height-16
2027 && !offset_x && (offset_y == s->height - visible_height))
2028 avcodec_set_dimensions(avctx, visible_width, visible_height);
2029 else
2030 avcodec_set_dimensions(avctx, s->width, s->height);
2031
2032 if (colorspace == 1) {
2033 avctx->color_primaries = AVCOL_PRI_BT470M;
2034 } else if (colorspace == 2) {
2035 avctx->color_primaries = AVCOL_PRI_BT470BG;
2036 }
2037 if (colorspace == 1 || colorspace == 2) {
2038 avctx->colorspace = AVCOL_SPC_BT470BG;
2039 avctx->color_trc = AVCOL_TRC_BT709;
2040 }
2041
2042 return 0;
2043 }
2044
2045 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2046 {
2047 Vp3DecodeContext *s = avctx->priv_data;
2048 int i, n, matrices, inter, plane;
2049
2050 if (s->theora >= 0x030200) {
2051 n = get_bits(gb, 3);
2052 /* loop filter limit values table */
2053 if (n)
2054 for (i = 0; i < 64; i++)
2055 s->filter_limit_values[i] = get_bits(gb, n);
2056 }
2057
2058 if (s->theora >= 0x030200)
2059 n = get_bits(gb, 4) + 1;
2060 else
2061 n = 16;
2062 /* quality threshold table */
2063 for (i = 0; i < 64; i++)
2064 s->coded_ac_scale_factor[i] = get_bits(gb, n);
2065
2066 if (s->theora >= 0x030200)
2067 n = get_bits(gb, 4) + 1;
2068 else
2069 n = 16;
2070 /* dc scale factor table */
2071 for (i = 0; i < 64; i++)
2072 s->coded_dc_scale_factor[i] = get_bits(gb, n);
2073
2074 if (s->theora >= 0x030200)
2075 matrices = get_bits(gb, 9) + 1;
2076 else
2077 matrices = 3;
2078
2079 if(matrices > 384){
2080 av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2081 return -1;
2082 }
2083
2084 for(n=0; n<matrices; n++){
2085 for (i = 0; i < 64; i++)
2086 s->base_matrix[n][i]= get_bits(gb, 8);
2087 }
2088
2089 for (inter = 0; inter <= 1; inter++) {
2090 for (plane = 0; plane <= 2; plane++) {
2091 int newqr= 1;
2092 if (inter || plane > 0)
2093 newqr = get_bits1(gb);
2094 if (!newqr) {
2095 int qtj, plj;
2096 if(inter && get_bits1(gb)){
2097 qtj = 0;
2098 plj = plane;
2099 }else{
2100 qtj= (3*inter + plane - 1) / 3;
2101 plj= (plane + 2) % 3;
2102 }
2103 s->qr_count[inter][plane]= s->qr_count[qtj][plj];
2104 memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
2105 memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
2106 } else {
2107 int qri= 0;
2108 int qi = 0;
2109
2110 for(;;){
2111 i= get_bits(gb, av_log2(matrices-1)+1);
2112 if(i>= matrices){
2113 av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
2114 return -1;
2115 }
2116 s->qr_base[inter][plane][qri]= i;
2117 if(qi >= 63)
2118 break;
2119 i = get_bits(gb, av_log2(63-qi)+1) + 1;
2120 s->qr_size[inter][plane][qri++]= i;
2121 qi += i;
2122 }
2123
2124 if (qi > 63) {
2125 av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2126 return -1;
2127 }
2128 s->qr_count[inter][plane]= qri;
2129 }
2130 }
2131 }
2132
2133 /* Huffman tables */
2134 for (s->hti = 0; s->hti < 80; s->hti++) {
2135 s->entries = 0;
2136 s->huff_code_size = 1;
2137 if (!get_bits1(gb)) {
2138 s->hbits = 0;
2139 if(read_huffman_tree(avctx, gb))
2140 return -1;
2141 s->hbits = 1;
2142 if(read_huffman_tree(avctx, gb))
2143 return -1;
2144 }
2145 }
2146
2147 s->theora_tables = 1;
2148
2149 return 0;
2150 }
2151
2152 static av_cold int theora_decode_init(AVCodecContext *avctx)
2153 {
2154 Vp3DecodeContext *s = avctx->priv_data;
2155 GetBitContext gb;
2156 int ptype;
2157 uint8_t *header_start[3];
2158 int header_len[3];
2159 int i;
2160
2161 s->theora = 1;
2162
2163 if (!avctx->extradata_size)
2164 {
2165 av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2166 return -1;
2167 }
2168
2169 if (ff_split_xiph_headers(avctx->extradata, avctx->extradata_size,
2170 42, header_start, header_len) < 0) {
2171 av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
2172 return -1;
2173 }
2174
2175 for(i=0;i<3;i++) {
2176 init_get_bits(&gb, header_start[i], header_len[i] * 8);
2177
2178 ptype = get_bits(&gb, 8);
2179
2180 if (!(ptype & 0x80))
2181 {
2182 av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2183 // return -1;
2184 }
2185
2186 // FIXME: Check for this as well.
2187 skip_bits_long(&gb, 6*8); /* "theora" */
2188
2189 switch(ptype)
2190 {
2191 case 0x80:
2192 theora_decode_header(avctx, &gb);
2193 break;
2194 case 0x81:
2195 // FIXME: is this needed? it breaks sometimes
2196 // theora_decode_comments(avctx, gb);
2197 break;
2198 case 0x82:
2199 if (theora_decode_tables(avctx, &gb))
2200 return -1;
2201 break;
2202 default:
2203 av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
2204 break;
2205 }
2206 if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb))
2207 av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype);
2208 if (s->theora < 0x030200)
2209 break;
2210 }
2211
2212 return vp3_decode_init(avctx);
2213 }
2214
2215 AVCodec ff_theora_decoder = {
2216 "theora",
2217 AVMEDIA_TYPE_VIDEO,
2218 CODEC_ID_THEORA,
2219 sizeof(Vp3DecodeContext),
2220 theora_decode_init,
2221 NULL,
2222 vp3_decode_end,
2223 vp3_decode_frame,
2224 CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
2225 NULL,
2226 .long_name = NULL_IF_CONFIG_SMALL("Theora"),
2227 };
2228 #endif
2229
2230 AVCodec ff_vp3_decoder = {
2231 "vp3",
2232 AVMEDIA_TYPE_VIDEO,
2233 CODEC_ID_VP3,
2234 sizeof(Vp3DecodeContext),
2235 vp3_decode_init,
2236 NULL,
2237 vp3_decode_end,
2238 vp3_decode_frame,
2239 CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
2240 NULL,
2241 .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
2242 };