b63b12659e7e543aa7396c8080b267db1f0ec9e4
[libav.git] / libavcodec / vp3.c
1 /*
2 * Copyright (C) 2003-2004 the ffmpeg project
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 /**
22 * @file libavcodec/vp3.c
23 * On2 VP3 Video Decoder
24 *
25 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
26 * For more information about the VP3 coding process, visit:
27 * http://wiki.multimedia.cx/index.php?title=On2_VP3
28 *
29 * Theora decoder by Alex Beregszaszi
30 */
31
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <string.h>
35
36 #include "avcodec.h"
37 #include "dsputil.h"
38 #include "get_bits.h"
39
40 #include "vp3data.h"
41 #include "xiph.h"
42
43 #define FRAGMENT_PIXELS 8
44
45 static av_cold int vp3_decode_end(AVCodecContext *avctx);
46
47 typedef struct Coeff {
48 struct Coeff *next;
49 DCTELEM coeff;
50 uint8_t index;
51 } Coeff;
52
53 //FIXME split things out into their own arrays
54 typedef struct Vp3Fragment {
55 Coeff *next_coeff;
56 uint8_t coding_method;
57 int8_t motion_x;
58 int8_t motion_y;
59 uint8_t qpi;
60 } Vp3Fragment;
61
62 #define SB_NOT_CODED 0
63 #define SB_PARTIALLY_CODED 1
64 #define SB_FULLY_CODED 2
65
66 #define MODE_INTER_NO_MV 0
67 #define MODE_INTRA 1
68 #define MODE_INTER_PLUS_MV 2
69 #define MODE_INTER_LAST_MV 3
70 #define MODE_INTER_PRIOR_LAST 4
71 #define MODE_USING_GOLDEN 5
72 #define MODE_GOLDEN_MV 6
73 #define MODE_INTER_FOURMV 7
74 #define CODING_MODE_COUNT 8
75
76 /* special internal mode */
77 #define MODE_COPY 8
78
79 /* There are 6 preset schemes, plus a free-form scheme */
80 static const int ModeAlphabet[6][CODING_MODE_COUNT] =
81 {
82 /* scheme 1: Last motion vector dominates */
83 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
84 MODE_INTER_PLUS_MV, MODE_INTER_NO_MV,
85 MODE_INTRA, MODE_USING_GOLDEN,
86 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
87
88 /* scheme 2 */
89 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
90 MODE_INTER_NO_MV, MODE_INTER_PLUS_MV,
91 MODE_INTRA, MODE_USING_GOLDEN,
92 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
93
94 /* scheme 3 */
95 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
96 MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
97 MODE_INTRA, MODE_USING_GOLDEN,
98 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
99
100 /* scheme 4 */
101 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
102 MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST,
103 MODE_INTRA, MODE_USING_GOLDEN,
104 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
105
106 /* scheme 5: No motion vector dominates */
107 { MODE_INTER_NO_MV, MODE_INTER_LAST_MV,
108 MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
109 MODE_INTRA, MODE_USING_GOLDEN,
110 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
111
112 /* scheme 6 */
113 { MODE_INTER_NO_MV, MODE_USING_GOLDEN,
114 MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
115 MODE_INTER_PLUS_MV, MODE_INTRA,
116 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
117
118 };
119
120 #define MIN_DEQUANT_VAL 2
121
122 typedef struct Vp3DecodeContext {
123 AVCodecContext *avctx;
124 int theora, theora_tables;
125 int version;
126 int width, height;
127 AVFrame golden_frame;
128 AVFrame last_frame;
129 AVFrame current_frame;
130 int keyframe;
131 DSPContext dsp;
132 int flipped_image;
133 int last_slice_end;
134
135 int qps[3];
136 int nqps;
137 int last_qps[3];
138
139 int superblock_count;
140 int y_superblock_width;
141 int y_superblock_height;
142 int c_superblock_width;
143 int c_superblock_height;
144 int u_superblock_start;
145 int v_superblock_start;
146 unsigned char *superblock_coding;
147
148 int macroblock_count;
149 int macroblock_width;
150 int macroblock_height;
151
152 int fragment_count;
153 int fragment_width;
154 int fragment_height;
155
156 Vp3Fragment *all_fragments;
157 uint8_t *coeff_counts;
158 Coeff *coeffs;
159 Coeff *next_coeff;
160 int fragment_start[3];
161 int data_offset[3];
162
163 ScanTable scantable;
164
165 /* tables */
166 uint16_t coded_dc_scale_factor[64];
167 uint32_t coded_ac_scale_factor[64];
168 uint8_t base_matrix[384][64];
169 uint8_t qr_count[2][3];
170 uint8_t qr_size [2][3][64];
171 uint16_t qr_base[2][3][64];
172
173 /* this is a list of indexes into the all_fragments array indicating
174 * which of the fragments are coded */
175 int *coded_fragment_list;
176 int coded_fragment_list_index;
177
178 /* track which fragments have already been decoded; called 'fast'
179 * because this data structure avoids having to iterate through every
180 * fragment in coded_fragment_list; once a fragment has been fully
181 * decoded, it is removed from this list */
182 int *fast_fragment_list;
183 int fragment_list_y_head;
184 int fragment_list_c_head;
185
186 VLC dc_vlc[16];
187 VLC ac_vlc_1[16];
188 VLC ac_vlc_2[16];
189 VLC ac_vlc_3[16];
190 VLC ac_vlc_4[16];
191
192 VLC superblock_run_length_vlc;
193 VLC fragment_run_length_vlc;
194 VLC mode_code_vlc;
195 VLC motion_vector_vlc;
196
197 /* these arrays need to be on 16-byte boundaries since SSE2 operations
198 * index into them */
199 DECLARE_ALIGNED_16(int16_t, qmat)[3][2][3][64]; //<qmat[qpi][is_inter][plane]
200
201 /* This table contains superblock_count * 16 entries. Each set of 16
202 * numbers corresponds to the fragment indexes 0..15 of the superblock.
203 * An entry will be -1 to indicate that no entry corresponds to that
204 * index. */
205 int *superblock_fragments;
206
207 /* This is an array that indicates how a particular macroblock
208 * is coded. */
209 unsigned char *macroblock_coding;
210
211 int first_coded_y_fragment;
212 int first_coded_c_fragment;
213 int last_coded_y_fragment;
214 int last_coded_c_fragment;
215
216 uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
217 int8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
218
219 /* Huffman decode */
220 int hti;
221 unsigned int hbits;
222 int entries;
223 int huff_code_size;
224 uint16_t huffman_table[80][32][2];
225
226 uint8_t filter_limit_values[64];
227 DECLARE_ALIGNED_8(int, bounding_values_array)[256+2];
228 } Vp3DecodeContext;
229
230 /************************************************************************
231 * VP3 specific functions
232 ************************************************************************/
233
234 /*
235 * This function sets up all of the various blocks mappings:
236 * superblocks <-> fragments, macroblocks <-> fragments,
237 * superblocks <-> macroblocks
238 *
239 * Returns 0 is successful; returns 1 if *anything* went wrong.
240 */
241 static int init_block_mapping(Vp3DecodeContext *s)
242 {
243 int i, j;
244 signed int hilbert_walk_mb[4];
245
246 int current_fragment = 0;
247 int current_width = 0;
248 int current_height = 0;
249 int right_edge = 0;
250 int bottom_edge = 0;
251 int superblock_row_inc = 0;
252 int mapping_index = 0;
253
254 int current_macroblock;
255 int c_fragment;
256
257 static const signed char travel_width[16] = {
258 1, 1, 0, -1,
259 0, 0, 1, 0,
260 1, 0, 1, 0,
261 0, -1, 0, 1
262 };
263
264 static const signed char travel_height[16] = {
265 0, 0, 1, 0,
266 1, 1, 0, -1,
267 0, 1, 0, -1,
268 -1, 0, -1, 0
269 };
270
271 hilbert_walk_mb[0] = 1;
272 hilbert_walk_mb[1] = s->macroblock_width;
273 hilbert_walk_mb[2] = 1;
274 hilbert_walk_mb[3] = -s->macroblock_width;
275
276 /* iterate through each superblock (all planes) and map the fragments */
277 for (i = 0; i < s->superblock_count; i++) {
278 /* time to re-assign the limits? */
279 if (i == 0) {
280
281 /* start of Y superblocks */
282 right_edge = s->fragment_width;
283 bottom_edge = s->fragment_height;
284 current_width = -1;
285 current_height = 0;
286 superblock_row_inc = 3 * s->fragment_width -
287 (s->y_superblock_width * 4 - s->fragment_width);
288
289 /* the first operation for this variable is to advance by 1 */
290 current_fragment = -1;
291
292 } else if (i == s->u_superblock_start) {
293
294 /* start of U superblocks */
295 right_edge = s->fragment_width / 2;
296 bottom_edge = s->fragment_height / 2;
297 current_width = -1;
298 current_height = 0;
299 superblock_row_inc = 3 * (s->fragment_width / 2) -
300 (s->c_superblock_width * 4 - s->fragment_width / 2);
301
302 /* the first operation for this variable is to advance by 1 */
303 current_fragment = s->fragment_start[1] - 1;
304
305 } else if (i == s->v_superblock_start) {
306
307 /* start of V superblocks */
308 right_edge = s->fragment_width / 2;
309 bottom_edge = s->fragment_height / 2;
310 current_width = -1;
311 current_height = 0;
312 superblock_row_inc = 3 * (s->fragment_width / 2) -
313 (s->c_superblock_width * 4 - s->fragment_width / 2);
314
315 /* the first operation for this variable is to advance by 1 */
316 current_fragment = s->fragment_start[2] - 1;
317
318 }
319
320 if (current_width >= right_edge - 1) {
321 /* reset width and move to next superblock row */
322 current_width = -1;
323 current_height += 4;
324
325 /* fragment is now at the start of a new superblock row */
326 current_fragment += superblock_row_inc;
327 }
328
329 /* iterate through all 16 fragments in a superblock */
330 for (j = 0; j < 16; j++) {
331 current_fragment += travel_width[j] + right_edge * travel_height[j];
332 current_width += travel_width[j];
333 current_height += travel_height[j];
334
335 /* check if the fragment is in bounds */
336 if ((current_width < right_edge) &&
337 (current_height < bottom_edge)) {
338 s->superblock_fragments[mapping_index] = current_fragment;
339 } else {
340 s->superblock_fragments[mapping_index] = -1;
341 }
342
343 mapping_index++;
344 }
345 }
346
347 return 0; /* successful path out */
348 }
349
350 /*
351 * This function wipes out all of the fragment data.
352 */
353 static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
354 {
355 int i;
356
357 /* zero out all of the fragment information */
358 s->coded_fragment_list_index = 0;
359 for (i = 0; i < s->fragment_count; i++) {
360 s->coeff_counts[i] = 0;
361 s->all_fragments[i].motion_x = 127;
362 s->all_fragments[i].motion_y = 127;
363 s->all_fragments[i].next_coeff= NULL;
364 s->all_fragments[i].qpi = 0;
365 s->coeffs[i].index=
366 s->coeffs[i].coeff=0;
367 s->coeffs[i].next= NULL;
368 }
369 }
370
371 /*
372 * This function sets up the dequantization tables used for a particular
373 * frame.
374 */
375 static void init_dequantizer(Vp3DecodeContext *s, int qpi)
376 {
377 int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
378 int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
379 int i, plane, inter, qri, bmi, bmj, qistart;
380
381 for(inter=0; inter<2; inter++){
382 for(plane=0; plane<3; plane++){
383 int sum=0;
384 for(qri=0; qri<s->qr_count[inter][plane]; qri++){
385 sum+= s->qr_size[inter][plane][qri];
386 if(s->qps[qpi] <= sum)
387 break;
388 }
389 qistart= sum - s->qr_size[inter][plane][qri];
390 bmi= s->qr_base[inter][plane][qri ];
391 bmj= s->qr_base[inter][plane][qri+1];
392 for(i=0; i<64; i++){
393 int coeff= ( 2*(sum -s->qps[qpi])*s->base_matrix[bmi][i]
394 - 2*(qistart-s->qps[qpi])*s->base_matrix[bmj][i]
395 + s->qr_size[inter][plane][qri])
396 / (2*s->qr_size[inter][plane][qri]);
397
398 int qmin= 8<<(inter + !i);
399 int qscale= i ? ac_scale_factor : dc_scale_factor;
400
401 s->qmat[qpi][inter][plane][s->dsp.idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096);
402 }
403 // all DC coefficients use the same quant so as not to interfere with DC prediction
404 s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
405 }
406 }
407
408 memset(s->qscale_table, (FFMAX(s->qmat[0][0][0][1], s->qmat[0][0][1][1])+8)/16, 512); //FIXME finetune
409 }
410
411 /*
412 * This function initializes the loop filter boundary limits if the frame's
413 * quality index is different from the previous frame's.
414 *
415 * The filter_limit_values may not be larger than 127.
416 */
417 static void init_loop_filter(Vp3DecodeContext *s)
418 {
419 int *bounding_values= s->bounding_values_array+127;
420 int filter_limit;
421 int x;
422 int value;
423
424 filter_limit = s->filter_limit_values[s->qps[0]];
425
426 /* set up the bounding values */
427 memset(s->bounding_values_array, 0, 256 * sizeof(int));
428 for (x = 0; x < filter_limit; x++) {
429 bounding_values[-x] = -x;
430 bounding_values[x] = x;
431 }
432 for (x = value = filter_limit; x < 128 && value; x++, value--) {
433 bounding_values[ x] = value;
434 bounding_values[-x] = -value;
435 }
436 if (value)
437 bounding_values[128] = value;
438 bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
439 }
440
441 /*
442 * This function unpacks all of the superblock/macroblock/fragment coding
443 * information from the bitstream.
444 */
445 static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
446 {
447 int bit = 0;
448 int current_superblock = 0;
449 int current_run = 0;
450 int decode_fully_flags = 0;
451 int decode_partial_blocks = 0;
452 int first_c_fragment_seen;
453
454 int i, j;
455 int current_fragment;
456
457 if (s->keyframe) {
458 memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
459
460 } else {
461
462 /* unpack the list of partially-coded superblocks */
463 bit = get_bits1(gb);
464 /* toggle the bit because as soon as the first run length is
465 * fetched the bit will be toggled again */
466 bit ^= 1;
467 while (current_superblock < s->superblock_count) {
468 if (current_run-- == 0) {
469 bit ^= 1;
470 current_run = get_vlc2(gb,
471 s->superblock_run_length_vlc.table, 6, 2);
472 if (current_run == 33)
473 current_run += get_bits(gb, 12);
474
475 /* if any of the superblocks are not partially coded, flag
476 * a boolean to decode the list of fully-coded superblocks */
477 if (bit == 0) {
478 decode_fully_flags = 1;
479 } else {
480
481 /* make a note of the fact that there are partially coded
482 * superblocks */
483 decode_partial_blocks = 1;
484 }
485 }
486 s->superblock_coding[current_superblock++] = bit;
487 }
488
489 /* unpack the list of fully coded superblocks if any of the blocks were
490 * not marked as partially coded in the previous step */
491 if (decode_fully_flags) {
492
493 current_superblock = 0;
494 current_run = 0;
495 bit = get_bits1(gb);
496 /* toggle the bit because as soon as the first run length is
497 * fetched the bit will be toggled again */
498 bit ^= 1;
499 while (current_superblock < s->superblock_count) {
500
501 /* skip any superblocks already marked as partially coded */
502 if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
503
504 if (current_run-- == 0) {
505 bit ^= 1;
506 current_run = get_vlc2(gb,
507 s->superblock_run_length_vlc.table, 6, 2);
508 if (current_run == 33)
509 current_run += get_bits(gb, 12);
510 }
511 s->superblock_coding[current_superblock] = 2*bit;
512 }
513 current_superblock++;
514 }
515 }
516
517 /* if there were partial blocks, initialize bitstream for
518 * unpacking fragment codings */
519 if (decode_partial_blocks) {
520
521 current_run = 0;
522 bit = get_bits1(gb);
523 /* toggle the bit because as soon as the first run length is
524 * fetched the bit will be toggled again */
525 bit ^= 1;
526 }
527 }
528
529 /* figure out which fragments are coded; iterate through each
530 * superblock (all planes) */
531 s->coded_fragment_list_index = 0;
532 s->next_coeff= s->coeffs + s->fragment_count;
533 s->first_coded_y_fragment = s->first_coded_c_fragment = 0;
534 s->last_coded_y_fragment = s->last_coded_c_fragment = -1;
535 first_c_fragment_seen = 0;
536 memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
537 for (i = 0; i < s->superblock_count; i++) {
538
539 /* iterate through all 16 fragments in a superblock */
540 for (j = 0; j < 16; j++) {
541
542 /* if the fragment is in bounds, check its coding status */
543 current_fragment = s->superblock_fragments[i * 16 + j];
544 if (current_fragment >= s->fragment_count) {
545 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
546 current_fragment, s->fragment_count);
547 return 1;
548 }
549 if (current_fragment != -1) {
550 if (s->superblock_coding[i] == SB_NOT_CODED) {
551
552 /* copy all the fragments from the prior frame */
553 s->all_fragments[current_fragment].coding_method =
554 MODE_COPY;
555
556 } else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
557
558 /* fragment may or may not be coded; this is the case
559 * that cares about the fragment coding runs */
560 if (current_run-- == 0) {
561 bit ^= 1;
562 current_run = get_vlc2(gb,
563 s->fragment_run_length_vlc.table, 5, 2);
564 }
565
566 if (bit) {
567 /* default mode; actual mode will be decoded in
568 * the next phase */
569 s->all_fragments[current_fragment].coding_method =
570 MODE_INTER_NO_MV;
571 s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
572 s->coded_fragment_list[s->coded_fragment_list_index] =
573 current_fragment;
574 if ((current_fragment >= s->fragment_start[1]) &&
575 (s->last_coded_y_fragment == -1) &&
576 (!first_c_fragment_seen)) {
577 s->first_coded_c_fragment = s->coded_fragment_list_index;
578 s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
579 first_c_fragment_seen = 1;
580 }
581 s->coded_fragment_list_index++;
582 } else {
583 /* not coded; copy this fragment from the prior frame */
584 s->all_fragments[current_fragment].coding_method =
585 MODE_COPY;
586 }
587
588 } else {
589
590 /* fragments are fully coded in this superblock; actual
591 * coding will be determined in next step */
592 s->all_fragments[current_fragment].coding_method =
593 MODE_INTER_NO_MV;
594 s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
595 s->coded_fragment_list[s->coded_fragment_list_index] =
596 current_fragment;
597 if ((current_fragment >= s->fragment_start[1]) &&
598 (s->last_coded_y_fragment == -1) &&
599 (!first_c_fragment_seen)) {
600 s->first_coded_c_fragment = s->coded_fragment_list_index;
601 s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
602 first_c_fragment_seen = 1;
603 }
604 s->coded_fragment_list_index++;
605 }
606 }
607 }
608 }
609
610 if (!first_c_fragment_seen)
611 /* only Y fragments coded in this frame */
612 s->last_coded_y_fragment = s->coded_fragment_list_index - 1;
613 else
614 /* end the list of coded C fragments */
615 s->last_coded_c_fragment = s->coded_fragment_list_index - 1;
616
617 for (i = 0; i < s->fragment_count - 1; i++) {
618 s->fast_fragment_list[i] = i + 1;
619 }
620 s->fast_fragment_list[s->fragment_count - 1] = -1;
621
622 if (s->last_coded_y_fragment == -1)
623 s->fragment_list_y_head = -1;
624 else {
625 s->fragment_list_y_head = s->first_coded_y_fragment;
626 s->fast_fragment_list[s->last_coded_y_fragment] = -1;
627 }
628
629 if (s->last_coded_c_fragment == -1)
630 s->fragment_list_c_head = -1;
631 else {
632 s->fragment_list_c_head = s->first_coded_c_fragment;
633 s->fast_fragment_list[s->last_coded_c_fragment] = -1;
634 }
635
636 return 0;
637 }
638
639 /*
640 * This function unpacks all the coding mode data for individual macroblocks
641 * from the bitstream.
642 */
643 static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
644 {
645 int i, j, k, sb_x, sb_y;
646 int scheme;
647 int current_macroblock;
648 int current_fragment;
649 int coding_mode;
650 int custom_mode_alphabet[CODING_MODE_COUNT];
651
652 if (s->keyframe) {
653 for (i = 0; i < s->fragment_count; i++)
654 s->all_fragments[i].coding_method = MODE_INTRA;
655
656 } else {
657
658 /* fetch the mode coding scheme for this frame */
659 scheme = get_bits(gb, 3);
660
661 /* is it a custom coding scheme? */
662 if (scheme == 0) {
663 for (i = 0; i < 8; i++)
664 custom_mode_alphabet[i] = MODE_INTER_NO_MV;
665 for (i = 0; i < 8; i++)
666 custom_mode_alphabet[get_bits(gb, 3)] = i;
667 }
668
669 /* iterate through all of the macroblocks that contain 1 or more
670 * coded fragments */
671 for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
672 for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
673
674 for (j = 0; j < 4; j++) {
675 int mb_x = 2*sb_x + (j>>1);
676 int mb_y = 2*sb_y + (((j>>1)+j)&1);
677 int frags_coded = 0;
678 current_macroblock = mb_y * s->macroblock_width + mb_x;
679
680 if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height)
681 continue;
682
683 #define BLOCK_X (2*mb_x + (k&1))
684 #define BLOCK_Y (2*mb_y + (k>>1))
685 /* coding modes are only stored if the macroblock has at least one
686 * luma block coded, otherwise it must be INTER_NO_MV */
687 for (k = 0; k < 4; k++) {
688 current_fragment = BLOCK_Y*s->fragment_width + BLOCK_X;
689 if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
690 break;
691 }
692 if (k == 4) {
693 s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
694 continue;
695 }
696
697 /* mode 7 means get 3 bits for each coding mode */
698 if (scheme == 7)
699 coding_mode = get_bits(gb, 3);
700 else if(scheme == 0)
701 coding_mode = custom_mode_alphabet
702 [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
703 else
704 coding_mode = ModeAlphabet[scheme-1]
705 [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
706
707 s->macroblock_coding[current_macroblock] = coding_mode;
708 for (k = 0; k < 4; k++) {
709 current_fragment =
710 BLOCK_Y*s->fragment_width + BLOCK_X;
711 if (s->all_fragments[current_fragment].coding_method !=
712 MODE_COPY)
713 s->all_fragments[current_fragment].coding_method =
714 coding_mode;
715 }
716 for (k = 0; k < 2; k++) {
717 current_fragment = s->fragment_start[k+1] +
718 mb_y*(s->fragment_width>>1) + mb_x;
719 if (s->all_fragments[current_fragment].coding_method !=
720 MODE_COPY)
721 s->all_fragments[current_fragment].coding_method =
722 coding_mode;
723 }
724 }
725 }
726 }
727 }
728
729 return 0;
730 }
731
732 /*
733 * This function unpacks all the motion vectors for the individual
734 * macroblocks from the bitstream.
735 */
736 static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
737 {
738 int j, k, sb_x, sb_y;
739 int coding_mode;
740 int motion_x[6];
741 int motion_y[6];
742 int last_motion_x = 0;
743 int last_motion_y = 0;
744 int prior_last_motion_x = 0;
745 int prior_last_motion_y = 0;
746 int current_macroblock;
747 int current_fragment;
748
749 if (s->keyframe)
750 return 0;
751
752 memset(motion_x, 0, 6 * sizeof(int));
753 memset(motion_y, 0, 6 * sizeof(int));
754
755 /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
756 coding_mode = get_bits1(gb);
757
758 /* iterate through all of the macroblocks that contain 1 or more
759 * coded fragments */
760 for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
761 for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
762
763 for (j = 0; j < 4; j++) {
764 int mb_x = 2*sb_x + (j>>1);
765 int mb_y = 2*sb_y + (((j>>1)+j)&1);
766 current_macroblock = mb_y * s->macroblock_width + mb_x;
767
768 if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height ||
769 (s->macroblock_coding[current_macroblock] == MODE_COPY))
770 continue;
771
772 switch (s->macroblock_coding[current_macroblock]) {
773
774 case MODE_INTER_PLUS_MV:
775 case MODE_GOLDEN_MV:
776 /* all 6 fragments use the same motion vector */
777 if (coding_mode == 0) {
778 motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
779 motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
780 } else {
781 motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
782 motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
783 }
784
785 /* vector maintenance, only on MODE_INTER_PLUS_MV */
786 if (s->macroblock_coding[current_macroblock] ==
787 MODE_INTER_PLUS_MV) {
788 prior_last_motion_x = last_motion_x;
789 prior_last_motion_y = last_motion_y;
790 last_motion_x = motion_x[0];
791 last_motion_y = motion_y[0];
792 }
793 break;
794
795 case MODE_INTER_FOURMV:
796 /* vector maintenance */
797 prior_last_motion_x = last_motion_x;
798 prior_last_motion_y = last_motion_y;
799
800 /* fetch 4 vectors from the bitstream, one for each
801 * Y fragment, then average for the C fragment vectors */
802 motion_x[4] = motion_y[4] = 0;
803 for (k = 0; k < 4; k++) {
804 current_fragment = BLOCK_Y*s->fragment_width + BLOCK_X;
805 if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
806 if (coding_mode == 0) {
807 motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
808 motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
809 } else {
810 motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
811 motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
812 }
813 last_motion_x = motion_x[k];
814 last_motion_y = motion_y[k];
815 } else {
816 motion_x[k] = 0;
817 motion_y[k] = 0;
818 }
819 motion_x[4] += motion_x[k];
820 motion_y[4] += motion_y[k];
821 }
822
823 motion_x[5]=
824 motion_x[4]= RSHIFT(motion_x[4], 2);
825 motion_y[5]=
826 motion_y[4]= RSHIFT(motion_y[4], 2);
827 break;
828
829 case MODE_INTER_LAST_MV:
830 /* all 6 fragments use the last motion vector */
831 motion_x[0] = last_motion_x;
832 motion_y[0] = last_motion_y;
833
834 /* no vector maintenance (last vector remains the
835 * last vector) */
836 break;
837
838 case MODE_INTER_PRIOR_LAST:
839 /* all 6 fragments use the motion vector prior to the
840 * last motion vector */
841 motion_x[0] = prior_last_motion_x;
842 motion_y[0] = prior_last_motion_y;
843
844 /* vector maintenance */
845 prior_last_motion_x = last_motion_x;
846 prior_last_motion_y = last_motion_y;
847 last_motion_x = motion_x[0];
848 last_motion_y = motion_y[0];
849 break;
850
851 default:
852 /* covers intra, inter without MV, golden without MV */
853 motion_x[0] = 0;
854 motion_y[0] = 0;
855
856 /* no vector maintenance */
857 break;
858 }
859
860 /* assign the motion vectors to the correct fragments */
861 for (k = 0; k < 4; k++) {
862 current_fragment =
863 BLOCK_Y*s->fragment_width + BLOCK_X;
864 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
865 s->all_fragments[current_fragment].motion_x = motion_x[k];
866 s->all_fragments[current_fragment].motion_y = motion_y[k];
867 } else {
868 s->all_fragments[current_fragment].motion_x = motion_x[0];
869 s->all_fragments[current_fragment].motion_y = motion_y[0];
870 }
871 }
872 for (k = 0; k < 2; k++) {
873 current_fragment = s->fragment_start[k+1] +
874 mb_y*(s->fragment_width>>1) + mb_x;
875 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
876 s->all_fragments[current_fragment].motion_x = motion_x[k+4];
877 s->all_fragments[current_fragment].motion_y = motion_y[k+4];
878 } else {
879 s->all_fragments[current_fragment].motion_x = motion_x[0];
880 s->all_fragments[current_fragment].motion_y = motion_y[0];
881 }
882 }
883 }
884 }
885 }
886
887 return 0;
888 }
889
890 static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
891 {
892 int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
893 int num_blocks = s->coded_fragment_list_index;
894
895 for (qpi = 0; qpi < s->nqps-1 && num_blocks > 0; qpi++) {
896 i = blocks_decoded = num_blocks_at_qpi = 0;
897
898 bit = get_bits1(gb);
899
900 do {
901 run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
902 if (run_length == 34)
903 run_length += get_bits(gb, 12);
904 blocks_decoded += run_length;
905
906 if (!bit)
907 num_blocks_at_qpi += run_length;
908
909 for (j = 0; j < run_length; i++) {
910 if (i >= s->coded_fragment_list_index)
911 return -1;
912
913 if (s->all_fragments[s->coded_fragment_list[i]].qpi == qpi) {
914 s->all_fragments[s->coded_fragment_list[i]].qpi += bit;
915 j++;
916 }
917 }
918
919 if (run_length == 4129)
920 bit = get_bits1(gb);
921 else
922 bit ^= 1;
923 } while (blocks_decoded < num_blocks);
924
925 num_blocks -= num_blocks_at_qpi;
926 }
927
928 return 0;
929 }
930
931 /*
932 * This function is called by unpack_dct_coeffs() to extract the VLCs from
933 * the bitstream. The VLCs encode tokens which are used to unpack DCT
934 * data. This function unpacks all the VLCs for either the Y plane or both
935 * C planes, and is called for DC coefficients or different AC coefficient
936 * levels (since different coefficient types require different VLC tables.
937 *
938 * This function returns a residual eob run. E.g, if a particular token gave
939 * instructions to EOB the next 5 fragments and there were only 2 fragments
940 * left in the current fragment range, 3 would be returned so that it could
941 * be passed into the next call to this same function.
942 */
943 static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
944 VLC *table, int coeff_index,
945 int y_plane,
946 int eob_run)
947 {
948 int i;
949 int token;
950 int zero_run = 0;
951 DCTELEM coeff = 0;
952 Vp3Fragment *fragment;
953 int bits_to_get;
954 int next_fragment;
955 int previous_fragment;
956 int fragment_num;
957 int *list_head;
958
959 /* local references to structure members to avoid repeated deferences */
960 uint8_t *perm= s->scantable.permutated;
961 int *coded_fragment_list = s->coded_fragment_list;
962 Vp3Fragment *all_fragments = s->all_fragments;
963 uint8_t *coeff_counts = s->coeff_counts;
964 VLC_TYPE (*vlc_table)[2] = table->table;
965 int *fast_fragment_list = s->fast_fragment_list;
966
967 if (y_plane) {
968 next_fragment = s->fragment_list_y_head;
969 list_head = &s->fragment_list_y_head;
970 } else {
971 next_fragment = s->fragment_list_c_head;
972 list_head = &s->fragment_list_c_head;
973 }
974
975 i = next_fragment;
976 previous_fragment = -1; /* this indicates that the previous fragment is actually the list head */
977 while (i != -1) {
978 fragment_num = coded_fragment_list[i];
979
980 if (coeff_counts[fragment_num] > coeff_index) {
981 previous_fragment = i;
982 i = fast_fragment_list[i];
983 continue;
984 }
985 fragment = &all_fragments[fragment_num];
986
987 if (!eob_run) {
988 /* decode a VLC into a token */
989 token = get_vlc2(gb, vlc_table, 5, 3);
990 /* use the token to get a zero run, a coefficient, and an eob run */
991 if (token <= 6) {
992 eob_run = eob_run_base[token];
993 if (eob_run_get_bits[token])
994 eob_run += get_bits(gb, eob_run_get_bits[token]);
995 coeff = zero_run = 0;
996 } else {
997 bits_to_get = coeff_get_bits[token];
998 if (bits_to_get)
999 bits_to_get = get_bits(gb, bits_to_get);
1000 coeff = coeff_tables[token][bits_to_get];
1001
1002 zero_run = zero_run_base[token];
1003 if (zero_run_get_bits[token])
1004 zero_run += get_bits(gb, zero_run_get_bits[token]);
1005 }
1006 }
1007
1008 if (!eob_run) {
1009 coeff_counts[fragment_num] += zero_run;
1010 if (coeff_counts[fragment_num] < 64){
1011 fragment->next_coeff->coeff= coeff;
1012 fragment->next_coeff->index= perm[coeff_counts[fragment_num]++]; //FIXME perm here already?
1013 fragment->next_coeff->next= s->next_coeff;
1014 s->next_coeff->next=NULL;
1015 fragment->next_coeff= s->next_coeff++;
1016 }
1017 /* previous fragment is now this fragment */
1018 previous_fragment = i;
1019 } else {
1020 coeff_counts[fragment_num] |= 128;
1021 eob_run--;
1022 /* remove this fragment from the list */
1023 if (previous_fragment != -1)
1024 fast_fragment_list[previous_fragment] = fast_fragment_list[i];
1025 else
1026 *list_head = fast_fragment_list[i];
1027 /* previous fragment remains unchanged */
1028 }
1029
1030 i = fast_fragment_list[i];
1031 }
1032
1033 return eob_run;
1034 }
1035
1036 static void reverse_dc_prediction(Vp3DecodeContext *s,
1037 int first_fragment,
1038 int fragment_width,
1039 int fragment_height);
1040 /*
1041 * This function unpacks all of the DCT coefficient data from the
1042 * bitstream.
1043 */
1044 static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1045 {
1046 int i;
1047 int dc_y_table;
1048 int dc_c_table;
1049 int ac_y_table;
1050 int ac_c_table;
1051 int residual_eob_run = 0;
1052 VLC *y_tables[64];
1053 VLC *c_tables[64];
1054
1055 /* fetch the DC table indexes */
1056 dc_y_table = get_bits(gb, 4);
1057 dc_c_table = get_bits(gb, 4);
1058
1059 /* unpack the Y plane DC coefficients */
1060 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1061 1, residual_eob_run);
1062
1063 /* reverse prediction of the Y-plane DC coefficients */
1064 reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
1065
1066 /* unpack the C plane DC coefficients */
1067 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1068 0, residual_eob_run);
1069
1070 /* reverse prediction of the C-plane DC coefficients */
1071 if (!(s->avctx->flags & CODEC_FLAG_GRAY))
1072 {
1073 reverse_dc_prediction(s, s->fragment_start[1],
1074 s->fragment_width / 2, s->fragment_height / 2);
1075 reverse_dc_prediction(s, s->fragment_start[2],
1076 s->fragment_width / 2, s->fragment_height / 2);
1077 }
1078
1079 /* fetch the AC table indexes */
1080 ac_y_table = get_bits(gb, 4);
1081 ac_c_table = get_bits(gb, 4);
1082
1083 /* build tables of AC VLC tables */
1084 for (i = 1; i <= 5; i++) {
1085 y_tables[i] = &s->ac_vlc_1[ac_y_table];
1086 c_tables[i] = &s->ac_vlc_1[ac_c_table];
1087 }
1088 for (i = 6; i <= 14; i++) {
1089 y_tables[i] = &s->ac_vlc_2[ac_y_table];
1090 c_tables[i] = &s->ac_vlc_2[ac_c_table];
1091 }
1092 for (i = 15; i <= 27; i++) {
1093 y_tables[i] = &s->ac_vlc_3[ac_y_table];
1094 c_tables[i] = &s->ac_vlc_3[ac_c_table];
1095 }
1096 for (i = 28; i <= 63; i++) {
1097 y_tables[i] = &s->ac_vlc_4[ac_y_table];
1098 c_tables[i] = &s->ac_vlc_4[ac_c_table];
1099 }
1100
1101 /* decode all AC coefficents */
1102 for (i = 1; i <= 63; i++) {
1103 if (s->fragment_list_y_head != -1)
1104 residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
1105 1, residual_eob_run);
1106
1107 if (s->fragment_list_c_head != -1)
1108 residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1109 0, residual_eob_run);
1110 }
1111
1112 return 0;
1113 }
1114
1115 /*
1116 * This function reverses the DC prediction for each coded fragment in
1117 * the frame. Much of this function is adapted directly from the original
1118 * VP3 source code.
1119 */
1120 #define COMPATIBLE_FRAME(x) \
1121 (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1122 #define DC_COEFF(u) (s->coeffs[u].index ? 0 : s->coeffs[u].coeff) //FIXME do somethin to simplify this
1123
1124 static void reverse_dc_prediction(Vp3DecodeContext *s,
1125 int first_fragment,
1126 int fragment_width,
1127 int fragment_height)
1128 {
1129
1130 #define PUL 8
1131 #define PU 4
1132 #define PUR 2
1133 #define PL 1
1134
1135 int x, y;
1136 int i = first_fragment;
1137
1138 int predicted_dc;
1139
1140 /* DC values for the left, up-left, up, and up-right fragments */
1141 int vl, vul, vu, vur;
1142
1143 /* indexes for the left, up-left, up, and up-right fragments */
1144 int l, ul, u, ur;
1145
1146 /*
1147 * The 6 fields mean:
1148 * 0: up-left multiplier
1149 * 1: up multiplier
1150 * 2: up-right multiplier
1151 * 3: left multiplier
1152 */
1153 static const int predictor_transform[16][4] = {
1154 { 0, 0, 0, 0},
1155 { 0, 0, 0,128}, // PL
1156 { 0, 0,128, 0}, // PUR
1157 { 0, 0, 53, 75}, // PUR|PL
1158 { 0,128, 0, 0}, // PU
1159 { 0, 64, 0, 64}, // PU|PL
1160 { 0,128, 0, 0}, // PU|PUR
1161 { 0, 0, 53, 75}, // PU|PUR|PL
1162 {128, 0, 0, 0}, // PUL
1163 { 0, 0, 0,128}, // PUL|PL
1164 { 64, 0, 64, 0}, // PUL|PUR
1165 { 0, 0, 53, 75}, // PUL|PUR|PL
1166 { 0,128, 0, 0}, // PUL|PU
1167 {-104,116, 0,116}, // PUL|PU|PL
1168 { 24, 80, 24, 0}, // PUL|PU|PUR
1169 {-104,116, 0,116} // PUL|PU|PUR|PL
1170 };
1171
1172 /* This table shows which types of blocks can use other blocks for
1173 * prediction. For example, INTRA is the only mode in this table to
1174 * have a frame number of 0. That means INTRA blocks can only predict
1175 * from other INTRA blocks. There are 2 golden frame coding types;
1176 * blocks encoding in these modes can only predict from other blocks
1177 * that were encoded with these 1 of these 2 modes. */
1178 static const unsigned char compatible_frame[9] = {
1179 1, /* MODE_INTER_NO_MV */
1180 0, /* MODE_INTRA */
1181 1, /* MODE_INTER_PLUS_MV */
1182 1, /* MODE_INTER_LAST_MV */
1183 1, /* MODE_INTER_PRIOR_MV */
1184 2, /* MODE_USING_GOLDEN */
1185 2, /* MODE_GOLDEN_MV */
1186 1, /* MODE_INTER_FOUR_MV */
1187 3 /* MODE_COPY */
1188 };
1189 int current_frame_type;
1190
1191 /* there is a last DC predictor for each of the 3 frame types */
1192 short last_dc[3];
1193
1194 int transform = 0;
1195
1196 vul = vu = vur = vl = 0;
1197 last_dc[0] = last_dc[1] = last_dc[2] = 0;
1198
1199 /* for each fragment row... */
1200 for (y = 0; y < fragment_height; y++) {
1201
1202 /* for each fragment in a row... */
1203 for (x = 0; x < fragment_width; x++, i++) {
1204
1205 /* reverse prediction if this block was coded */
1206 if (s->all_fragments[i].coding_method != MODE_COPY) {
1207
1208 current_frame_type =
1209 compatible_frame[s->all_fragments[i].coding_method];
1210
1211 transform= 0;
1212 if(x){
1213 l= i-1;
1214 vl = DC_COEFF(l);
1215 if(COMPATIBLE_FRAME(l))
1216 transform |= PL;
1217 }
1218 if(y){
1219 u= i-fragment_width;
1220 vu = DC_COEFF(u);
1221 if(COMPATIBLE_FRAME(u))
1222 transform |= PU;
1223 if(x){
1224 ul= i-fragment_width-1;
1225 vul = DC_COEFF(ul);
1226 if(COMPATIBLE_FRAME(ul))
1227 transform |= PUL;
1228 }
1229 if(x + 1 < fragment_width){
1230 ur= i-fragment_width+1;
1231 vur = DC_COEFF(ur);
1232 if(COMPATIBLE_FRAME(ur))
1233 transform |= PUR;
1234 }
1235 }
1236
1237 if (transform == 0) {
1238
1239 /* if there were no fragments to predict from, use last
1240 * DC saved */
1241 predicted_dc = last_dc[current_frame_type];
1242 } else {
1243
1244 /* apply the appropriate predictor transform */
1245 predicted_dc =
1246 (predictor_transform[transform][0] * vul) +
1247 (predictor_transform[transform][1] * vu) +
1248 (predictor_transform[transform][2] * vur) +
1249 (predictor_transform[transform][3] * vl);
1250
1251 predicted_dc /= 128;
1252
1253 /* check for outranging on the [ul u l] and
1254 * [ul u ur l] predictors */
1255 if ((transform == 15) || (transform == 13)) {
1256 if (FFABS(predicted_dc - vu) > 128)
1257 predicted_dc = vu;
1258 else if (FFABS(predicted_dc - vl) > 128)
1259 predicted_dc = vl;
1260 else if (FFABS(predicted_dc - vul) > 128)
1261 predicted_dc = vul;
1262 }
1263 }
1264
1265 /* at long last, apply the predictor */
1266 if(s->coeffs[i].index){
1267 *s->next_coeff= s->coeffs[i];
1268 s->coeffs[i].index=0;
1269 s->coeffs[i].coeff=0;
1270 s->coeffs[i].next= s->next_coeff++;
1271 }
1272 s->coeffs[i].coeff += predicted_dc;
1273 /* save the DC */
1274 last_dc[current_frame_type] = DC_COEFF(i);
1275 if(DC_COEFF(i) && !(s->coeff_counts[i]&127)){
1276 s->coeff_counts[i]= 129;
1277 // s->all_fragments[i].next_coeff= s->next_coeff;
1278 s->coeffs[i].next= s->next_coeff;
1279 (s->next_coeff++)->next=NULL;
1280 }
1281 }
1282 }
1283 }
1284 }
1285
1286 static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend)
1287 {
1288 int x, y;
1289 int *bounding_values= s->bounding_values_array+127;
1290
1291 int width = s->fragment_width >> !!plane;
1292 int height = s->fragment_height >> !!plane;
1293 int fragment = s->fragment_start [plane] + ystart * width;
1294 int stride = s->current_frame.linesize[plane];
1295 uint8_t *plane_data = s->current_frame.data [plane];
1296 if (!s->flipped_image) stride = -stride;
1297 plane_data += s->data_offset[plane] + 8*ystart*stride;
1298
1299 for (y = ystart; y < yend; y++) {
1300
1301 for (x = 0; x < width; x++) {
1302 /* This code basically just deblocks on the edges of coded blocks.
1303 * However, it has to be much more complicated because of the
1304 * braindamaged deblock ordering used in VP3/Theora. Order matters
1305 * because some pixels get filtered twice. */
1306 if( s->all_fragments[fragment].coding_method != MODE_COPY )
1307 {
1308 /* do not perform left edge filter for left columns frags */
1309 if (x > 0) {
1310 s->dsp.vp3_h_loop_filter(
1311 plane_data + 8*x,
1312 stride, bounding_values);
1313 }
1314
1315 /* do not perform top edge filter for top row fragments */
1316 if (y > 0) {
1317 s->dsp.vp3_v_loop_filter(
1318 plane_data + 8*x,
1319 stride, bounding_values);
1320 }
1321
1322 /* do not perform right edge filter for right column
1323 * fragments or if right fragment neighbor is also coded
1324 * in this frame (it will be filtered in next iteration) */
1325 if ((x < width - 1) &&
1326 (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1327 s->dsp.vp3_h_loop_filter(
1328 plane_data + 8*x + 8,
1329 stride, bounding_values);
1330 }
1331
1332 /* do not perform bottom edge filter for bottom row
1333 * fragments or if bottom fragment neighbor is also coded
1334 * in this frame (it will be filtered in the next row) */
1335 if ((y < height - 1) &&
1336 (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1337 s->dsp.vp3_v_loop_filter(
1338 plane_data + 8*x + 8*stride,
1339 stride, bounding_values);
1340 }
1341 }
1342
1343 fragment++;
1344 }
1345 plane_data += 8*stride;
1346 }
1347 }
1348
1349 /**
1350 * called when all pixels up to row y are complete
1351 */
1352 static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
1353 {
1354 int h, cy;
1355 int offset[4];
1356
1357 if(s->avctx->draw_horiz_band==NULL)
1358 return;
1359
1360 h= y - s->last_slice_end;
1361 y -= h;
1362
1363 if (!s->flipped_image) {
1364 if (y == 0)
1365 h -= s->height - s->avctx->height; // account for non-mod16
1366 y = s->height - y - h;
1367 }
1368
1369 cy = y >> 1;
1370 offset[0] = s->current_frame.linesize[0]*y;
1371 offset[1] = s->current_frame.linesize[1]*cy;
1372 offset[2] = s->current_frame.linesize[2]*cy;
1373 offset[3] = 0;
1374
1375 emms_c();
1376 s->avctx->draw_horiz_band(s->avctx, &s->current_frame, offset, y, 3, h);
1377 s->last_slice_end= y + h;
1378 }
1379
1380 /*
1381 * Perform the final rendering for a particular slice of data.
1382 * The slice number ranges from 0..(macroblock_height - 1).
1383 */
1384 static void render_slice(Vp3DecodeContext *s, int slice)
1385 {
1386 int x;
1387 int16_t *dequantizer;
1388 DECLARE_ALIGNED_16(DCTELEM, block)[64];
1389 int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1390 int motion_halfpel_index;
1391 uint8_t *motion_source;
1392 int plane;
1393
1394 if (slice >= s->macroblock_height)
1395 return;
1396
1397 for (plane = 0; plane < 3; plane++) {
1398 uint8_t *output_plane = s->current_frame.data [plane] + s->data_offset[plane];
1399 uint8_t * last_plane = s-> last_frame.data [plane] + s->data_offset[plane];
1400 uint8_t *golden_plane = s-> golden_frame.data [plane] + s->data_offset[plane];
1401 int stride = s->current_frame.linesize[plane];
1402 int plane_width = s->width >> !!plane;
1403 int plane_height = s->height >> !!plane;
1404 int y = slice * FRAGMENT_PIXELS << !plane ;
1405 int slice_height = y + (FRAGMENT_PIXELS << !plane);
1406 int i = s->fragment_start[plane] + (y>>3)*(s->fragment_width>>!!plane);
1407
1408 if (!s->flipped_image) stride = -stride;
1409
1410
1411 if(FFABS(stride) > 2048)
1412 return; //various tables are fixed size
1413
1414 /* for each fragment row in the slice (both of them)... */
1415 for (; y < slice_height; y += 8) {
1416
1417 /* for each fragment in a row... */
1418 for (x = 0; x < plane_width; x += 8, i++) {
1419 int first_pixel = y*stride + x;
1420
1421 if ((i < 0) || (i >= s->fragment_count)) {
1422 av_log(s->avctx, AV_LOG_ERROR, " vp3:render_slice(): bad fragment number (%d)\n", i);
1423 return;
1424 }
1425
1426 /* transform if this block was coded */
1427 if ((s->all_fragments[i].coding_method != MODE_COPY) &&
1428 !((s->avctx->flags & CODEC_FLAG_GRAY) && plane)) {
1429
1430 if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
1431 (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
1432 motion_source= golden_plane;
1433 else
1434 motion_source= last_plane;
1435
1436 motion_source += first_pixel;
1437 motion_halfpel_index = 0;
1438
1439 /* sort out the motion vector if this fragment is coded
1440 * using a motion vector method */
1441 if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1442 (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
1443 int src_x, src_y;
1444 motion_x = s->all_fragments[i].motion_x;
1445 motion_y = s->all_fragments[i].motion_y;
1446 if(plane){
1447 motion_x= (motion_x>>1) | (motion_x&1);
1448 motion_y= (motion_y>>1) | (motion_y&1);
1449 }
1450
1451 src_x= (motion_x>>1) + x;
1452 src_y= (motion_y>>1) + y;
1453 if ((motion_x == 127) || (motion_y == 127))
1454 av_log(s->avctx, AV_LOG_ERROR, " help! got invalid motion vector! (%X, %X)\n", motion_x, motion_y);
1455
1456 motion_halfpel_index = motion_x & 0x01;
1457 motion_source += (motion_x >> 1);
1458
1459 motion_halfpel_index |= (motion_y & 0x01) << 1;
1460 motion_source += ((motion_y >> 1) * stride);
1461
1462 if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
1463 uint8_t *temp= s->edge_emu_buffer;
1464 if(stride<0) temp -= 9*stride;
1465 else temp += 9*stride;
1466
1467 ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
1468 motion_source= temp;
1469 }
1470 }
1471
1472
1473 /* first, take care of copying a block from either the
1474 * previous or the golden frame */
1475 if (s->all_fragments[i].coding_method != MODE_INTRA) {
1476 /* Note, it is possible to implement all MC cases with
1477 put_no_rnd_pixels_l2 which would look more like the
1478 VP3 source but this would be slower as
1479 put_no_rnd_pixels_tab is better optimzed */
1480 if(motion_halfpel_index != 3){
1481 s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1482 output_plane + first_pixel,
1483 motion_source, stride, 8);
1484 }else{
1485 int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
1486 s->dsp.put_no_rnd_pixels_l2[1](
1487 output_plane + first_pixel,
1488 motion_source - d,
1489 motion_source + stride + 1 + d,
1490 stride, 8);
1491 }
1492 dequantizer = s->qmat[s->all_fragments[i].qpi][1][plane];
1493 }else{
1494 dequantizer = s->qmat[s->all_fragments[i].qpi][0][plane];
1495 }
1496
1497 /* dequantize the DCT coefficients */
1498 if(s->avctx->idct_algo==FF_IDCT_VP3){
1499 Coeff *coeff= s->coeffs + i;
1500 s->dsp.clear_block(block);
1501 while(coeff->next){
1502 block[coeff->index]= coeff->coeff * dequantizer[coeff->index];
1503 coeff= coeff->next;
1504 }
1505 }else{
1506 Coeff *coeff= s->coeffs + i;
1507 s->dsp.clear_block(block);
1508 while(coeff->next){
1509 block[coeff->index]= (coeff->coeff * dequantizer[coeff->index] + 2)>>2;
1510 coeff= coeff->next;
1511 }
1512 }
1513
1514 /* invert DCT and place (or add) in final output */
1515
1516 if (s->all_fragments[i].coding_method == MODE_INTRA) {
1517 if(s->avctx->idct_algo!=FF_IDCT_VP3)
1518 block[0] += 128<<3;
1519 s->dsp.idct_put(
1520 output_plane + first_pixel,
1521 stride,
1522 block);
1523 } else {
1524 s->dsp.idct_add(
1525 output_plane + first_pixel,
1526 stride,
1527 block);
1528 }
1529 } else {
1530
1531 /* copy directly from the previous frame */
1532 s->dsp.put_pixels_tab[1][0](
1533 output_plane + first_pixel,
1534 last_plane + first_pixel,
1535 stride, 8);
1536
1537 }
1538 }
1539 // Filter the previous block row. We can't filter the current row yet
1540 // since it needs pixels from the next row
1541 if (y > 0)
1542 apply_loop_filter(s, plane, (y>>3)-1, (y>>3));
1543 }
1544 }
1545
1546 /* this looks like a good place for slice dispatch... */
1547 /* algorithm:
1548 * if (slice == s->macroblock_height - 1)
1549 * dispatch (both last slice & 2nd-to-last slice);
1550 * else if (slice > 0)
1551 * dispatch (slice - 1);
1552 */
1553
1554 // now that we've filtered the last rows, they're safe to display
1555 if (slice)
1556 vp3_draw_horiz_band(s, 16*slice);
1557 }
1558
1559 /*
1560 * This is the ffmpeg/libavcodec API init function.
1561 */
1562 static av_cold int vp3_decode_init(AVCodecContext *avctx)
1563 {
1564 Vp3DecodeContext *s = avctx->priv_data;
1565 int i, inter, plane;
1566 int c_width;
1567 int c_height;
1568 int y_superblock_count;
1569 int c_superblock_count;
1570
1571 if (avctx->codec_tag == MKTAG('V','P','3','0'))
1572 s->version = 0;
1573 else
1574 s->version = 1;
1575
1576 s->avctx = avctx;
1577 s->width = FFALIGN(avctx->width, 16);
1578 s->height = FFALIGN(avctx->height, 16);
1579 avctx->pix_fmt = PIX_FMT_YUV420P;
1580 avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
1581 if(avctx->idct_algo==FF_IDCT_AUTO)
1582 avctx->idct_algo=FF_IDCT_VP3;
1583 dsputil_init(&s->dsp, avctx);
1584
1585 ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
1586
1587 /* initialize to an impossible value which will force a recalculation
1588 * in the first frame decode */
1589 for (i = 0; i < 3; i++)
1590 s->qps[i] = -1;
1591
1592 s->y_superblock_width = (s->width + 31) / 32;
1593 s->y_superblock_height = (s->height + 31) / 32;
1594 y_superblock_count = s->y_superblock_width * s->y_superblock_height;
1595
1596 /* work out the dimensions for the C planes */
1597 c_width = s->width / 2;
1598 c_height = s->height / 2;
1599 s->c_superblock_width = (c_width + 31) / 32;
1600 s->c_superblock_height = (c_height + 31) / 32;
1601 c_superblock_count = s->c_superblock_width * s->c_superblock_height;
1602
1603 s->superblock_count = y_superblock_count + (c_superblock_count * 2);
1604 s->u_superblock_start = y_superblock_count;
1605 s->v_superblock_start = s->u_superblock_start + c_superblock_count;
1606 s->superblock_coding = av_malloc(s->superblock_count);
1607
1608 s->macroblock_width = (s->width + 15) / 16;
1609 s->macroblock_height = (s->height + 15) / 16;
1610 s->macroblock_count = s->macroblock_width * s->macroblock_height;
1611
1612 s->fragment_width = s->width / FRAGMENT_PIXELS;
1613 s->fragment_height = s->height / FRAGMENT_PIXELS;
1614
1615 /* fragment count covers all 8x8 blocks for all 3 planes */
1616 s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
1617 s->fragment_start[1] = s->fragment_width * s->fragment_height;
1618 s->fragment_start[2] = s->fragment_width * s->fragment_height * 5 / 4;
1619
1620 s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
1621 s->coeff_counts = av_malloc(s->fragment_count * sizeof(*s->coeff_counts));
1622 s->coeffs = av_malloc(s->fragment_count * sizeof(Coeff) * 65);
1623 s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int));
1624 s->fast_fragment_list = av_malloc(s->fragment_count * sizeof(int));
1625 if (!s->superblock_coding || !s->all_fragments || !s->coeff_counts ||
1626 !s->coeffs || !s->coded_fragment_list || !s->fast_fragment_list) {
1627 vp3_decode_end(avctx);
1628 return -1;
1629 }
1630
1631 if (!s->theora_tables)
1632 {
1633 for (i = 0; i < 64; i++) {
1634 s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
1635 s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
1636 s->base_matrix[0][i] = vp31_intra_y_dequant[i];
1637 s->base_matrix[1][i] = vp31_intra_c_dequant[i];
1638 s->base_matrix[2][i] = vp31_inter_dequant[i];
1639 s->filter_limit_values[i] = vp31_filter_limit_values[i];
1640 }
1641
1642 for(inter=0; inter<2; inter++){
1643 for(plane=0; plane<3; plane++){
1644 s->qr_count[inter][plane]= 1;
1645 s->qr_size [inter][plane][0]= 63;
1646 s->qr_base [inter][plane][0]=
1647 s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
1648 }
1649 }
1650
1651 /* init VLC tables */
1652 for (i = 0; i < 16; i++) {
1653
1654 /* DC histograms */
1655 init_vlc(&s->dc_vlc[i], 5, 32,
1656 &dc_bias[i][0][1], 4, 2,
1657 &dc_bias[i][0][0], 4, 2, 0);
1658
1659 /* group 1 AC histograms */
1660 init_vlc(&s->ac_vlc_1[i], 5, 32,
1661 &ac_bias_0[i][0][1], 4, 2,
1662 &ac_bias_0[i][0][0], 4, 2, 0);
1663
1664 /* group 2 AC histograms */
1665 init_vlc(&s->ac_vlc_2[i], 5, 32,
1666 &ac_bias_1[i][0][1], 4, 2,
1667 &ac_bias_1[i][0][0], 4, 2, 0);
1668
1669 /* group 3 AC histograms */
1670 init_vlc(&s->ac_vlc_3[i], 5, 32,
1671 &ac_bias_2[i][0][1], 4, 2,
1672 &ac_bias_2[i][0][0], 4, 2, 0);
1673
1674 /* group 4 AC histograms */
1675 init_vlc(&s->ac_vlc_4[i], 5, 32,
1676 &ac_bias_3[i][0][1], 4, 2,
1677 &ac_bias_3[i][0][0], 4, 2, 0);
1678 }
1679 } else {
1680 for (i = 0; i < 16; i++) {
1681
1682 /* DC histograms */
1683 if (init_vlc(&s->dc_vlc[i], 5, 32,
1684 &s->huffman_table[i][0][1], 4, 2,
1685 &s->huffman_table[i][0][0], 4, 2, 0) < 0)
1686 goto vlc_fail;
1687
1688 /* group 1 AC histograms */
1689 if (init_vlc(&s->ac_vlc_1[i], 5, 32,
1690 &s->huffman_table[i+16][0][1], 4, 2,
1691 &s->huffman_table[i+16][0][0], 4, 2, 0) < 0)
1692 goto vlc_fail;
1693
1694 /* group 2 AC histograms */
1695 if (init_vlc(&s->ac_vlc_2[i], 5, 32,
1696 &s->huffman_table[i+16*2][0][1], 4, 2,
1697 &s->huffman_table[i+16*2][0][0], 4, 2, 0) < 0)
1698 goto vlc_fail;
1699
1700 /* group 3 AC histograms */
1701 if (init_vlc(&s->ac_vlc_3[i], 5, 32,
1702 &s->huffman_table[i+16*3][0][1], 4, 2,
1703 &s->huffman_table[i+16*3][0][0], 4, 2, 0) < 0)
1704 goto vlc_fail;
1705
1706 /* group 4 AC histograms */
1707 if (init_vlc(&s->ac_vlc_4[i], 5, 32,
1708 &s->huffman_table[i+16*4][0][1], 4, 2,
1709 &s->huffman_table[i+16*4][0][0], 4, 2, 0) < 0)
1710 goto vlc_fail;
1711 }
1712 }
1713
1714 init_vlc(&s->superblock_run_length_vlc, 6, 34,
1715 &superblock_run_length_vlc_table[0][1], 4, 2,
1716 &superblock_run_length_vlc_table[0][0], 4, 2, 0);
1717
1718 init_vlc(&s->fragment_run_length_vlc, 5, 30,
1719 &fragment_run_length_vlc_table[0][1], 4, 2,
1720 &fragment_run_length_vlc_table[0][0], 4, 2, 0);
1721
1722 init_vlc(&s->mode_code_vlc, 3, 8,
1723 &mode_code_vlc_table[0][1], 2, 1,
1724 &mode_code_vlc_table[0][0], 2, 1, 0);
1725
1726 init_vlc(&s->motion_vector_vlc, 6, 63,
1727 &motion_vector_vlc_table[0][1], 2, 1,
1728 &motion_vector_vlc_table[0][0], 2, 1, 0);
1729
1730 /* work out the block mapping tables */
1731 s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
1732 s->macroblock_coding = av_malloc(s->macroblock_count + 1);
1733 if (!s->superblock_fragments || !s->macroblock_coding) {
1734 vp3_decode_end(avctx);
1735 return -1;
1736 }
1737 init_block_mapping(s);
1738
1739 for (i = 0; i < 3; i++) {
1740 s->current_frame.data[i] = NULL;
1741 s->last_frame.data[i] = NULL;
1742 s->golden_frame.data[i] = NULL;
1743 }
1744
1745 return 0;
1746
1747 vlc_fail:
1748 av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
1749 return -1;
1750 }
1751
1752 /*
1753 * This is the ffmpeg/libavcodec API frame decode function.
1754 */
1755 static int vp3_decode_frame(AVCodecContext *avctx,
1756 void *data, int *data_size,
1757 AVPacket *avpkt)
1758 {
1759 const uint8_t *buf = avpkt->data;
1760 int buf_size = avpkt->size;
1761 Vp3DecodeContext *s = avctx->priv_data;
1762 GetBitContext gb;
1763 static int counter = 0;
1764 int i;
1765
1766 init_get_bits(&gb, buf, buf_size * 8);
1767
1768 if (s->theora && get_bits1(&gb))
1769 {
1770 av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
1771 return -1;
1772 }
1773
1774 s->keyframe = !get_bits1(&gb);
1775 if (!s->theora)
1776 skip_bits(&gb, 1);
1777 for (i = 0; i < 3; i++)
1778 s->last_qps[i] = s->qps[i];
1779
1780 s->nqps=0;
1781 do{
1782 s->qps[s->nqps++]= get_bits(&gb, 6);
1783 } while(s->theora >= 0x030200 && s->nqps<3 && get_bits1(&gb));
1784 for (i = s->nqps; i < 3; i++)
1785 s->qps[i] = -1;
1786
1787 if (s->avctx->debug & FF_DEBUG_PICT_INFO)
1788 av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
1789 s->keyframe?"key":"", counter, s->qps[0]);
1790 counter++;
1791
1792 if (s->qps[0] != s->last_qps[0])
1793 init_loop_filter(s);
1794
1795 for (i = 0; i < s->nqps; i++)
1796 // reinit all dequantizers if the first one changed, because
1797 // the DC of the first quantizer must be used for all matrices
1798 if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
1799 init_dequantizer(s, i);
1800
1801 if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
1802 return buf_size;
1803
1804 if (s->keyframe) {
1805 if (!s->theora)
1806 {
1807 skip_bits(&gb, 4); /* width code */
1808 skip_bits(&gb, 4); /* height code */
1809 if (s->version)
1810 {
1811 s->version = get_bits(&gb, 5);
1812 if (counter == 1)
1813 av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
1814 }
1815 }
1816 if (s->version || s->theora)
1817 {
1818 if (get_bits1(&gb))
1819 av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
1820 skip_bits(&gb, 2); /* reserved? */
1821 }
1822
1823 if (s->last_frame.data[0] == s->golden_frame.data[0]) {
1824 if (s->golden_frame.data[0])
1825 avctx->release_buffer(avctx, &s->golden_frame);
1826 s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */
1827 } else {
1828 if (s->golden_frame.data[0])
1829 avctx->release_buffer(avctx, &s->golden_frame);
1830 if (s->last_frame.data[0])
1831 avctx->release_buffer(avctx, &s->last_frame);
1832 }
1833
1834 s->golden_frame.reference = 3;
1835 if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
1836 av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
1837 return -1;
1838 }
1839
1840 /* golden frame is also the current frame */
1841 s->current_frame= s->golden_frame;
1842 } else {
1843 /* allocate a new current frame */
1844 s->current_frame.reference = 3;
1845 if (!s->golden_frame.data[0]) {
1846 av_log(s->avctx, AV_LOG_ERROR, "vp3: first frame not a keyframe\n");
1847 return -1;
1848 }
1849 if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
1850 av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
1851 return -1;
1852 }
1853 }
1854
1855 s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
1856 s->current_frame.qstride= 0;
1857
1858 init_frame(s, &gb);
1859
1860 if (unpack_superblocks(s, &gb)){
1861 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
1862 return -1;
1863 }
1864 if (unpack_modes(s, &gb)){
1865 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
1866 return -1;
1867 }
1868 if (unpack_vectors(s, &gb)){
1869 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
1870 return -1;
1871 }
1872 if (unpack_block_qpis(s, &gb)){
1873 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
1874 return -1;
1875 }
1876 if (unpack_dct_coeffs(s, &gb)){
1877 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
1878 return -1;
1879 }
1880
1881 for (i = 0; i < 3; i++) {
1882 if (s->flipped_image)
1883 s->data_offset[i] = 0;
1884 else
1885 s->data_offset[i] = ((s->height>>!!i)-1) * s->current_frame.linesize[i];
1886 }
1887
1888 s->last_slice_end = 0;
1889 for (i = 0; i < s->macroblock_height; i++)
1890 render_slice(s, i);
1891
1892 // filter the last row
1893 for (i = 0; i < 3; i++) {
1894 int row = (s->height >> (3+!!i)) - 1;
1895 apply_loop_filter(s, i, row, row+1);
1896 }
1897 vp3_draw_horiz_band(s, s->height);
1898
1899 *data_size=sizeof(AVFrame);
1900 *(AVFrame*)data= s->current_frame;
1901
1902 /* release the last frame, if it is allocated and if it is not the
1903 * golden frame */
1904 if ((s->last_frame.data[0]) &&
1905 (s->last_frame.data[0] != s->golden_frame.data[0]))
1906 avctx->release_buffer(avctx, &s->last_frame);
1907
1908 /* shuffle frames (last = current) */
1909 s->last_frame= s->current_frame;
1910 s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
1911
1912 return buf_size;
1913 }
1914
1915 /*
1916 * This is the ffmpeg/libavcodec API module cleanup function.
1917 */
1918 static av_cold int vp3_decode_end(AVCodecContext *avctx)
1919 {
1920 Vp3DecodeContext *s = avctx->priv_data;
1921 int i;
1922
1923 av_free(s->superblock_coding);
1924 av_free(s->all_fragments);
1925 av_free(s->coeff_counts);
1926 av_free(s->coeffs);
1927 av_free(s->coded_fragment_list);
1928 av_free(s->fast_fragment_list);
1929 av_free(s->superblock_fragments);
1930 av_free(s->macroblock_coding);
1931
1932 for (i = 0; i < 16; i++) {
1933 free_vlc(&s->dc_vlc[i]);
1934 free_vlc(&s->ac_vlc_1[i]);
1935 free_vlc(&s->ac_vlc_2[i]);
1936 free_vlc(&s->ac_vlc_3[i]);
1937 free_vlc(&s->ac_vlc_4[i]);
1938 }
1939
1940 free_vlc(&s->superblock_run_length_vlc);
1941 free_vlc(&s->fragment_run_length_vlc);
1942 free_vlc(&s->mode_code_vlc);
1943 free_vlc(&s->motion_vector_vlc);
1944
1945 /* release all frames */
1946 if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0])
1947 avctx->release_buffer(avctx, &s->golden_frame);
1948 if (s->last_frame.data[0])
1949 avctx->release_buffer(avctx, &s->last_frame);
1950 /* no need to release the current_frame since it will always be pointing
1951 * to the same frame as either the golden or last frame */
1952
1953 return 0;
1954 }
1955
1956 static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
1957 {
1958 Vp3DecodeContext *s = avctx->priv_data;
1959
1960 if (get_bits1(gb)) {
1961 int token;
1962 if (s->entries >= 32) { /* overflow */
1963 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
1964 return -1;
1965 }
1966 token = get_bits(gb, 5);
1967 //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
1968 s->huffman_table[s->hti][token][0] = s->hbits;
1969 s->huffman_table[s->hti][token][1] = s->huff_code_size;
1970 s->entries++;
1971 }
1972 else {
1973 if (s->huff_code_size >= 32) {/* overflow */
1974 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
1975 return -1;
1976 }
1977 s->huff_code_size++;
1978 s->hbits <<= 1;
1979 if (read_huffman_tree(avctx, gb))
1980 return -1;
1981 s->hbits |= 1;
1982 if (read_huffman_tree(avctx, gb))
1983 return -1;
1984 s->hbits >>= 1;
1985 s->huff_code_size--;
1986 }
1987 return 0;
1988 }
1989
1990 #if CONFIG_THEORA_DECODER
1991 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
1992 {
1993 Vp3DecodeContext *s = avctx->priv_data;
1994 int visible_width, visible_height, colorspace;
1995
1996 s->theora = get_bits_long(gb, 24);
1997 av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
1998
1999 /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
2000 /* but previous versions have the image flipped relative to vp3 */
2001 if (s->theora < 0x030200)
2002 {
2003 s->flipped_image = 1;
2004 av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
2005 }
2006
2007 visible_width = s->width = get_bits(gb, 16) << 4;
2008 visible_height = s->height = get_bits(gb, 16) << 4;
2009
2010 if(avcodec_check_dimensions(avctx, s->width, s->height)){
2011 av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
2012 s->width= s->height= 0;
2013 return -1;
2014 }
2015
2016 if (s->theora >= 0x030200) {
2017 visible_width = get_bits_long(gb, 24);
2018 visible_height = get_bits_long(gb, 24);
2019
2020 skip_bits(gb, 8); /* offset x */
2021 skip_bits(gb, 8); /* offset y */
2022 }
2023
2024 skip_bits(gb, 32); /* fps numerator */
2025 skip_bits(gb, 32); /* fps denumerator */
2026 skip_bits(gb, 24); /* aspect numerator */
2027 skip_bits(gb, 24); /* aspect denumerator */
2028
2029 if (s->theora < 0x030200)
2030 skip_bits(gb, 5); /* keyframe frequency force */
2031 colorspace = get_bits(gb, 8);
2032 skip_bits(gb, 24); /* bitrate */
2033
2034 skip_bits(gb, 6); /* quality hint */
2035
2036 if (s->theora >= 0x030200)
2037 {
2038 skip_bits(gb, 5); /* keyframe frequency force */
2039 skip_bits(gb, 2); /* pixel format: 420,res,422,444 */
2040 skip_bits(gb, 3); /* reserved */
2041 }
2042
2043 // align_get_bits(gb);
2044
2045 if ( visible_width <= s->width && visible_width > s->width-16
2046 && visible_height <= s->height && visible_height > s->height-16)
2047 avcodec_set_dimensions(avctx, visible_width, visible_height);
2048 else
2049 avcodec_set_dimensions(avctx, s->width, s->height);
2050
2051 if (colorspace == 1) {
2052 avctx->color_primaries = AVCOL_PRI_BT470M;
2053 } else if (colorspace == 2) {
2054 avctx->color_primaries = AVCOL_PRI_BT470BG;
2055 }
2056 if (colorspace == 1 || colorspace == 2) {
2057 avctx->colorspace = AVCOL_SPC_BT470BG;
2058 avctx->color_trc = AVCOL_TRC_BT709;
2059 }
2060
2061 return 0;
2062 }
2063
2064 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2065 {
2066 Vp3DecodeContext *s = avctx->priv_data;
2067 int i, n, matrices, inter, plane;
2068
2069 if (s->theora >= 0x030200) {
2070 n = get_bits(gb, 3);
2071 /* loop filter limit values table */
2072 for (i = 0; i < 64; i++) {
2073 s->filter_limit_values[i] = get_bits(gb, n);
2074 if (s->filter_limit_values[i] > 127) {
2075 av_log(avctx, AV_LOG_ERROR, "filter limit value too large (%i > 127), clamping\n", s->filter_limit_values[i]);
2076 s->filter_limit_values[i] = 127;
2077 }
2078 }
2079 }
2080
2081 if (s->theora >= 0x030200)
2082 n = get_bits(gb, 4) + 1;
2083 else
2084 n = 16;
2085 /* quality threshold table */
2086 for (i = 0; i < 64; i++)
2087 s->coded_ac_scale_factor[i] = get_bits(gb, n);
2088
2089 if (s->theora >= 0x030200)
2090 n = get_bits(gb, 4) + 1;
2091 else
2092 n = 16;
2093 /* dc scale factor table */
2094 for (i = 0; i < 64; i++)
2095 s->coded_dc_scale_factor[i] = get_bits(gb, n);
2096
2097 if (s->theora >= 0x030200)
2098 matrices = get_bits(gb, 9) + 1;
2099 else
2100 matrices = 3;
2101
2102 if(matrices > 384){
2103 av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2104 return -1;
2105 }
2106
2107 for(n=0; n<matrices; n++){
2108 for (i = 0; i < 64; i++)
2109 s->base_matrix[n][i]= get_bits(gb, 8);
2110 }
2111
2112 for (inter = 0; inter <= 1; inter++) {
2113 for (plane = 0; plane <= 2; plane++) {
2114 int newqr= 1;
2115 if (inter || plane > 0)
2116 newqr = get_bits1(gb);
2117 if (!newqr) {
2118 int qtj, plj;
2119 if(inter && get_bits1(gb)){
2120 qtj = 0;
2121 plj = plane;
2122 }else{
2123 qtj= (3*inter + plane - 1) / 3;
2124 plj= (plane + 2) % 3;
2125 }
2126 s->qr_count[inter][plane]= s->qr_count[qtj][plj];
2127 memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
2128 memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
2129 } else {
2130 int qri= 0;
2131 int qi = 0;
2132
2133 for(;;){
2134 i= get_bits(gb, av_log2(matrices-1)+1);
2135 if(i>= matrices){
2136 av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
2137 return -1;
2138 }
2139 s->qr_base[inter][plane][qri]= i;
2140 if(qi >= 63)
2141 break;
2142 i = get_bits(gb, av_log2(63-qi)+1) + 1;
2143 s->qr_size[inter][plane][qri++]= i;
2144 qi += i;
2145 }
2146
2147 if (qi > 63) {
2148 av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2149 return -1;
2150 }
2151 s->qr_count[inter][plane]= qri;
2152 }
2153 }
2154 }
2155
2156 /* Huffman tables */
2157 for (s->hti = 0; s->hti < 80; s->hti++) {
2158 s->entries = 0;
2159 s->huff_code_size = 1;
2160 if (!get_bits1(gb)) {
2161 s->hbits = 0;
2162 if(read_huffman_tree(avctx, gb))
2163 return -1;
2164 s->hbits = 1;
2165 if(read_huffman_tree(avctx, gb))
2166 return -1;
2167 }
2168 }
2169
2170 s->theora_tables = 1;
2171
2172 return 0;
2173 }
2174
2175 static av_cold int theora_decode_init(AVCodecContext *avctx)
2176 {
2177 Vp3DecodeContext *s = avctx->priv_data;
2178 GetBitContext gb;
2179 int ptype;
2180 uint8_t *header_start[3];
2181 int header_len[3];
2182 int i;
2183
2184 s->theora = 1;
2185
2186 if (!avctx->extradata_size)
2187 {
2188 av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2189 return -1;
2190 }
2191
2192 if (ff_split_xiph_headers(avctx->extradata, avctx->extradata_size,
2193 42, header_start, header_len) < 0) {
2194 av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
2195 return -1;
2196 }
2197
2198 for(i=0;i<3;i++) {
2199 init_get_bits(&gb, header_start[i], header_len[i] * 8);
2200
2201 ptype = get_bits(&gb, 8);
2202
2203 if (!(ptype & 0x80))
2204 {
2205 av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2206 // return -1;
2207 }
2208
2209 // FIXME: Check for this as well.
2210 skip_bits_long(&gb, 6*8); /* "theora" */
2211
2212 switch(ptype)
2213 {
2214 case 0x80:
2215 theora_decode_header(avctx, &gb);
2216 break;
2217 case 0x81:
2218 // FIXME: is this needed? it breaks sometimes
2219 // theora_decode_comments(avctx, gb);
2220 break;
2221 case 0x82:
2222 if (theora_decode_tables(avctx, &gb))
2223 return -1;
2224 break;
2225 default:
2226 av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
2227 break;
2228 }
2229 if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb))
2230 av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype);
2231 if (s->theora < 0x030200)
2232 break;
2233 }
2234
2235 return vp3_decode_init(avctx);
2236 }
2237
2238 AVCodec theora_decoder = {
2239 "theora",
2240 CODEC_TYPE_VIDEO,
2241 CODEC_ID_THEORA,
2242 sizeof(Vp3DecodeContext),
2243 theora_decode_init,
2244 NULL,
2245 vp3_decode_end,
2246 vp3_decode_frame,
2247 CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
2248 NULL,
2249 .long_name = NULL_IF_CONFIG_SMALL("Theora"),
2250 };
2251 #endif
2252
2253 AVCodec vp3_decoder = {
2254 "vp3",
2255 CODEC_TYPE_VIDEO,
2256 CODEC_ID_VP3,
2257 sizeof(Vp3DecodeContext),
2258 vp3_decode_init,
2259 NULL,
2260 vp3_decode_end,
2261 vp3_decode_frame,
2262 CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
2263 NULL,
2264 .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
2265 };