d8f6270157d519a192d4345c69f766e7df63c1af
[libav.git] / libavcodec / vp3.c
1 /*
2 * Copyright (C) 2003-2004 the ffmpeg project
3 *
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
8 *
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
13 *
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
17 *
18 */
19
20 /**
21 * @file vp3.c
22 * On2 VP3 Video Decoder
23 *
24 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
25 * For more information about the VP3 coding process, visit:
26 * http://multimedia.cx/
27 *
28 * Theora decoder by Alex Beregszaszi
29 */
30
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <string.h>
34 #include <unistd.h>
35
36 #include "common.h"
37 #include "avcodec.h"
38 #include "dsputil.h"
39 #include "mpegvideo.h"
40
41 #include "vp3data.h"
42
43 #define FRAGMENT_PIXELS 8
44
45 /*
46 * Debugging Variables
47 *
48 * Define one or more of the following compile-time variables to 1 to obtain
49 * elaborate information about certain aspects of the decoding process.
50 *
51 * KEYFRAMES_ONLY: set this to 1 to only see keyframes (VP3 slideshow mode)
52 * DEBUG_VP3: high-level decoding flow
53 * DEBUG_INIT: initialization parameters
54 * DEBUG_DEQUANTIZERS: display how the dequanization tables are built
55 * DEBUG_BLOCK_CODING: unpacking the superblock/macroblock/fragment coding
56 * DEBUG_MODES: unpacking the coding modes for individual fragments
57 * DEBUG_VECTORS: display the motion vectors
58 * DEBUG_TOKEN: display exhaustive information about each DCT token
59 * DEBUG_VLC: display the VLCs as they are extracted from the stream
60 * DEBUG_DC_PRED: display the process of reversing DC prediction
61 * DEBUG_IDCT: show every detail of the IDCT process
62 */
63
64 #define KEYFRAMES_ONLY 0
65
66 #define DEBUG_VP3 0
67 #define DEBUG_INIT 0
68 #define DEBUG_DEQUANTIZERS 0
69 #define DEBUG_BLOCK_CODING 0
70 #define DEBUG_MODES 0
71 #define DEBUG_VECTORS 0
72 #define DEBUG_TOKEN 0
73 #define DEBUG_VLC 0
74 #define DEBUG_DC_PRED 0
75 #define DEBUG_IDCT 0
76
77 #if DEBUG_VP3
78 #define debug_vp3(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
79 #else
80 static inline void debug_vp3(const char *format, ...) { }
81 #endif
82
83 #if DEBUG_INIT
84 #define debug_init(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
85 #else
86 static inline void debug_init(const char *format, ...) { }
87 #endif
88
89 #if DEBUG_DEQUANTIZERS
90 #define debug_dequantizers(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
91 #else
92 static inline void debug_dequantizers(const char *format, ...) { }
93 #endif
94
95 #if DEBUG_BLOCK_CODING
96 #define debug_block_coding(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
97 #else
98 static inline void debug_block_coding(const char *format, ...) { }
99 #endif
100
101 #if DEBUG_MODES
102 #define debug_modes(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
103 #else
104 static inline void debug_modes(const char *format, ...) { }
105 #endif
106
107 #if DEBUG_VECTORS
108 #define debug_vectors(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
109 #else
110 static inline void debug_vectors(const char *format, ...) { }
111 #endif
112
113 #if DEBUG_TOKEN
114 #define debug_token(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
115 #else
116 static inline void debug_token(const char *format, ...) { }
117 #endif
118
119 #if DEBUG_VLC
120 #define debug_vlc(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
121 #else
122 static inline void debug_vlc(const char *format, ...) { }
123 #endif
124
125 #if DEBUG_DC_PRED
126 #define debug_dc_pred(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
127 #else
128 static inline void debug_dc_pred(const char *format, ...) { }
129 #endif
130
131 #if DEBUG_IDCT
132 #define debug_idct(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
133 #else
134 static inline void debug_idct(const char *format, ...) { }
135 #endif
136
137 typedef struct Coeff {
138 struct Coeff *next;
139 DCTELEM coeff;
140 uint8_t index;
141 } Coeff;
142
143 //FIXME split things out into their own arrays
144 typedef struct Vp3Fragment {
145 Coeff *next_coeff;
146 /* address of first pixel taking into account which plane the fragment
147 * lives on as well as the plane stride */
148 int first_pixel;
149 /* this is the macroblock that the fragment belongs to */
150 uint16_t macroblock;
151 uint8_t coding_method;
152 uint8_t coeff_count;
153 int8_t motion_x;
154 int8_t motion_y;
155 } Vp3Fragment;
156
157 #define SB_NOT_CODED 0
158 #define SB_PARTIALLY_CODED 1
159 #define SB_FULLY_CODED 2
160
161 #define MODE_INTER_NO_MV 0
162 #define MODE_INTRA 1
163 #define MODE_INTER_PLUS_MV 2
164 #define MODE_INTER_LAST_MV 3
165 #define MODE_INTER_PRIOR_LAST 4
166 #define MODE_USING_GOLDEN 5
167 #define MODE_GOLDEN_MV 6
168 #define MODE_INTER_FOURMV 7
169 #define CODING_MODE_COUNT 8
170
171 /* special internal mode */
172 #define MODE_COPY 8
173
174 /* There are 6 preset schemes, plus a free-form scheme */
175 static int ModeAlphabet[7][CODING_MODE_COUNT] =
176 {
177 /* this is the custom scheme */
178 { 0, 0, 0, 0, 0, 0, 0, 0 },
179
180 /* scheme 1: Last motion vector dominates */
181 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
182 MODE_INTER_PLUS_MV, MODE_INTER_NO_MV,
183 MODE_INTRA, MODE_USING_GOLDEN,
184 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
185
186 /* scheme 2 */
187 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
188 MODE_INTER_NO_MV, MODE_INTER_PLUS_MV,
189 MODE_INTRA, MODE_USING_GOLDEN,
190 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
191
192 /* scheme 3 */
193 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
194 MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
195 MODE_INTRA, MODE_USING_GOLDEN,
196 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
197
198 /* scheme 4 */
199 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
200 MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST,
201 MODE_INTRA, MODE_USING_GOLDEN,
202 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
203
204 /* scheme 5: No motion vector dominates */
205 { MODE_INTER_NO_MV, MODE_INTER_LAST_MV,
206 MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
207 MODE_INTRA, MODE_USING_GOLDEN,
208 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
209
210 /* scheme 6 */
211 { MODE_INTER_NO_MV, MODE_USING_GOLDEN,
212 MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
213 MODE_INTER_PLUS_MV, MODE_INTRA,
214 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
215
216 };
217
218 #define MIN_DEQUANT_VAL 2
219
220 typedef struct Vp3DecodeContext {
221 AVCodecContext *avctx;
222 int theora, theora_tables;
223 int version;
224 int width, height;
225 AVFrame golden_frame;
226 AVFrame last_frame;
227 AVFrame current_frame;
228 int keyframe;
229 DSPContext dsp;
230 int flipped_image;
231
232 int qis[3];
233 int nqis;
234 int quality_index;
235 int last_quality_index;
236
237 int superblock_count;
238 int superblock_width;
239 int superblock_height;
240 int y_superblock_width;
241 int y_superblock_height;
242 int c_superblock_width;
243 int c_superblock_height;
244 int u_superblock_start;
245 int v_superblock_start;
246 unsigned char *superblock_coding;
247
248 int macroblock_count;
249 int macroblock_width;
250 int macroblock_height;
251
252 int fragment_count;
253 int fragment_width;
254 int fragment_height;
255
256 Vp3Fragment *all_fragments;
257 Coeff *coeffs;
258 Coeff *next_coeff;
259 int fragment_start[3];
260
261 ScanTable scantable;
262
263 /* tables */
264 uint16_t coded_dc_scale_factor[64];
265 uint32_t coded_ac_scale_factor[64];
266 uint8_t base_matrix[384][64];
267 uint8_t qr_count[2][3];
268 uint8_t qr_size [2][3][64];
269 uint16_t qr_base[2][3][64];
270
271 /* this is a list of indices into the all_fragments array indicating
272 * which of the fragments are coded */
273 int *coded_fragment_list;
274 int coded_fragment_list_index;
275 int pixel_addresses_inited;
276
277 VLC dc_vlc[16];
278 VLC ac_vlc_1[16];
279 VLC ac_vlc_2[16];
280 VLC ac_vlc_3[16];
281 VLC ac_vlc_4[16];
282
283 VLC superblock_run_length_vlc;
284 VLC fragment_run_length_vlc;
285 VLC mode_code_vlc;
286 VLC motion_vector_vlc;
287
288 /* these arrays need to be on 16-byte boundaries since SSE2 operations
289 * index into them */
290 DECLARE_ALIGNED_16(int16_t, qmat[2][4][64]); //<qmat[is_inter][plane]
291
292 /* This table contains superblock_count * 16 entries. Each set of 16
293 * numbers corresponds to the fragment indices 0..15 of the superblock.
294 * An entry will be -1 to indicate that no entry corresponds to that
295 * index. */
296 int *superblock_fragments;
297
298 /* This table contains superblock_count * 4 entries. Each set of 4
299 * numbers corresponds to the macroblock indices 0..3 of the superblock.
300 * An entry will be -1 to indicate that no entry corresponds to that
301 * index. */
302 int *superblock_macroblocks;
303
304 /* This table contains macroblock_count * 6 entries. Each set of 6
305 * numbers corresponds to the fragment indices 0..5 which comprise
306 * the macroblock (4 Y fragments and 2 C fragments). */
307 int *macroblock_fragments;
308 /* This is an array that indicates how a particular macroblock
309 * is coded. */
310 unsigned char *macroblock_coding;
311
312 int first_coded_y_fragment;
313 int first_coded_c_fragment;
314 int last_coded_y_fragment;
315 int last_coded_c_fragment;
316
317 uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
318 int8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
319
320 /* Huffman decode */
321 int hti;
322 unsigned int hbits;
323 int entries;
324 int huff_code_size;
325 uint16_t huffman_table[80][32][2];
326
327 uint32_t filter_limit_values[64];
328 int bounding_values_array[256];
329 } Vp3DecodeContext;
330
331 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb);
332
333 /************************************************************************
334 * VP3 specific functions
335 ************************************************************************/
336
337 /*
338 * This function sets up all of the various blocks mappings:
339 * superblocks <-> fragments, macroblocks <-> fragments,
340 * superblocks <-> macroblocks
341 *
342 * Returns 0 is successful; returns 1 if *anything* went wrong.
343 */
344 static int init_block_mapping(Vp3DecodeContext *s)
345 {
346 int i, j;
347 signed int hilbert_walk_mb[4];
348
349 int current_fragment = 0;
350 int current_width = 0;
351 int current_height = 0;
352 int right_edge = 0;
353 int bottom_edge = 0;
354 int superblock_row_inc = 0;
355 int *hilbert = NULL;
356 int mapping_index = 0;
357
358 int current_macroblock;
359 int c_fragment;
360
361 signed char travel_width[16] = {
362 1, 1, 0, -1,
363 0, 0, 1, 0,
364 1, 0, 1, 0,
365 0, -1, 0, 1
366 };
367
368 signed char travel_height[16] = {
369 0, 0, 1, 0,
370 1, 1, 0, -1,
371 0, 1, 0, -1,
372 -1, 0, -1, 0
373 };
374
375 signed char travel_width_mb[4] = {
376 1, 0, 1, 0
377 };
378
379 signed char travel_height_mb[4] = {
380 0, 1, 0, -1
381 };
382
383 debug_vp3(" vp3: initialize block mapping tables\n");
384
385 hilbert_walk_mb[0] = 1;
386 hilbert_walk_mb[1] = s->macroblock_width;
387 hilbert_walk_mb[2] = 1;
388 hilbert_walk_mb[3] = -s->macroblock_width;
389
390 /* iterate through each superblock (all planes) and map the fragments */
391 for (i = 0; i < s->superblock_count; i++) {
392 debug_init(" superblock %d (u starts @ %d, v starts @ %d)\n",
393 i, s->u_superblock_start, s->v_superblock_start);
394
395 /* time to re-assign the limits? */
396 if (i == 0) {
397
398 /* start of Y superblocks */
399 right_edge = s->fragment_width;
400 bottom_edge = s->fragment_height;
401 current_width = -1;
402 current_height = 0;
403 superblock_row_inc = 3 * s->fragment_width -
404 (s->y_superblock_width * 4 - s->fragment_width);
405
406 /* the first operation for this variable is to advance by 1 */
407 current_fragment = -1;
408
409 } else if (i == s->u_superblock_start) {
410
411 /* start of U superblocks */
412 right_edge = s->fragment_width / 2;
413 bottom_edge = s->fragment_height / 2;
414 current_width = -1;
415 current_height = 0;
416 superblock_row_inc = 3 * (s->fragment_width / 2) -
417 (s->c_superblock_width * 4 - s->fragment_width / 2);
418
419 /* the first operation for this variable is to advance by 1 */
420 current_fragment = s->fragment_start[1] - 1;
421
422 } else if (i == s->v_superblock_start) {
423
424 /* start of V superblocks */
425 right_edge = s->fragment_width / 2;
426 bottom_edge = s->fragment_height / 2;
427 current_width = -1;
428 current_height = 0;
429 superblock_row_inc = 3 * (s->fragment_width / 2) -
430 (s->c_superblock_width * 4 - s->fragment_width / 2);
431
432 /* the first operation for this variable is to advance by 1 */
433 current_fragment = s->fragment_start[2] - 1;
434
435 }
436
437 if (current_width >= right_edge - 1) {
438 /* reset width and move to next superblock row */
439 current_width = -1;
440 current_height += 4;
441
442 /* fragment is now at the start of a new superblock row */
443 current_fragment += superblock_row_inc;
444 }
445
446 /* iterate through all 16 fragments in a superblock */
447 for (j = 0; j < 16; j++) {
448 current_fragment += travel_width[j] + right_edge * travel_height[j];
449 current_width += travel_width[j];
450 current_height += travel_height[j];
451
452 /* check if the fragment is in bounds */
453 if ((current_width < right_edge) &&
454 (current_height < bottom_edge)) {
455 s->superblock_fragments[mapping_index] = current_fragment;
456 debug_init(" mapping fragment %d to superblock %d, position %d (%d/%d x %d/%d)\n",
457 s->superblock_fragments[mapping_index], i, j,
458 current_width, right_edge, current_height, bottom_edge);
459 } else {
460 s->superblock_fragments[mapping_index] = -1;
461 debug_init(" superblock %d, position %d has no fragment (%d/%d x %d/%d)\n",
462 i, j,
463 current_width, right_edge, current_height, bottom_edge);
464 }
465
466 mapping_index++;
467 }
468 }
469
470 /* initialize the superblock <-> macroblock mapping; iterate through
471 * all of the Y plane superblocks to build this mapping */
472 right_edge = s->macroblock_width;
473 bottom_edge = s->macroblock_height;
474 current_width = -1;
475 current_height = 0;
476 superblock_row_inc = s->macroblock_width -
477 (s->y_superblock_width * 2 - s->macroblock_width);;
478 hilbert = hilbert_walk_mb;
479 mapping_index = 0;
480 current_macroblock = -1;
481 for (i = 0; i < s->u_superblock_start; i++) {
482
483 if (current_width >= right_edge - 1) {
484 /* reset width and move to next superblock row */
485 current_width = -1;
486 current_height += 2;
487
488 /* macroblock is now at the start of a new superblock row */
489 current_macroblock += superblock_row_inc;
490 }
491
492 /* iterate through each potential macroblock in the superblock */
493 for (j = 0; j < 4; j++) {
494 current_macroblock += hilbert_walk_mb[j];
495 current_width += travel_width_mb[j];
496 current_height += travel_height_mb[j];
497
498 /* check if the macroblock is in bounds */
499 if ((current_width < right_edge) &&
500 (current_height < bottom_edge)) {
501 s->superblock_macroblocks[mapping_index] = current_macroblock;
502 debug_init(" mapping macroblock %d to superblock %d, position %d (%d/%d x %d/%d)\n",
503 s->superblock_macroblocks[mapping_index], i, j,
504 current_width, right_edge, current_height, bottom_edge);
505 } else {
506 s->superblock_macroblocks[mapping_index] = -1;
507 debug_init(" superblock %d, position %d has no macroblock (%d/%d x %d/%d)\n",
508 i, j,
509 current_width, right_edge, current_height, bottom_edge);
510 }
511
512 mapping_index++;
513 }
514 }
515
516 /* initialize the macroblock <-> fragment mapping */
517 current_fragment = 0;
518 current_macroblock = 0;
519 mapping_index = 0;
520 for (i = 0; i < s->fragment_height; i += 2) {
521
522 for (j = 0; j < s->fragment_width; j += 2) {
523
524 debug_init(" macroblock %d contains fragments: ", current_macroblock);
525 s->all_fragments[current_fragment].macroblock = current_macroblock;
526 s->macroblock_fragments[mapping_index++] = current_fragment;
527 debug_init("%d ", current_fragment);
528
529 if (j + 1 < s->fragment_width) {
530 s->all_fragments[current_fragment + 1].macroblock = current_macroblock;
531 s->macroblock_fragments[mapping_index++] = current_fragment + 1;
532 debug_init("%d ", current_fragment + 1);
533 } else
534 s->macroblock_fragments[mapping_index++] = -1;
535
536 if (i + 1 < s->fragment_height) {
537 s->all_fragments[current_fragment + s->fragment_width].macroblock =
538 current_macroblock;
539 s->macroblock_fragments[mapping_index++] =
540 current_fragment + s->fragment_width;
541 debug_init("%d ", current_fragment + s->fragment_width);
542 } else
543 s->macroblock_fragments[mapping_index++] = -1;
544
545 if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) {
546 s->all_fragments[current_fragment + s->fragment_width + 1].macroblock =
547 current_macroblock;
548 s->macroblock_fragments[mapping_index++] =
549 current_fragment + s->fragment_width + 1;
550 debug_init("%d ", current_fragment + s->fragment_width + 1);
551 } else
552 s->macroblock_fragments[mapping_index++] = -1;
553
554 /* C planes */
555 c_fragment = s->fragment_start[1] +
556 (i * s->fragment_width / 4) + (j / 2);
557 s->all_fragments[c_fragment].macroblock = s->macroblock_count;
558 s->macroblock_fragments[mapping_index++] = c_fragment;
559 debug_init("%d ", c_fragment);
560
561 c_fragment = s->fragment_start[2] +
562 (i * s->fragment_width / 4) + (j / 2);
563 s->all_fragments[c_fragment].macroblock = s->macroblock_count;
564 s->macroblock_fragments[mapping_index++] = c_fragment;
565 debug_init("%d ", c_fragment);
566
567 debug_init("\n");
568
569 if (j + 2 <= s->fragment_width)
570 current_fragment += 2;
571 else
572 current_fragment++;
573 current_macroblock++;
574 }
575
576 current_fragment += s->fragment_width;
577 }
578
579 return 0; /* successful path out */
580 }
581
582 /*
583 * This function wipes out all of the fragment data.
584 */
585 static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
586 {
587 int i;
588
589 /* zero out all of the fragment information */
590 s->coded_fragment_list_index = 0;
591 for (i = 0; i < s->fragment_count; i++) {
592 s->all_fragments[i].coeff_count = 0;
593 s->all_fragments[i].motion_x = 127;
594 s->all_fragments[i].motion_y = 127;
595 s->all_fragments[i].next_coeff= NULL;
596 s->coeffs[i].index=
597 s->coeffs[i].coeff=0;
598 s->coeffs[i].next= NULL;
599 }
600 }
601
602 /*
603 * This function sets up the dequantization tables used for a particular
604 * frame.
605 */
606 static void init_dequantizer(Vp3DecodeContext *s)
607 {
608 int ac_scale_factor = s->coded_ac_scale_factor[s->quality_index];
609 int dc_scale_factor = s->coded_dc_scale_factor[s->quality_index];
610 int i, j, plane, inter, qri, bmi, bmj, qistart;
611
612 debug_vp3(" vp3: initializing dequantization tables\n");
613
614 for(inter=0; inter<2; inter++){
615 for(plane=0; plane<3; plane++){
616 int sum=0;
617 for(qri=0; qri<s->qr_count[inter][plane]; qri++){
618 sum+= s->qr_size[inter][plane][qri];
619 if(s->quality_index <= sum)
620 break;
621 }
622 qistart= sum - s->qr_size[inter][plane][qri];
623 bmi= s->qr_base[inter][plane][qri ];
624 bmj= s->qr_base[inter][plane][qri+1];
625 for(i=0; i<64; i++){
626 int coeff= ( 2*(sum -s->quality_index)*s->base_matrix[bmi][i]
627 - 2*(qistart-s->quality_index)*s->base_matrix[bmj][i]
628 + s->qr_size[inter][plane][qri])
629 / (2*s->qr_size[inter][plane][qri]);
630
631 int qmin= 8<<(inter + !i);
632 int qscale= i ? ac_scale_factor : dc_scale_factor;
633
634 s->qmat[inter][plane][i]= clip((qscale * coeff)/100 * 4, qmin, 4096);
635 }
636 }
637 }
638
639 memset(s->qscale_table, (FFMAX(s->qmat[0][0][1], s->qmat[0][1][1])+8)/16, 512); //FIXME finetune
640 }
641
642 /*
643 * This function initializes the loop filter boundary limits if the frame's
644 * quality index is different from the previous frame's.
645 */
646 static void init_loop_filter(Vp3DecodeContext *s)
647 {
648 int *bounding_values= s->bounding_values_array+127;
649 int filter_limit;
650 int x;
651
652 filter_limit = s->filter_limit_values[s->quality_index];
653
654 /* set up the bounding values */
655 memset(s->bounding_values_array, 0, 256 * sizeof(int));
656 for (x = 0; x < filter_limit; x++) {
657 bounding_values[-x - filter_limit] = -filter_limit + x;
658 bounding_values[-x] = -x;
659 bounding_values[x] = x;
660 bounding_values[x + filter_limit] = filter_limit - x;
661 }
662 }
663
664 /*
665 * This function unpacks all of the superblock/macroblock/fragment coding
666 * information from the bitstream.
667 */
668 static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
669 {
670 int bit = 0;
671 int current_superblock = 0;
672 int current_run = 0;
673 int decode_fully_flags = 0;
674 int decode_partial_blocks = 0;
675 int first_c_fragment_seen;
676
677 int i, j;
678 int current_fragment;
679
680 debug_vp3(" vp3: unpacking superblock coding\n");
681
682 if (s->keyframe) {
683
684 debug_vp3(" keyframe-- all superblocks are fully coded\n");
685 memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
686
687 } else {
688
689 /* unpack the list of partially-coded superblocks */
690 bit = get_bits(gb, 1);
691 /* toggle the bit because as soon as the first run length is
692 * fetched the bit will be toggled again */
693 bit ^= 1;
694 while (current_superblock < s->superblock_count) {
695 if (current_run-- == 0) {
696 bit ^= 1;
697 current_run = get_vlc2(gb,
698 s->superblock_run_length_vlc.table, 6, 2);
699 if (current_run == 33)
700 current_run += get_bits(gb, 12);
701 debug_block_coding(" setting superblocks %d..%d to %s\n",
702 current_superblock,
703 current_superblock + current_run - 1,
704 (bit) ? "partially coded" : "not coded");
705
706 /* if any of the superblocks are not partially coded, flag
707 * a boolean to decode the list of fully-coded superblocks */
708 if (bit == 0) {
709 decode_fully_flags = 1;
710 } else {
711
712 /* make a note of the fact that there are partially coded
713 * superblocks */
714 decode_partial_blocks = 1;
715 }
716 }
717 s->superblock_coding[current_superblock++] = bit;
718 }
719
720 /* unpack the list of fully coded superblocks if any of the blocks were
721 * not marked as partially coded in the previous step */
722 if (decode_fully_flags) {
723
724 current_superblock = 0;
725 current_run = 0;
726 bit = get_bits(gb, 1);
727 /* toggle the bit because as soon as the first run length is
728 * fetched the bit will be toggled again */
729 bit ^= 1;
730 while (current_superblock < s->superblock_count) {
731
732 /* skip any superblocks already marked as partially coded */
733 if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
734
735 if (current_run-- == 0) {
736 bit ^= 1;
737 current_run = get_vlc2(gb,
738 s->superblock_run_length_vlc.table, 6, 2);
739 if (current_run == 33)
740 current_run += get_bits(gb, 12);
741 }
742
743 debug_block_coding(" setting superblock %d to %s\n",
744 current_superblock,
745 (bit) ? "fully coded" : "not coded");
746 s->superblock_coding[current_superblock] = 2*bit;
747 }
748 current_superblock++;
749 }
750 }
751
752 /* if there were partial blocks, initialize bitstream for
753 * unpacking fragment codings */
754 if (decode_partial_blocks) {
755
756 current_run = 0;
757 bit = get_bits(gb, 1);
758 /* toggle the bit because as soon as the first run length is
759 * fetched the bit will be toggled again */
760 bit ^= 1;
761 }
762 }
763
764 /* figure out which fragments are coded; iterate through each
765 * superblock (all planes) */
766 s->coded_fragment_list_index = 0;
767 s->next_coeff= s->coeffs + s->fragment_count;
768 s->first_coded_y_fragment = s->first_coded_c_fragment = 0;
769 s->last_coded_y_fragment = s->last_coded_c_fragment = -1;
770 first_c_fragment_seen = 0;
771 memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
772 for (i = 0; i < s->superblock_count; i++) {
773
774 /* iterate through all 16 fragments in a superblock */
775 for (j = 0; j < 16; j++) {
776
777 /* if the fragment is in bounds, check its coding status */
778 current_fragment = s->superblock_fragments[i * 16 + j];
779 if (current_fragment >= s->fragment_count) {
780 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
781 current_fragment, s->fragment_count);
782 return 1;
783 }
784 if (current_fragment != -1) {
785 if (s->superblock_coding[i] == SB_NOT_CODED) {
786
787 /* copy all the fragments from the prior frame */
788 s->all_fragments[current_fragment].coding_method =
789 MODE_COPY;
790
791 } else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
792
793 /* fragment may or may not be coded; this is the case
794 * that cares about the fragment coding runs */
795 if (current_run-- == 0) {
796 bit ^= 1;
797 current_run = get_vlc2(gb,
798 s->fragment_run_length_vlc.table, 5, 2);
799 }
800
801 if (bit) {
802 /* default mode; actual mode will be decoded in
803 * the next phase */
804 s->all_fragments[current_fragment].coding_method =
805 MODE_INTER_NO_MV;
806 s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
807 s->coded_fragment_list[s->coded_fragment_list_index] =
808 current_fragment;
809 if ((current_fragment >= s->fragment_start[1]) &&
810 (s->last_coded_y_fragment == -1) &&
811 (!first_c_fragment_seen)) {
812 s->first_coded_c_fragment = s->coded_fragment_list_index;
813 s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
814 first_c_fragment_seen = 1;
815 }
816 s->coded_fragment_list_index++;
817 s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
818 debug_block_coding(" superblock %d is partially coded, fragment %d is coded\n",
819 i, current_fragment);
820 } else {
821 /* not coded; copy this fragment from the prior frame */
822 s->all_fragments[current_fragment].coding_method =
823 MODE_COPY;
824 debug_block_coding(" superblock %d is partially coded, fragment %d is not coded\n",
825 i, current_fragment);
826 }
827
828 } else {
829
830 /* fragments are fully coded in this superblock; actual
831 * coding will be determined in next step */
832 s->all_fragments[current_fragment].coding_method =
833 MODE_INTER_NO_MV;
834 s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
835 s->coded_fragment_list[s->coded_fragment_list_index] =
836 current_fragment;
837 if ((current_fragment >= s->fragment_start[1]) &&
838 (s->last_coded_y_fragment == -1) &&
839 (!first_c_fragment_seen)) {
840 s->first_coded_c_fragment = s->coded_fragment_list_index;
841 s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
842 first_c_fragment_seen = 1;
843 }
844 s->coded_fragment_list_index++;
845 s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
846 debug_block_coding(" superblock %d is fully coded, fragment %d is coded\n",
847 i, current_fragment);
848 }
849 }
850 }
851 }
852
853 if (!first_c_fragment_seen)
854 /* only Y fragments coded in this frame */
855 s->last_coded_y_fragment = s->coded_fragment_list_index - 1;
856 else
857 /* end the list of coded C fragments */
858 s->last_coded_c_fragment = s->coded_fragment_list_index - 1;
859
860 debug_block_coding(" %d total coded fragments, y: %d -> %d, c: %d -> %d\n",
861 s->coded_fragment_list_index,
862 s->first_coded_y_fragment,
863 s->last_coded_y_fragment,
864 s->first_coded_c_fragment,
865 s->last_coded_c_fragment);
866
867 return 0;
868 }
869
870 /*
871 * This function unpacks all the coding mode data for individual macroblocks
872 * from the bitstream.
873 */
874 static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
875 {
876 int i, j, k;
877 int scheme;
878 int current_macroblock;
879 int current_fragment;
880 int coding_mode;
881
882 debug_vp3(" vp3: unpacking encoding modes\n");
883
884 if (s->keyframe) {
885 debug_vp3(" keyframe-- all blocks are coded as INTRA\n");
886
887 for (i = 0; i < s->fragment_count; i++)
888 s->all_fragments[i].coding_method = MODE_INTRA;
889
890 } else {
891
892 /* fetch the mode coding scheme for this frame */
893 scheme = get_bits(gb, 3);
894 debug_modes(" using mode alphabet %d\n", scheme);
895
896 /* is it a custom coding scheme? */
897 if (scheme == 0) {
898 debug_modes(" custom mode alphabet ahead:\n");
899 for (i = 0; i < 8; i++)
900 ModeAlphabet[scheme][get_bits(gb, 3)] = i;
901 }
902
903 for (i = 0; i < 8; i++)
904 debug_modes(" mode[%d][%d] = %d\n", scheme, i,
905 ModeAlphabet[scheme][i]);
906
907 /* iterate through all of the macroblocks that contain 1 or more
908 * coded fragments */
909 for (i = 0; i < s->u_superblock_start; i++) {
910
911 for (j = 0; j < 4; j++) {
912 current_macroblock = s->superblock_macroblocks[i * 4 + j];
913 if ((current_macroblock == -1) ||
914 (s->macroblock_coding[current_macroblock] == MODE_COPY))
915 continue;
916 if (current_macroblock >= s->macroblock_count) {
917 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_modes(): bad macroblock number (%d >= %d)\n",
918 current_macroblock, s->macroblock_count);
919 return 1;
920 }
921
922 /* mode 7 means get 3 bits for each coding mode */
923 if (scheme == 7)
924 coding_mode = get_bits(gb, 3);
925 else
926 coding_mode = ModeAlphabet[scheme]
927 [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
928
929 s->macroblock_coding[current_macroblock] = coding_mode;
930 for (k = 0; k < 6; k++) {
931 current_fragment =
932 s->macroblock_fragments[current_macroblock * 6 + k];
933 if (current_fragment == -1)
934 continue;
935 if (current_fragment >= s->fragment_count) {
936 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_modes(): bad fragment number (%d >= %d)\n",
937 current_fragment, s->fragment_count);
938 return 1;
939 }
940 if (s->all_fragments[current_fragment].coding_method !=
941 MODE_COPY)
942 s->all_fragments[current_fragment].coding_method =
943 coding_mode;
944 }
945
946 debug_modes(" coding method for macroblock starting @ fragment %d = %d\n",
947 s->macroblock_fragments[current_macroblock * 6], coding_mode);
948 }
949 }
950 }
951
952 return 0;
953 }
954
955 /*
956 * This function unpacks all the motion vectors for the individual
957 * macroblocks from the bitstream.
958 */
959 static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
960 {
961 int i, j, k;
962 int coding_mode;
963 int motion_x[6];
964 int motion_y[6];
965 int last_motion_x = 0;
966 int last_motion_y = 0;
967 int prior_last_motion_x = 0;
968 int prior_last_motion_y = 0;
969 int current_macroblock;
970 int current_fragment;
971
972 debug_vp3(" vp3: unpacking motion vectors\n");
973 if (s->keyframe) {
974
975 debug_vp3(" keyframe-- there are no motion vectors\n");
976
977 } else {
978
979 memset(motion_x, 0, 6 * sizeof(int));
980 memset(motion_y, 0, 6 * sizeof(int));
981
982 /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
983 coding_mode = get_bits(gb, 1);
984 debug_vectors(" using %s scheme for unpacking motion vectors\n",
985 (coding_mode == 0) ? "VLC" : "fixed-length");
986
987 /* iterate through all of the macroblocks that contain 1 or more
988 * coded fragments */
989 for (i = 0; i < s->u_superblock_start; i++) {
990
991 for (j = 0; j < 4; j++) {
992 current_macroblock = s->superblock_macroblocks[i * 4 + j];
993 if ((current_macroblock == -1) ||
994 (s->macroblock_coding[current_macroblock] == MODE_COPY))
995 continue;
996 if (current_macroblock >= s->macroblock_count) {
997 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad macroblock number (%d >= %d)\n",
998 current_macroblock, s->macroblock_count);
999 return 1;
1000 }
1001
1002 current_fragment = s->macroblock_fragments[current_macroblock * 6];
1003 if (current_fragment >= s->fragment_count) {
1004 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad fragment number (%d >= %d\n",
1005 current_fragment, s->fragment_count);
1006 return 1;
1007 }
1008 switch (s->macroblock_coding[current_macroblock]) {
1009
1010 case MODE_INTER_PLUS_MV:
1011 case MODE_GOLDEN_MV:
1012 /* all 6 fragments use the same motion vector */
1013 if (coding_mode == 0) {
1014 motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
1015 motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
1016 } else {
1017 motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
1018 motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
1019 }
1020
1021 for (k = 1; k < 6; k++) {
1022 motion_x[k] = motion_x[0];
1023 motion_y[k] = motion_y[0];
1024 }
1025
1026 /* vector maintenance, only on MODE_INTER_PLUS_MV */
1027 if (s->macroblock_coding[current_macroblock] ==
1028 MODE_INTER_PLUS_MV) {
1029 prior_last_motion_x = last_motion_x;
1030 prior_last_motion_y = last_motion_y;
1031 last_motion_x = motion_x[0];
1032 last_motion_y = motion_y[0];
1033 }
1034 break;
1035
1036 case MODE_INTER_FOURMV:
1037 /* fetch 4 vectors from the bitstream, one for each
1038 * Y fragment, then average for the C fragment vectors */
1039 motion_x[4] = motion_y[4] = 0;
1040 for (k = 0; k < 4; k++) {
1041 if (coding_mode == 0) {
1042 motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
1043 motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
1044 } else {
1045 motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
1046 motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
1047 }
1048 motion_x[4] += motion_x[k];
1049 motion_y[4] += motion_y[k];
1050 }
1051
1052 motion_x[5]=
1053 motion_x[4]= RSHIFT(motion_x[4], 2);
1054 motion_y[5]=
1055 motion_y[4]= RSHIFT(motion_y[4], 2);
1056
1057 /* vector maintenance; vector[3] is treated as the
1058 * last vector in this case */
1059 prior_last_motion_x = last_motion_x;
1060 prior_last_motion_y = last_motion_y;
1061 last_motion_x = motion_x[3];
1062 last_motion_y = motion_y[3];
1063 break;
1064
1065 case MODE_INTER_LAST_MV:
1066 /* all 6 fragments use the last motion vector */
1067 motion_x[0] = last_motion_x;
1068 motion_y[0] = last_motion_y;
1069 for (k = 1; k < 6; k++) {
1070 motion_x[k] = motion_x[0];
1071 motion_y[k] = motion_y[0];
1072 }
1073
1074 /* no vector maintenance (last vector remains the
1075 * last vector) */
1076 break;
1077
1078 case MODE_INTER_PRIOR_LAST:
1079 /* all 6 fragments use the motion vector prior to the
1080 * last motion vector */
1081 motion_x[0] = prior_last_motion_x;
1082 motion_y[0] = prior_last_motion_y;
1083 for (k = 1; k < 6; k++) {
1084 motion_x[k] = motion_x[0];
1085 motion_y[k] = motion_y[0];
1086 }
1087
1088 /* vector maintenance */
1089 prior_last_motion_x = last_motion_x;
1090 prior_last_motion_y = last_motion_y;
1091 last_motion_x = motion_x[0];
1092 last_motion_y = motion_y[0];
1093 break;
1094
1095 default:
1096 /* covers intra, inter without MV, golden without MV */
1097 memset(motion_x, 0, 6 * sizeof(int));
1098 memset(motion_y, 0, 6 * sizeof(int));
1099
1100 /* no vector maintenance */
1101 break;
1102 }
1103
1104 /* assign the motion vectors to the correct fragments */
1105 debug_vectors(" vectors for macroblock starting @ fragment %d (coding method %d):\n",
1106 current_fragment,
1107 s->macroblock_coding[current_macroblock]);
1108 for (k = 0; k < 6; k++) {
1109 current_fragment =
1110 s->macroblock_fragments[current_macroblock * 6 + k];
1111 if (current_fragment == -1)
1112 continue;
1113 if (current_fragment >= s->fragment_count) {
1114 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad fragment number (%d >= %d)\n",
1115 current_fragment, s->fragment_count);
1116 return 1;
1117 }
1118 s->all_fragments[current_fragment].motion_x = motion_x[k];
1119 s->all_fragments[current_fragment].motion_y = motion_y[k];
1120 debug_vectors(" vector %d: fragment %d = (%d, %d)\n",
1121 k, current_fragment, motion_x[k], motion_y[k]);
1122 }
1123 }
1124 }
1125 }
1126
1127 return 0;
1128 }
1129
1130 /*
1131 * This function is called by unpack_dct_coeffs() to extract the VLCs from
1132 * the bitstream. The VLCs encode tokens which are used to unpack DCT
1133 * data. This function unpacks all the VLCs for either the Y plane or both
1134 * C planes, and is called for DC coefficients or different AC coefficient
1135 * levels (since different coefficient types require different VLC tables.
1136 *
1137 * This function returns a residual eob run. E.g, if a particular token gave
1138 * instructions to EOB the next 5 fragments and there were only 2 fragments
1139 * left in the current fragment range, 3 would be returned so that it could
1140 * be passed into the next call to this same function.
1141 */
1142 static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
1143 VLC *table, int coeff_index,
1144 int first_fragment, int last_fragment,
1145 int eob_run)
1146 {
1147 int i;
1148 int token;
1149 int zero_run = 0;
1150 DCTELEM coeff = 0;
1151 Vp3Fragment *fragment;
1152 uint8_t *perm= s->scantable.permutated;
1153 int bits_to_get;
1154
1155 if ((first_fragment >= s->fragment_count) ||
1156 (last_fragment >= s->fragment_count)) {
1157
1158 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vlcs(): bad fragment number (%d -> %d ?)\n",
1159 first_fragment, last_fragment);
1160 return 0;
1161 }
1162
1163 for (i = first_fragment; i <= last_fragment; i++) {
1164
1165 fragment = &s->all_fragments[s->coded_fragment_list[i]];
1166 if (fragment->coeff_count > coeff_index)
1167 continue;
1168
1169 if (!eob_run) {
1170 /* decode a VLC into a token */
1171 token = get_vlc2(gb, table->table, 5, 3);
1172 debug_vlc(" token = %2d, ", token);
1173 /* use the token to get a zero run, a coefficient, and an eob run */
1174 if (token <= 6) {
1175 eob_run = eob_run_base[token];
1176 if (eob_run_get_bits[token])
1177 eob_run += get_bits(gb, eob_run_get_bits[token]);
1178 coeff = zero_run = 0;
1179 } else {
1180 bits_to_get = coeff_get_bits[token];
1181 if (!bits_to_get)
1182 coeff = coeff_tables[token][0];
1183 else
1184 coeff = coeff_tables[token][get_bits(gb, bits_to_get)];
1185
1186 zero_run = zero_run_base[token];
1187 if (zero_run_get_bits[token])
1188 zero_run += get_bits(gb, zero_run_get_bits[token]);
1189 }
1190 }
1191
1192 if (!eob_run) {
1193 fragment->coeff_count += zero_run;
1194 if (fragment->coeff_count < 64){
1195 fragment->next_coeff->coeff= coeff;
1196 fragment->next_coeff->index= perm[fragment->coeff_count++]; //FIXME perm here already?
1197 fragment->next_coeff->next= s->next_coeff;
1198 s->next_coeff->next=NULL;
1199 fragment->next_coeff= s->next_coeff++;
1200 }
1201 debug_vlc(" fragment %d coeff = %d\n",
1202 s->coded_fragment_list[i], fragment->next_coeff[coeff_index]);
1203 } else {
1204 fragment->coeff_count |= 128;
1205 debug_vlc(" fragment %d eob with %d coefficients\n",
1206 s->coded_fragment_list[i], fragment->coeff_count&127);
1207 eob_run--;
1208 }
1209 }
1210
1211 return eob_run;
1212 }
1213
1214 /*
1215 * This function unpacks all of the DCT coefficient data from the
1216 * bitstream.
1217 */
1218 static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1219 {
1220 int i;
1221 int dc_y_table;
1222 int dc_c_table;
1223 int ac_y_table;
1224 int ac_c_table;
1225 int residual_eob_run = 0;
1226
1227 /* fetch the DC table indices */
1228 dc_y_table = get_bits(gb, 4);
1229 dc_c_table = get_bits(gb, 4);
1230
1231 /* unpack the Y plane DC coefficients */
1232 debug_vp3(" vp3: unpacking Y plane DC coefficients using table %d\n",
1233 dc_y_table);
1234 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1235 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1236
1237 /* unpack the C plane DC coefficients */
1238 debug_vp3(" vp3: unpacking C plane DC coefficients using table %d\n",
1239 dc_c_table);
1240 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1241 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1242
1243 /* fetch the AC table indices */
1244 ac_y_table = get_bits(gb, 4);
1245 ac_c_table = get_bits(gb, 4);
1246
1247 /* unpack the group 1 AC coefficients (coeffs 1-5) */
1248 for (i = 1; i <= 5; i++) {
1249
1250 debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n",
1251 i, ac_y_table);
1252 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_y_table], i,
1253 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1254
1255 debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n",
1256 i, ac_c_table);
1257 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_c_table], i,
1258 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1259 }
1260
1261 /* unpack the group 2 AC coefficients (coeffs 6-14) */
1262 for (i = 6; i <= 14; i++) {
1263
1264 debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n",
1265 i, ac_y_table);
1266 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_y_table], i,
1267 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1268
1269 debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n",
1270 i, ac_c_table);
1271 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_c_table], i,
1272 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1273 }
1274
1275 /* unpack the group 3 AC coefficients (coeffs 15-27) */
1276 for (i = 15; i <= 27; i++) {
1277
1278 debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n",
1279 i, ac_y_table);
1280 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_y_table], i,
1281 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1282
1283 debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n",
1284 i, ac_c_table);
1285 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_c_table], i,
1286 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1287 }
1288
1289 /* unpack the group 4 AC coefficients (coeffs 28-63) */
1290 for (i = 28; i <= 63; i++) {
1291
1292 debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n",
1293 i, ac_y_table);
1294 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_y_table], i,
1295 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1296
1297 debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n",
1298 i, ac_c_table);
1299 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_c_table], i,
1300 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1301 }
1302
1303 return 0;
1304 }
1305
1306 /*
1307 * This function reverses the DC prediction for each coded fragment in
1308 * the frame. Much of this function is adapted directly from the original
1309 * VP3 source code.
1310 */
1311 #define COMPATIBLE_FRAME(x) \
1312 (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1313 #define FRAME_CODED(x) (s->all_fragments[x].coding_method != MODE_COPY)
1314 #define DC_COEFF(u) (s->coeffs[u].index ? 0 : s->coeffs[u].coeff) //FIXME do somethin to simplify this
1315
1316 static void reverse_dc_prediction(Vp3DecodeContext *s,
1317 int first_fragment,
1318 int fragment_width,
1319 int fragment_height)
1320 {
1321
1322 #define PUL 8
1323 #define PU 4
1324 #define PUR 2
1325 #define PL 1
1326
1327 int x, y;
1328 int i = first_fragment;
1329
1330 short predicted_dc;
1331
1332 /* DC values for the left, up-left, up, and up-right fragments */
1333 int vl, vul, vu, vur;
1334
1335 /* indices for the left, up-left, up, and up-right fragments */
1336 int l, ul, u, ur;
1337
1338 /*
1339 * The 6 fields mean:
1340 * 0: up-left multiplier
1341 * 1: up multiplier
1342 * 2: up-right multiplier
1343 * 3: left multiplier
1344 */
1345 int predictor_transform[16][4] = {
1346 { 0, 0, 0, 0},
1347 { 0, 0, 0,128}, // PL
1348 { 0, 0,128, 0}, // PUR
1349 { 0, 0, 53, 75}, // PUR|PL
1350 { 0,128, 0, 0}, // PU
1351 { 0, 64, 0, 64}, // PU|PL
1352 { 0,128, 0, 0}, // PU|PUR
1353 { 0, 0, 53, 75}, // PU|PUR|PL
1354 {128, 0, 0, 0}, // PUL
1355 { 0, 0, 0,128}, // PUL|PL
1356 { 64, 0, 64, 0}, // PUL|PUR
1357 { 0, 0, 53, 75}, // PUL|PUR|PL
1358 { 0,128, 0, 0}, // PUL|PU
1359 {-104,116, 0,116}, // PUL|PU|PL
1360 { 24, 80, 24, 0}, // PUL|PU|PUR
1361 {-104,116, 0,116} // PUL|PU|PUR|PL
1362 };
1363
1364 /* This table shows which types of blocks can use other blocks for
1365 * prediction. For example, INTRA is the only mode in this table to
1366 * have a frame number of 0. That means INTRA blocks can only predict
1367 * from other INTRA blocks. There are 2 golden frame coding types;
1368 * blocks encoding in these modes can only predict from other blocks
1369 * that were encoded with these 1 of these 2 modes. */
1370 unsigned char compatible_frame[8] = {
1371 1, /* MODE_INTER_NO_MV */
1372 0, /* MODE_INTRA */
1373 1, /* MODE_INTER_PLUS_MV */
1374 1, /* MODE_INTER_LAST_MV */
1375 1, /* MODE_INTER_PRIOR_MV */
1376 2, /* MODE_USING_GOLDEN */
1377 2, /* MODE_GOLDEN_MV */
1378 1 /* MODE_INTER_FOUR_MV */
1379 };
1380 int current_frame_type;
1381
1382 /* there is a last DC predictor for each of the 3 frame types */
1383 short last_dc[3];
1384
1385 int transform = 0;
1386
1387 debug_vp3(" vp3: reversing DC prediction\n");
1388
1389 vul = vu = vur = vl = 0;
1390 last_dc[0] = last_dc[1] = last_dc[2] = 0;
1391
1392 /* for each fragment row... */
1393 for (y = 0; y < fragment_height; y++) {
1394
1395 /* for each fragment in a row... */
1396 for (x = 0; x < fragment_width; x++, i++) {
1397
1398 /* reverse prediction if this block was coded */
1399 if (s->all_fragments[i].coding_method != MODE_COPY) {
1400
1401 current_frame_type =
1402 compatible_frame[s->all_fragments[i].coding_method];
1403 debug_dc_pred(" frag %d: orig DC = %d, ",
1404 i, DC_COEFF(i));
1405
1406 transform= 0;
1407 if(x){
1408 l= i-1;
1409 vl = DC_COEFF(l);
1410 if(FRAME_CODED(l) && COMPATIBLE_FRAME(l))
1411 transform |= PL;
1412 }
1413 if(y){
1414 u= i-fragment_width;
1415 vu = DC_COEFF(u);
1416 if(FRAME_CODED(u) && COMPATIBLE_FRAME(u))
1417 transform |= PU;
1418 if(x){
1419 ul= i-fragment_width-1;
1420 vul = DC_COEFF(ul);
1421 if(FRAME_CODED(ul) && COMPATIBLE_FRAME(ul))
1422 transform |= PUL;
1423 }
1424 if(x + 1 < fragment_width){
1425 ur= i-fragment_width+1;
1426 vur = DC_COEFF(ur);
1427 if(FRAME_CODED(ur) && COMPATIBLE_FRAME(ur))
1428 transform |= PUR;
1429 }
1430 }
1431
1432 debug_dc_pred("transform = %d, ", transform);
1433
1434 if (transform == 0) {
1435
1436 /* if there were no fragments to predict from, use last
1437 * DC saved */
1438 predicted_dc = last_dc[current_frame_type];
1439 debug_dc_pred("from last DC (%d) = %d\n",
1440 current_frame_type, DC_COEFF(i));
1441
1442 } else {
1443
1444 /* apply the appropriate predictor transform */
1445 predicted_dc =
1446 (predictor_transform[transform][0] * vul) +
1447 (predictor_transform[transform][1] * vu) +
1448 (predictor_transform[transform][2] * vur) +
1449 (predictor_transform[transform][3] * vl);
1450
1451 predicted_dc /= 128;
1452
1453 /* check for outranging on the [ul u l] and
1454 * [ul u ur l] predictors */
1455 if ((transform == 13) || (transform == 15)) {
1456 if (ABS(predicted_dc - vu) > 128)
1457 predicted_dc = vu;
1458 else if (ABS(predicted_dc - vl) > 128)
1459 predicted_dc = vl;
1460 else if (ABS(predicted_dc - vul) > 128)
1461 predicted_dc = vul;
1462 }
1463
1464 debug_dc_pred("from pred DC = %d\n",
1465 DC_COEFF(i));
1466 }
1467
1468 /* at long last, apply the predictor */
1469 if(s->coeffs[i].index){
1470 *s->next_coeff= s->coeffs[i];
1471 s->coeffs[i].index=0;
1472 s->coeffs[i].coeff=0;
1473 s->coeffs[i].next= s->next_coeff++;
1474 }
1475 s->coeffs[i].coeff += predicted_dc;
1476 /* save the DC */
1477 last_dc[current_frame_type] = DC_COEFF(i);
1478 if(DC_COEFF(i) && !(s->all_fragments[i].coeff_count&127)){
1479 s->all_fragments[i].coeff_count= 129;
1480 // s->all_fragments[i].next_coeff= s->next_coeff;
1481 s->coeffs[i].next= s->next_coeff;
1482 (s->next_coeff++)->next=NULL;
1483 }
1484 }
1485 }
1486 }
1487 }
1488
1489
1490 static void horizontal_filter(unsigned char *first_pixel, int stride,
1491 int *bounding_values);
1492 static void vertical_filter(unsigned char *first_pixel, int stride,
1493 int *bounding_values);
1494
1495 /*
1496 * Perform the final rendering for a particular slice of data.
1497 * The slice number ranges from 0..(macroblock_height - 1).
1498 */
1499 static void render_slice(Vp3DecodeContext *s, int slice)
1500 {
1501 int x;
1502 int m, n;
1503 int16_t *dequantizer;
1504 DECLARE_ALIGNED_16(DCTELEM, block[64]);
1505 int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1506 int motion_halfpel_index;
1507 uint8_t *motion_source;
1508 int plane;
1509 int current_macroblock_entry = slice * s->macroblock_width * 6;
1510
1511 if (slice >= s->macroblock_height)
1512 return;
1513
1514 for (plane = 0; plane < 3; plane++) {
1515 uint8_t *output_plane = s->current_frame.data [plane];
1516 uint8_t * last_plane = s-> last_frame.data [plane];
1517 uint8_t *golden_plane = s-> golden_frame.data [plane];
1518 int stride = s->current_frame.linesize[plane];
1519 int plane_width = s->width >> !!plane;
1520 int plane_height = s->height >> !!plane;
1521 int y = slice * FRAGMENT_PIXELS << !plane ;
1522 int slice_height = y + (FRAGMENT_PIXELS << !plane);
1523 int i = s->macroblock_fragments[current_macroblock_entry + plane + 3*!!plane];
1524
1525 if (!s->flipped_image) stride = -stride;
1526
1527
1528 if(ABS(stride) > 2048)
1529 return; //various tables are fixed size
1530
1531 /* for each fragment row in the slice (both of them)... */
1532 for (; y < slice_height; y += 8) {
1533
1534 /* for each fragment in a row... */
1535 for (x = 0; x < plane_width; x += 8, i++) {
1536
1537 if ((i < 0) || (i >= s->fragment_count)) {
1538 av_log(s->avctx, AV_LOG_ERROR, " vp3:render_slice(): bad fragment number (%d)\n", i);
1539 return;
1540 }
1541
1542 /* transform if this block was coded */
1543 if ((s->all_fragments[i].coding_method != MODE_COPY) &&
1544 !((s->avctx->flags & CODEC_FLAG_GRAY) && plane)) {
1545
1546 if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
1547 (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
1548 motion_source= golden_plane;
1549 else
1550 motion_source= last_plane;
1551
1552 motion_source += s->all_fragments[i].first_pixel;
1553 motion_halfpel_index = 0;
1554
1555 /* sort out the motion vector if this fragment is coded
1556 * using a motion vector method */
1557 if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1558 (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
1559 int src_x, src_y;
1560 motion_x = s->all_fragments[i].motion_x;
1561 motion_y = s->all_fragments[i].motion_y;
1562 if(plane){
1563 motion_x= (motion_x>>1) | (motion_x&1);
1564 motion_y= (motion_y>>1) | (motion_y&1);
1565 }
1566
1567 src_x= (motion_x>>1) + x;
1568 src_y= (motion_y>>1) + y;
1569 if ((motion_x == 127) || (motion_y == 127))
1570 av_log(s->avctx, AV_LOG_ERROR, " help! got invalid motion vector! (%X, %X)\n", motion_x, motion_y);
1571
1572 motion_halfpel_index = motion_x & 0x01;
1573 motion_source += (motion_x >> 1);
1574
1575 motion_halfpel_index |= (motion_y & 0x01) << 1;
1576 motion_source += ((motion_y >> 1) * stride);
1577
1578 if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
1579 uint8_t *temp= s->edge_emu_buffer;
1580 if(stride<0) temp -= 9*stride;
1581 else temp += 9*stride;
1582
1583 ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
1584 motion_source= temp;
1585 }
1586 }
1587
1588
1589 /* first, take care of copying a block from either the
1590 * previous or the golden frame */
1591 if (s->all_fragments[i].coding_method != MODE_INTRA) {
1592 /* Note, it is possible to implement all MC cases with
1593 put_no_rnd_pixels_l2 which would look more like the
1594 VP3 source but this would be slower as
1595 put_no_rnd_pixels_tab is better optimzed */
1596 if(motion_halfpel_index != 3){
1597 s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1598 output_plane + s->all_fragments[i].first_pixel,
1599 motion_source, stride, 8);
1600 }else{
1601 int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
1602 s->dsp.put_no_rnd_pixels_l2[1](
1603 output_plane + s->all_fragments[i].first_pixel,
1604 motion_source - d,
1605 motion_source + stride + 1 + d,
1606 stride, 8);
1607 }
1608 dequantizer = s->qmat[1][plane];
1609 }else{
1610 dequantizer = s->qmat[0][plane];
1611 }
1612
1613 /* dequantize the DCT coefficients */
1614 debug_idct("fragment %d, coding mode %d, DC = %d, dequant = %d:\n",
1615 i, s->all_fragments[i].coding_method,
1616 DC_COEFF(i), dequantizer[0]);
1617
1618 if(s->avctx->idct_algo==FF_IDCT_VP3){
1619 Coeff *coeff= s->coeffs + i;
1620 memset(block, 0, sizeof(block));
1621 while(coeff->next){
1622 block[coeff->index]= coeff->coeff * dequantizer[coeff->index];
1623 coeff= coeff->next;
1624 }
1625 }else{
1626 Coeff *coeff= s->coeffs + i;
1627 memset(block, 0, sizeof(block));
1628 while(coeff->next){
1629 block[coeff->index]= (coeff->coeff * dequantizer[coeff->index] + 2)>>2;
1630 coeff= coeff->next;
1631 }
1632 }
1633
1634 /* invert DCT and place (or add) in final output */
1635
1636 if (s->all_fragments[i].coding_method == MODE_INTRA) {
1637 if(s->avctx->idct_algo!=FF_IDCT_VP3)
1638 block[0] += 128<<3;
1639 s->dsp.idct_put(
1640 output_plane + s->all_fragments[i].first_pixel,
1641 stride,
1642 block);
1643 } else {
1644 s->dsp.idct_add(
1645 output_plane + s->all_fragments[i].first_pixel,
1646 stride,
1647 block);
1648 }
1649
1650 debug_idct("block after idct_%s():\n",
1651 (s->all_fragments[i].coding_method == MODE_INTRA)?
1652 "put" : "add");
1653 for (m = 0; m < 8; m++) {
1654 for (n = 0; n < 8; n++) {
1655 debug_idct(" %3d", *(output_plane +
1656 s->all_fragments[i].first_pixel + (m * stride + n)));
1657 }
1658 debug_idct("\n");
1659 }
1660 debug_idct("\n");
1661
1662 } else {
1663
1664 /* copy directly from the previous frame */
1665 s->dsp.put_pixels_tab[1][0](
1666 output_plane + s->all_fragments[i].first_pixel,
1667 last_plane + s->all_fragments[i].first_pixel,
1668 stride, 8);
1669
1670 }
1671 #if 0
1672 /* perform the left edge filter if:
1673 * - the fragment is not on the left column
1674 * - the fragment is coded in this frame
1675 * - the fragment is not coded in this frame but the left
1676 * fragment is coded in this frame (this is done instead
1677 * of a right edge filter when rendering the left fragment
1678 * since this fragment is not available yet) */
1679 if ((x > 0) &&
1680 ((s->all_fragments[i].coding_method != MODE_COPY) ||
1681 ((s->all_fragments[i].coding_method == MODE_COPY) &&
1682 (s->all_fragments[i - 1].coding_method != MODE_COPY)) )) {
1683 horizontal_filter(
1684 output_plane + s->all_fragments[i].first_pixel + 7*stride,
1685 -stride, s->bounding_values_array + 127);
1686 }
1687
1688 /* perform the top edge filter if:
1689 * - the fragment is not on the top row
1690 * - the fragment is coded in this frame
1691 * - the fragment is not coded in this frame but the above
1692 * fragment is coded in this frame (this is done instead
1693 * of a bottom edge filter when rendering the above
1694 * fragment since this fragment is not available yet) */
1695 if ((y > 0) &&
1696 ((s->all_fragments[i].coding_method != MODE_COPY) ||
1697 ((s->all_fragments[i].coding_method == MODE_COPY) &&
1698 (s->all_fragments[i - fragment_width].coding_method != MODE_COPY)) )) {
1699 vertical_filter(
1700 output_plane + s->all_fragments[i].first_pixel - stride,
1701 -stride, s->bounding_values_array + 127);
1702 }
1703 #endif
1704 }
1705 }
1706 }
1707
1708 /* this looks like a good place for slice dispatch... */
1709 /* algorithm:
1710 * if (slice == s->macroblock_height - 1)
1711 * dispatch (both last slice & 2nd-to-last slice);
1712 * else if (slice > 0)
1713 * dispatch (slice - 1);
1714 */
1715
1716 emms_c();
1717 }
1718
1719 static void horizontal_filter(unsigned char *first_pixel, int stride,
1720 int *bounding_values)
1721 {
1722 unsigned char *end;
1723 int filter_value;
1724
1725 for (end= first_pixel + 8*stride; first_pixel != end; first_pixel += stride) {
1726 filter_value =
1727 (first_pixel[-2] - first_pixel[ 1])
1728 +3*(first_pixel[ 0] - first_pixel[-1]);
1729 filter_value = bounding_values[(filter_value + 4) >> 3];
1730 first_pixel[-1] = clip_uint8(first_pixel[-1] + filter_value);
1731 first_pixel[ 0] = clip_uint8(first_pixel[ 0] - filter_value);
1732 }
1733 }
1734
1735 static void vertical_filter(unsigned char *first_pixel, int stride,
1736 int *bounding_values)
1737 {
1738 unsigned char *end;
1739 int filter_value;
1740 const int nstride= -stride;
1741
1742 for (end= first_pixel + 8; first_pixel < end; first_pixel++) {
1743 filter_value =
1744 (first_pixel[2 * nstride] - first_pixel[ stride])
1745 +3*(first_pixel[0 ] - first_pixel[nstride]);
1746 filter_value = bounding_values[(filter_value + 4) >> 3];
1747 first_pixel[nstride] = clip_uint8(first_pixel[nstride] + filter_value);
1748 first_pixel[0] = clip_uint8(first_pixel[0] - filter_value);
1749 }
1750 }
1751
1752 static void apply_loop_filter(Vp3DecodeContext *s)
1753 {
1754 int plane;
1755 int x, y;
1756 int *bounding_values= s->bounding_values_array+127;
1757
1758 #if 0
1759 int bounding_values_array[256];
1760 int filter_limit;
1761
1762 /* find the right loop limit value */
1763 for (x = 63; x >= 0; x--) {
1764 if (vp31_ac_scale_factor[x] >= s->quality_index)
1765 break;
1766 }
1767 filter_limit = vp31_filter_limit_values[s->quality_index];
1768
1769 /* set up the bounding values */
1770 memset(bounding_values_array, 0, 256 * sizeof(int));
1771 for (x = 0; x < filter_limit; x++) {
1772 bounding_values[-x - filter_limit] = -filter_limit + x;
1773 bounding_values[-x] = -x;
1774 bounding_values[x] = x;
1775 bounding_values[x + filter_limit] = filter_limit - x;
1776 }
1777 #endif
1778
1779 for (plane = 0; plane < 3; plane++) {
1780 int width = s->fragment_width >> !!plane;
1781 int height = s->fragment_height >> !!plane;
1782 int fragment = s->fragment_start [plane];
1783 int stride = s->current_frame.linesize[plane];
1784 uint8_t *plane_data = s->current_frame.data [plane];
1785 if (!s->flipped_image) stride = -stride;
1786
1787 for (y = 0; y < height; y++) {
1788
1789 for (x = 0; x < width; x++) {
1790 START_TIMER
1791 /* do not perform left edge filter for left columns frags */
1792 if ((x > 0) &&
1793 (s->all_fragments[fragment].coding_method != MODE_COPY)) {
1794 horizontal_filter(
1795 plane_data + s->all_fragments[fragment].first_pixel,
1796 stride, bounding_values);
1797 }
1798
1799 /* do not perform top edge filter for top row fragments */
1800 if ((y > 0) &&
1801 (s->all_fragments[fragment].coding_method != MODE_COPY)) {
1802 vertical_filter(
1803 plane_data + s->all_fragments[fragment].first_pixel,
1804 stride, bounding_values);
1805 }
1806
1807 /* do not perform right edge filter for right column
1808 * fragments or if right fragment neighbor is also coded
1809 * in this frame (it will be filtered in next iteration) */
1810 if ((x < width - 1) &&
1811 (s->all_fragments[fragment].coding_method != MODE_COPY) &&
1812 (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1813 horizontal_filter(
1814 plane_data + s->all_fragments[fragment + 1].first_pixel,
1815 stride, bounding_values);
1816 }
1817
1818 /* do not perform bottom edge filter for bottom row
1819 * fragments or if bottom fragment neighbor is also coded
1820 * in this frame (it will be filtered in the next row) */
1821 if ((y < height - 1) &&
1822 (s->all_fragments[fragment].coding_method != MODE_COPY) &&
1823 (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1824 vertical_filter(
1825 plane_data + s->all_fragments[fragment + width].first_pixel,
1826 stride, bounding_values);
1827 }
1828
1829 fragment++;
1830 STOP_TIMER("loop filter")
1831 }
1832 }
1833 }
1834 }
1835
1836 /*
1837 * This function computes the first pixel addresses for each fragment.
1838 * This function needs to be invoked after the first frame is allocated
1839 * so that it has access to the plane strides.
1840 */
1841 static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s)
1842 {
1843
1844 int i, x, y;
1845
1846 /* figure out the first pixel addresses for each of the fragments */
1847 /* Y plane */
1848 i = 0;
1849 for (y = s->fragment_height; y > 0; y--) {
1850 for (x = 0; x < s->fragment_width; x++) {
1851 s->all_fragments[i++].first_pixel =
1852 s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
1853 s->golden_frame.linesize[0] +
1854 x * FRAGMENT_PIXELS;
1855 debug_init(" fragment %d, first pixel @ %d\n",
1856 i-1, s->all_fragments[i-1].first_pixel);
1857 }
1858 }
1859
1860 /* U plane */
1861 i = s->fragment_start[1];
1862 for (y = s->fragment_height / 2; y > 0; y--) {
1863 for (x = 0; x < s->fragment_width / 2; x++) {
1864 s->all_fragments[i++].first_pixel =
1865 s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
1866 s->golden_frame.linesize[1] +
1867 x * FRAGMENT_PIXELS;
1868 debug_init(" fragment %d, first pixel @ %d\n",
1869 i-1, s->all_fragments[i-1].first_pixel);
1870 }
1871 }
1872
1873 /* V plane */
1874 i = s->fragment_start[2];
1875 for (y = s->fragment_height / 2; y > 0; y--) {
1876 for (x = 0; x < s->fragment_width / 2; x++) {
1877 s->all_fragments[i++].first_pixel =
1878 s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
1879 s->golden_frame.linesize[2] +
1880 x * FRAGMENT_PIXELS;
1881 debug_init(" fragment %d, first pixel @ %d\n",
1882 i-1, s->all_fragments[i-1].first_pixel);
1883 }
1884 }
1885 }
1886
1887 /* FIXME: this should be merged with the above! */
1888 static void theora_calculate_pixel_addresses(Vp3DecodeContext *s)
1889 {
1890
1891 int i, x, y;
1892
1893 /* figure out the first pixel addresses for each of the fragments */
1894 /* Y plane */
1895 i = 0;
1896 for (y = 1; y <= s->fragment_height; y++) {
1897 for (x = 0; x < s->fragment_width; x++) {
1898 s->all_fragments[i++].first_pixel =
1899 s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
1900 s->golden_frame.linesize[0] +
1901 x * FRAGMENT_PIXELS;
1902 debug_init(" fragment %d, first pixel @ %d\n",
1903 i-1, s->all_fragments[i-1].first_pixel);
1904 }
1905 }
1906
1907 /* U plane */
1908 i = s->fragment_start[1];
1909 for (y = 1; y <= s->fragment_height / 2; y++) {
1910 for (x = 0; x < s->fragment_width / 2; x++) {
1911 s->all_fragments[i++].first_pixel =
1912 s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
1913 s->golden_frame.linesize[1] +
1914 x * FRAGMENT_PIXELS;
1915 debug_init(" fragment %d, first pixel @ %d\n",
1916 i-1, s->all_fragments[i-1].first_pixel);
1917 }
1918 }
1919
1920 /* V plane */
1921 i = s->fragment_start[2];
1922 for (y = 1; y <= s->fragment_height / 2; y++) {
1923 for (x = 0; x < s->fragment_width / 2; x++) {
1924 s->all_fragments[i++].first_pixel =
1925 s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
1926 s->golden_frame.linesize[2] +
1927 x * FRAGMENT_PIXELS;
1928 debug_init(" fragment %d, first pixel @ %d\n",
1929 i-1, s->all_fragments[i-1].first_pixel);
1930 }
1931 }
1932 }
1933
1934 /*
1935 * This is the ffmpeg/libavcodec API init function.
1936 */
1937 static int vp3_decode_init(AVCodecContext *avctx)
1938 {
1939 Vp3DecodeContext *s = avctx->priv_data;
1940 int i, inter, plane;
1941 int c_width;
1942 int c_height;
1943 int y_superblock_count;
1944 int c_superblock_count;
1945
1946 if (avctx->codec_tag == MKTAG('V','P','3','0'))
1947 s->version = 0;
1948 else
1949 s->version = 1;
1950
1951 s->avctx = avctx;
1952 s->width = (avctx->width + 15) & 0xFFFFFFF0;
1953 s->height = (avctx->height + 15) & 0xFFFFFFF0;
1954 avctx->pix_fmt = PIX_FMT_YUV420P;
1955 avctx->has_b_frames = 0;
1956 if(avctx->idct_algo==FF_IDCT_AUTO)
1957 avctx->idct_algo=FF_IDCT_VP3;
1958 dsputil_init(&s->dsp, avctx);
1959
1960 ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
1961
1962 /* initialize to an impossible value which will force a recalculation
1963 * in the first frame decode */
1964 s->quality_index = -1;
1965
1966 s->y_superblock_width = (s->width + 31) / 32;
1967 s->y_superblock_height = (s->height + 31) / 32;
1968 y_superblock_count = s->y_superblock_width * s->y_superblock_height;
1969
1970 /* work out the dimensions for the C planes */
1971 c_width = s->width / 2;
1972 c_height = s->height / 2;
1973 s->c_superblock_width = (c_width + 31) / 32;
1974 s->c_superblock_height = (c_height + 31) / 32;
1975 c_superblock_count = s->c_superblock_width * s->c_superblock_height;
1976
1977 s->superblock_count = y_superblock_count + (c_superblock_count * 2);
1978 s->u_superblock_start = y_superblock_count;
1979 s->v_superblock_start = s->u_superblock_start + c_superblock_count;
1980 s->superblock_coding = av_malloc(s->superblock_count);
1981
1982 s->macroblock_width = (s->width + 15) / 16;
1983 s->macroblock_height = (s->height + 15) / 16;
1984 s->macroblock_count = s->macroblock_width * s->macroblock_height;
1985
1986 s->fragment_width = s->width / FRAGMENT_PIXELS;
1987 s->fragment_height = s->height / FRAGMENT_PIXELS;
1988
1989 /* fragment count covers all 8x8 blocks for all 3 planes */
1990 s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
1991 s->fragment_start[1] = s->fragment_width * s->fragment_height;
1992 s->fragment_start[2] = s->fragment_width * s->fragment_height * 5 / 4;
1993
1994 debug_init(" Y plane: %d x %d\n", s->width, s->height);
1995 debug_init(" C plane: %d x %d\n", c_width, c_height);
1996 debug_init(" Y superblocks: %d x %d, %d total\n",
1997 s->y_superblock_width, s->y_superblock_height, y_superblock_count);
1998 debug_init(" C superblocks: %d x %d, %d total\n",
1999 s->c_superblock_width, s->c_superblock_height, c_superblock_count);
2000 debug_init(" total superblocks = %d, U starts @ %d, V starts @ %d\n",
2001 s->superblock_count, s->u_superblock_start, s->v_superblock_start);
2002 debug_init(" macroblocks: %d x %d, %d total\n",
2003 s->macroblock_width, s->macroblock_height, s->macroblock_count);
2004 debug_init(" %d fragments, %d x %d, u starts @ %d, v starts @ %d\n",
2005 s->fragment_count,
2006 s->fragment_width,
2007 s->fragment_height,
2008 s->fragment_start[1],
2009 s->fragment_start[2]);
2010
2011 s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
2012 s->coeffs = av_malloc(s->fragment_count * sizeof(Coeff) * 65);
2013 s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int));
2014 s->pixel_addresses_inited = 0;
2015
2016 if (!s->theora_tables)
2017 {
2018 for (i = 0; i < 64; i++) {
2019 s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
2020 s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
2021 s->base_matrix[0][i] = vp31_intra_y_dequant[i];
2022 s->base_matrix[1][i] = vp31_intra_c_dequant[i];
2023 s->base_matrix[2][i] = vp31_inter_dequant[i];
2024 s->filter_limit_values[i] = vp31_filter_limit_values[i];
2025 }
2026
2027 for(inter=0; inter<2; inter++){
2028 for(plane=0; plane<3; plane++){
2029 s->qr_count[inter][plane]= 1;
2030 s->qr_size [inter][plane][0]= 63;
2031 s->qr_base [inter][plane][0]=
2032 s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
2033 }
2034 }
2035
2036 /* init VLC tables */
2037 for (i = 0; i < 16; i++) {
2038
2039 /* DC histograms */
2040 init_vlc(&s->dc_vlc[i], 5, 32,
2041 &dc_bias[i][0][1], 4, 2,
2042 &dc_bias[i][0][0], 4, 2, 0);
2043
2044 /* group 1 AC histograms */
2045 init_vlc(&s->ac_vlc_1[i], 5, 32,
2046 &ac_bias_0[i][0][1], 4, 2,
2047 &ac_bias_0[i][0][0], 4, 2, 0);
2048
2049 /* group 2 AC histograms */
2050 init_vlc(&s->ac_vlc_2[i], 5, 32,
2051 &ac_bias_1[i][0][1], 4, 2,
2052 &ac_bias_1[i][0][0], 4, 2, 0);
2053
2054 /* group 3 AC histograms */
2055 init_vlc(&s->ac_vlc_3[i], 5, 32,
2056 &ac_bias_2[i][0][1], 4, 2,
2057 &ac_bias_2[i][0][0], 4, 2, 0);
2058
2059 /* group 4 AC histograms */
2060 init_vlc(&s->ac_vlc_4[i], 5, 32,
2061 &ac_bias_3[i][0][1], 4, 2,
2062 &ac_bias_3[i][0][0], 4, 2, 0);
2063 }
2064 } else {
2065 for (i = 0; i < 16; i++) {
2066
2067 /* DC histograms */
2068 init_vlc(&s->dc_vlc[i], 5, 32,
2069 &s->huffman_table[i][0][1], 4, 2,
2070 &s->huffman_table[i][0][0], 4, 2, 0);
2071
2072 /* group 1 AC histograms */
2073 init_vlc(&s->ac_vlc_1[i], 5, 32,
2074 &s->huffman_table[i+16][0][1], 4, 2,
2075 &s->huffman_table[i+16][0][0], 4, 2, 0);
2076
2077 /* group 2 AC histograms */
2078 init_vlc(&s->ac_vlc_2[i], 5, 32,
2079 &s->huffman_table[i+16*2][0][1], 4, 2,
2080 &s->huffman_table[i+16*2][0][0], 4, 2, 0);
2081
2082 /* group 3 AC histograms */
2083 init_vlc(&s->ac_vlc_3[i], 5, 32,
2084 &s->huffman_table[i+16*3][0][1], 4, 2,
2085 &s->huffman_table[i+16*3][0][0], 4, 2, 0);
2086
2087 /* group 4 AC histograms */
2088 init_vlc(&s->ac_vlc_4[i], 5, 32,
2089 &s->huffman_table[i+16*4][0][1], 4, 2,
2090 &s->huffman_table[i+16*4][0][0], 4, 2, 0);
2091 }
2092 }
2093
2094 init_vlc(&s->superblock_run_length_vlc, 6, 34,
2095 &superblock_run_length_vlc_table[0][1], 4, 2,
2096 &superblock_run_length_vlc_table[0][0], 4, 2, 0);
2097
2098 init_vlc(&s->fragment_run_length_vlc, 5, 30,
2099 &fragment_run_length_vlc_table[0][1], 4, 2,
2100 &fragment_run_length_vlc_table[0][0], 4, 2, 0);
2101
2102 init_vlc(&s->mode_code_vlc, 3, 8,
2103 &mode_code_vlc_table[0][1], 2, 1,
2104 &mode_code_vlc_table[0][0], 2, 1, 0);
2105
2106 init_vlc(&s->motion_vector_vlc, 6, 63,
2107 &motion_vector_vlc_table[0][1], 2, 1,
2108 &motion_vector_vlc_table[0][0], 2, 1, 0);
2109
2110 /* work out the block mapping tables */
2111 s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
2112 s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int));
2113 s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int));
2114 s->macroblock_coding = av_malloc(s->macroblock_count + 1);
2115 init_block_mapping(s);
2116
2117 for (i = 0; i < 3; i++) {
2118 s->current_frame.data[i] = NULL;
2119 s->last_frame.data[i] = NULL;
2120 s->golden_frame.data[i] = NULL;
2121 }
2122
2123 return 0;
2124 }
2125
2126 /*
2127 * This is the ffmpeg/libavcodec API frame decode function.
2128 */
2129 static int vp3_decode_frame(AVCodecContext *avctx,
2130 void *data, int *data_size,
2131 uint8_t *buf, int buf_size)
2132 {
2133 Vp3DecodeContext *s = avctx->priv_data;
2134 GetBitContext gb;
2135 static int counter = 0;
2136 int i;
2137
2138 init_get_bits(&gb, buf, buf_size * 8);
2139
2140 if (s->theora && get_bits1(&gb))
2141 {
2142 #if 1
2143 av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
2144 return -1;
2145 #else
2146 int ptype = get_bits(&gb, 7);
2147
2148 skip_bits(&gb, 6*8); /* "theora" */
2149
2150 switch(ptype)
2151 {
2152 case 1:
2153 theora_decode_comments(avctx, &gb);
2154 break;
2155 case 2:
2156 theora_decode_tables(avctx, &gb);
2157 init_dequantizer(s);
2158 break;
2159 default:
2160 av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype);
2161 }
2162 return buf_size;
2163 #endif
2164 }
2165
2166 s->keyframe = !get_bits1(&gb);
2167 if (!s->theora)
2168 skip_bits(&gb, 1);
2169 s->last_quality_index = s->quality_index;
2170
2171 s->nqis=0;
2172 do{
2173 s->qis[s->nqis++]= get_bits(&gb, 6);
2174 } while(s->theora >= 0x030200 && s->nqis<3 && get_bits1(&gb));
2175
2176 s->quality_index= s->qis[0];
2177
2178 if (s->avctx->debug & FF_DEBUG_PICT_INFO)
2179 av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
2180 s->keyframe?"key":"", counter, s->quality_index);
2181 counter++;
2182
2183 if (s->quality_index != s->last_quality_index) {
2184 init_dequantizer(s);
2185 init_loop_filter(s);
2186 }
2187
2188 if (s->keyframe) {
2189 if (!s->theora)
2190 {
2191 skip_bits(&gb, 4); /* width code */
2192 skip_bits(&gb, 4); /* height code */
2193 if (s->version)
2194 {
2195 s->version = get_bits(&gb, 5);
2196 if (counter == 1)
2197 av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
2198 }
2199 }
2200 if (s->version || s->theora)
2201 {
2202 if (get_bits1(&gb))
2203 av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
2204 skip_bits(&gb, 2); /* reserved? */
2205 }
2206
2207 if (s->last_frame.data[0] == s->golden_frame.data[0]) {
2208 if (s->golden_frame.data[0])
2209 avctx->release_buffer(avctx, &s->golden_frame);
2210 s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */
2211 } else {
2212 if (s->golden_frame.data[0])
2213 avctx->release_buffer(avctx, &s->golden_frame);
2214 if (s->last_frame.data[0])
2215 avctx->release_buffer(avctx, &s->last_frame);
2216 }
2217
2218 s->golden_frame.reference = 3;
2219 if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
2220 av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
2221 return -1;
2222 }
2223
2224 /* golden frame is also the current frame */
2225 s->current_frame= s->golden_frame;
2226
2227 /* time to figure out pixel addresses? */
2228 if (!s->pixel_addresses_inited)
2229 {
2230 if (!s->flipped_image)
2231 vp3_calculate_pixel_addresses(s);
2232 else
2233 theora_calculate_pixel_addresses(s);
2234 s->pixel_addresses_inited = 1;
2235 }
2236 } else {
2237 /* allocate a new current frame */
2238 s->current_frame.reference = 3;
2239 if (!s->pixel_addresses_inited) {
2240 av_log(s->avctx, AV_LOG_ERROR, "vp3: first frame not a keyframe\n");
2241 return -1;
2242 }
2243 if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
2244 av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
2245 return -1;
2246 }
2247 }
2248
2249 s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
2250 s->current_frame.qstride= 0;
2251
2252 {START_TIMER
2253 init_frame(s, &gb);
2254 STOP_TIMER("init_frame")}
2255
2256 #if KEYFRAMES_ONLY
2257 if (!s->keyframe) {
2258
2259 memcpy(s->current_frame.data[0], s->golden_frame.data[0],
2260 s->current_frame.linesize[0] * s->height);
2261 memcpy(s->current_frame.data[1], s->golden_frame.data[1],
2262 s->current_frame.linesize[1] * s->height / 2);
2263 memcpy(s->current_frame.data[2], s->golden_frame.data[2],
2264 s->current_frame.linesize[2] * s->height / 2);
2265
2266 } else {
2267 #endif
2268
2269 {START_TIMER
2270 if (unpack_superblocks(s, &gb)){
2271 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
2272 return -1;
2273 }
2274 STOP_TIMER("unpack_superblocks")}
2275 {START_TIMER
2276 if (unpack_modes(s, &gb)){
2277 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
2278 return -1;
2279 }
2280 STOP_TIMER("unpack_modes")}
2281 {START_TIMER
2282 if (unpack_vectors(s, &gb)){
2283 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
2284 return -1;
2285 }
2286 STOP_TIMER("unpack_vectors")}
2287 {START_TIMER
2288 if (unpack_dct_coeffs(s, &gb)){
2289 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
2290 return -1;
2291 }
2292 STOP_TIMER("unpack_dct_coeffs")}
2293 {START_TIMER
2294
2295 reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
2296 if ((avctx->flags & CODEC_FLAG_GRAY) == 0) {
2297 reverse_dc_prediction(s, s->fragment_start[1],
2298 s->fragment_width / 2, s->fragment_height / 2);
2299 reverse_dc_prediction(s, s->fragment_start[2],
2300 s->fragment_width / 2, s->fragment_height / 2);
2301 }
2302 STOP_TIMER("reverse_dc_prediction")}
2303 {START_TIMER
2304
2305 for (i = 0; i < s->macroblock_height; i++)
2306 render_slice(s, i);
2307 STOP_TIMER("render_fragments")}
2308
2309 {START_TIMER
2310 apply_loop_filter(s);
2311 STOP_TIMER("apply_loop_filter")}
2312 #if KEYFRAMES_ONLY
2313 }
2314 #endif
2315
2316 *data_size=sizeof(AVFrame);
2317 *(AVFrame*)data= s->current_frame;
2318
2319 /* release the last frame, if it is allocated and if it is not the
2320 * golden frame */
2321 if ((s->last_frame.data[0]) &&
2322 (s->last_frame.data[0] != s->golden_frame.data[0]))
2323 avctx->release_buffer(avctx, &s->last_frame);
2324
2325 /* shuffle frames (last = current) */
2326 s->last_frame= s->current_frame;
2327 s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
2328
2329 return buf_size;
2330 }
2331
2332 /*
2333 * This is the ffmpeg/libavcodec API module cleanup function.
2334 */
2335 static int vp3_decode_end(AVCodecContext *avctx)
2336 {
2337 Vp3DecodeContext *s = avctx->priv_data;
2338
2339 av_free(s->all_fragments);
2340 av_free(s->coeffs);
2341 av_free(s->coded_fragment_list);
2342 av_free(s->superblock_fragments);
2343 av_free(s->superblock_macroblocks);
2344 av_free(s->macroblock_fragments);
2345 av_free(s->macroblock_coding);
2346
2347 /* release all frames */
2348 if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0])
2349 avctx->release_buffer(avctx, &s->golden_frame);
2350 if (s->last_frame.data[0])
2351 avctx->release_buffer(avctx, &s->last_frame);
2352 /* no need to release the current_frame since it will always be pointing
2353 * to the same frame as either the golden or last frame */
2354
2355 return 0;
2356 }
2357
2358 static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
2359 {
2360 Vp3DecodeContext *s = avctx->priv_data;
2361
2362 if (get_bits(gb, 1)) {
2363 int token;
2364 if (s->entries >= 32) { /* overflow */
2365 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2366 return -1;
2367 }
2368 token = get_bits(gb, 5);
2369 //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
2370 s->huffman_table[s->hti][token][0] = s->hbits;
2371 s->huffman_table[s->hti][token][1] = s->huff_code_size;
2372 s->entries++;
2373 }
2374 else {
2375 if (s->huff_code_size >= 32) {/* overflow */
2376 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2377 return -1;
2378 }
2379 s->huff_code_size++;
2380 s->hbits <<= 1;
2381 read_huffman_tree(avctx, gb);
2382 s->hbits |= 1;
2383 read_huffman_tree(avctx, gb);
2384 s->hbits >>= 1;
2385 s->huff_code_size--;
2386 }
2387 return 0;
2388 }
2389
2390 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
2391 {
2392 Vp3DecodeContext *s = avctx->priv_data;
2393
2394 s->theora = get_bits_long(gb, 24);
2395 av_log(avctx, AV_LOG_INFO, "Theora bitstream version %X\n", s->theora);
2396
2397 /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
2398 /* but previous versions have the image flipped relative to vp3 */
2399 if (s->theora < 0x030200)
2400 {
2401 s->flipped_image = 1;
2402 av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
2403 }
2404
2405 s->width = get_bits(gb, 16) << 4;
2406 s->height = get_bits(gb, 16) << 4;
2407
2408 if(avcodec_check_dimensions(avctx, s->width, s->height)){
2409 av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
2410 s->width= s->height= 0;
2411 return -1;
2412 }
2413
2414 if (s->theora >= 0x030400)
2415 {
2416 skip_bits(gb, 32); /* total number of superblocks in a frame */
2417 // fixme, the next field is 36bits long
2418 skip_bits(gb, 32); /* total number of blocks in a frame */
2419 skip_bits(gb, 4); /* total number of blocks in a frame */
2420 skip_bits(gb, 32); /* total number of macroblocks in a frame */
2421
2422 skip_bits(gb, 24); /* frame width */
2423 skip_bits(gb, 24); /* frame height */
2424 }
2425 else
2426 {
2427 skip_bits(gb, 24); /* frame width */
2428 skip_bits(gb, 24); /* frame height */
2429 }
2430
2431 if (s->theora >= 0x030200) {
2432 skip_bits(gb, 8); /* offset x */
2433 skip_bits(gb, 8); /* offset y */
2434 }
2435
2436 skip_bits(gb, 32); /* fps numerator */
2437 skip_bits(gb, 32); /* fps denumerator */
2438 skip_bits(gb, 24); /* aspect numerator */
2439 skip_bits(gb, 24); /* aspect denumerator */
2440
2441 if (s->theora < 0x030200)
2442 skip_bits(gb, 5); /* keyframe frequency force */
2443 skip_bits(gb, 8); /* colorspace */
2444 if (s->theora >= 0x030400)
2445 skip_bits(gb, 2); /* pixel format: 420,res,422,444 */
2446 skip_bits(gb, 24); /* bitrate */
2447
2448 skip_bits(gb, 6); /* quality hint */
2449
2450 if (s->theora >= 0x030200)
2451 {
2452 skip_bits(gb, 5); /* keyframe frequency force */
2453
2454 if (s->theora < 0x030400)
2455 skip_bits(gb, 5); /* spare bits */
2456 }
2457
2458 // align_get_bits(gb);
2459
2460 avctx->width = s->width;
2461 avctx->height = s->height;
2462
2463 return 0;
2464 }
2465
2466 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2467 {
2468 Vp3DecodeContext *s = avctx->priv_data;
2469 int i, n, matrices, inter, plane;
2470
2471 if (s->theora >= 0x030200) {
2472 n = get_bits(gb, 3);
2473 /* loop filter limit values table */
2474 for (i = 0; i < 64; i++)
2475 s->filter_limit_values[i] = get_bits(gb, n);
2476 }
2477
2478 if (s->theora >= 0x030200)
2479 n = get_bits(gb, 4) + 1;
2480 else
2481 n = 16;
2482 /* quality threshold table */
2483 for (i = 0; i < 64; i++)
2484 s->coded_ac_scale_factor[i] = get_bits(gb, n);
2485
2486 if (s->theora >= 0x030200)
2487 n = get_bits(gb, 4) + 1;
2488 else
2489 n = 16;
2490 /* dc scale factor table */
2491 for (i = 0; i < 64; i++)
2492 s->coded_dc_scale_factor[i] = get_bits(gb, n);
2493
2494 if (s->theora >= 0x030200)
2495 matrices = get_bits(gb, 9) + 1;
2496 else
2497 matrices = 3;
2498
2499 if(matrices > 384){
2500 av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2501 return -1;
2502 }
2503
2504 for(n=0; n<matrices; n++){
2505 for (i = 0; i < 64; i++)
2506 s->base_matrix[n][i]= get_bits(gb, 8);
2507 }
2508
2509 for (inter = 0; inter <= 1; inter++) {
2510 for (plane = 0; plane <= 2; plane++) {
2511 int newqr= 1;
2512 if (inter || plane > 0)
2513 newqr = get_bits(gb, 1);
2514 if (!newqr) {
2515 int qtj, plj;
2516 if(inter && get_bits(gb, 1)){
2517 qtj = 0;
2518 plj = plane;
2519 }else{
2520 qtj= (3*inter + plane - 1) / 3;
2521 plj= (plane + 2) % 3;
2522 }
2523 s->qr_count[inter][plane]= s->qr_count[qtj][plj];
2524 memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
2525 memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
2526 } else {
2527 int qri= 0;
2528 int qi = 0;
2529
2530 for(;;){
2531 i= get_bits(gb, av_log2(matrices-1)+1);
2532 if(i>= matrices){
2533 av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
2534 return -1;
2535 }
2536 s->qr_base[inter][plane][qri]= i;
2537 if(qi >= 63)
2538 break;
2539 i = get_bits(gb, av_log2(63-qi)+1) + 1;
2540 s->qr_size[inter][plane][qri++]= i;
2541 qi += i;
2542 }
2543
2544 if (qi > 63) {
2545 av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2546 return -1;
2547 }
2548 s->qr_count[inter][plane]= qri;
2549 }
2550 }
2551 }
2552
2553 /* Huffman tables */
2554 for (s->hti = 0; s->hti < 80; s->hti++) {
2555 s->entries = 0;
2556 s->huff_code_size = 1;
2557 if (!get_bits(gb, 1)) {
2558 s->hbits = 0;
2559 read_huffman_tree(avctx, gb);
2560 s->hbits = 1;
2561 read_huffman_tree(avctx, gb);
2562 }
2563 }
2564
2565 s->theora_tables = 1;
2566
2567 return 0;
2568 }
2569
2570 static int theora_decode_init(AVCodecContext *avctx)
2571 {
2572 Vp3DecodeContext *s = avctx->priv_data;
2573 GetBitContext gb;
2574 int ptype;
2575 uint8_t *p= avctx->extradata;
2576 int op_bytes, i;
2577
2578 s->theora = 1;
2579
2580 if (!avctx->extradata_size)
2581 {
2582 av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2583 return -1;
2584 }
2585
2586 for(i=0;i<3;i++) {
2587 op_bytes = *(p++)<<8;
2588 op_bytes += *(p++);
2589
2590 init_get_bits(&gb, p, op_bytes);
2591 p += op_bytes;
2592
2593 ptype = get_bits(&gb, 8);
2594 debug_vp3("Theora headerpacket type: %x\n", ptype);
2595
2596 if (!(ptype & 0x80))
2597 {
2598 av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2599 // return -1;
2600 }
2601
2602 // FIXME: check for this aswell
2603 skip_bits(&gb, 6*8); /* "theora" */
2604
2605 switch(ptype)
2606 {
2607 case 0x80:
2608 theora_decode_header(avctx, &gb);
2609 break;
2610 case 0x81:
2611 // FIXME: is this needed? it breaks sometimes
2612 // theora_decode_comments(avctx, gb);
2613 break;
2614 case 0x82:
2615 theora_decode_tables(avctx, &gb);
2616 break;
2617 default:
2618 av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
2619 break;
2620 }
2621 if(8*op_bytes != get_bits_count(&gb))
2622 av_log(avctx, AV_LOG_ERROR, "%d bits left in packet %X\n", 8*op_bytes - get_bits_count(&gb), ptype);
2623 if (s->theora < 0x030200)
2624 break;
2625 }
2626
2627 vp3_decode_init(avctx);
2628 return 0;
2629 }
2630
2631 AVCodec vp3_decoder = {
2632 "vp3",
2633 CODEC_TYPE_VIDEO,
2634 CODEC_ID_VP3,
2635 sizeof(Vp3DecodeContext),
2636 vp3_decode_init,
2637 NULL,
2638 vp3_decode_end,
2639 vp3_decode_frame,
2640 0,
2641 NULL
2642 };
2643
2644 #ifndef CONFIG_LIBTHEORA
2645 AVCodec theora_decoder = {
2646 "theora",
2647 CODEC_TYPE_VIDEO,
2648 CODEC_ID_THEORA,
2649 sizeof(Vp3DecodeContext),
2650 theora_decode_init,
2651 NULL,
2652 vp3_decode_end,
2653 vp3_decode_frame,
2654 0,
2655 NULL
2656 };
2657 #endif