8631c8f5dbbbd84e3c6766879553b95560cdd6f0
[libav.git] / libavcodec / vp8.h
1 /*
2 * VP8 compatible video decoder
3 *
4 * Copyright (C) 2010 David Conrad
5 * Copyright (C) 2010 Ronald S. Bultje
6 * Copyright (C) 2010 Jason Garrett-Glaser
7 * Copyright (C) 2012 Daniel Kang
8 *
9 * This file is part of Libav.
10 *
11 * Libav is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2.1 of the License, or (at your option) any later version.
15 *
16 * Libav is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with Libav; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 */
25
26 #ifndef AVCODEC_VP8_H
27 #define AVCODEC_VP8_H
28
29 #include "libavutil/buffer.h"
30
31 #include "vp56.h"
32 #include "vp56data.h"
33 #include "vp8dsp.h"
34 #include "h264pred.h"
35 #include "thread.h"
36 #if HAVE_PTHREADS
37 #include <pthread.h>
38 #elif HAVE_W32THREADS
39 #include "w32pthreads.h"
40 #endif
41
42 #define VP8_MAX_QUANT 127
43
44 enum dct_token {
45 DCT_0,
46 DCT_1,
47 DCT_2,
48 DCT_3,
49 DCT_4,
50 DCT_CAT1,
51 DCT_CAT2,
52 DCT_CAT3,
53 DCT_CAT4,
54 DCT_CAT5,
55 DCT_CAT6,
56 DCT_EOB,
57
58 NUM_DCT_TOKENS
59 };
60
61 // used to signal 4x4 intra pred in luma MBs
62 #define MODE_I4x4 4
63
64 enum inter_mvmode {
65 VP8_MVMODE_ZERO = MODE_I4x4 + 1,
66 VP8_MVMODE_MV,
67 VP8_MVMODE_SPLIT
68 };
69
70 enum inter_splitmvmode {
71 VP8_SPLITMVMODE_16x8 = 0, ///< 2 16x8 blocks (vertical)
72 VP8_SPLITMVMODE_8x16, ///< 2 8x16 blocks (horizontal)
73 VP8_SPLITMVMODE_8x8, ///< 2x2 blocks of 8x8px each
74 VP8_SPLITMVMODE_4x4, ///< 4x4 blocks of 4x4px each
75 VP8_SPLITMVMODE_NONE, ///< (only used in prediction) no split MVs
76 };
77
78 typedef struct VP8FilterStrength {
79 uint8_t filter_level;
80 uint8_t inner_limit;
81 uint8_t inner_filter;
82 } VP8FilterStrength;
83
84 typedef struct VP8Macroblock {
85 uint8_t skip;
86 // todo: make it possible to check for at least (i4x4 or split_mv)
87 // in one op. are others needed?
88 uint8_t mode;
89 uint8_t ref_frame;
90 uint8_t partitioning;
91 uint8_t chroma_pred_mode;
92 uint8_t segment;
93 uint8_t intra4x4_pred_mode_mb[16];
94 uint8_t intra4x4_pred_mode_top[4];
95 VP56mv mv;
96 VP56mv bmv[16];
97 } VP8Macroblock;
98
99 typedef struct VP8ThreadData {
100 DECLARE_ALIGNED(16, int16_t, block)[6][4][16];
101 DECLARE_ALIGNED(16, int16_t, block_dc)[16];
102 /**
103 * This is the index plus one of the last non-zero coeff
104 * for each of the blocks in the current macroblock.
105 * So, 0 -> no coeffs
106 * 1 -> dc-only (special transform)
107 * 2+-> full transform
108 */
109 DECLARE_ALIGNED(16, uint8_t, non_zero_count_cache)[6][4];
110 /**
111 * For coeff decode, we need to know whether the above block had non-zero
112 * coefficients. This means for each macroblock, we need data for 4 luma
113 * blocks, 2 u blocks, 2 v blocks, and the luma dc block, for a total of 9
114 * per macroblock. We keep the last row in top_nnz.
115 */
116 DECLARE_ALIGNED(8, uint8_t, left_nnz)[9];
117 int thread_nr;
118 #if HAVE_THREADS
119 pthread_mutex_t lock;
120 pthread_cond_t cond;
121 #endif
122 int thread_mb_pos; // (mb_y << 16) | (mb_x & 0xFFFF)
123 int wait_mb_pos; // What the current thread is waiting on.
124 uint8_t *edge_emu_buffer;
125 VP8FilterStrength *filter_strength;
126 } VP8ThreadData;
127
128 typedef struct VP8Frame {
129 ThreadFrame tf;
130 AVBufferRef *seg_map;
131 } VP8Frame;
132
133 #define MAX_THREADS 8
134 typedef struct VP8Context {
135 VP8ThreadData *thread_data;
136 AVCodecContext *avctx;
137 VP8Frame *framep[4];
138 VP8Frame *next_framep[4];
139 VP8Frame *curframe;
140 VP8Frame *prev_frame;
141
142 uint16_t mb_width; /* number of horizontal MB */
143 uint16_t mb_height; /* number of vertical MB */
144 int linesize;
145 int uvlinesize;
146
147 uint8_t keyframe;
148 uint8_t deblock_filter;
149 uint8_t mbskip_enabled;
150 uint8_t profile;
151 VP56mv mv_min;
152 VP56mv mv_max;
153
154 int8_t sign_bias[4]; ///< one state [0, 1] per ref frame type
155 int ref_count[3];
156
157 /**
158 * Base parameters for segmentation, i.e. per-macroblock parameters.
159 * These must be kept unchanged even if segmentation is not used for
160 * a frame, since the values persist between interframes.
161 */
162 struct {
163 uint8_t enabled;
164 uint8_t absolute_vals;
165 uint8_t update_map;
166 int8_t base_quant[4];
167 int8_t filter_level[4]; ///< base loop filter level
168 } segmentation;
169
170 struct {
171 uint8_t simple;
172 uint8_t level;
173 uint8_t sharpness;
174 } filter;
175
176 VP8Macroblock *macroblocks;
177
178 uint8_t *intra4x4_pred_mode_top;
179 uint8_t intra4x4_pred_mode_left[4];
180
181 /**
182 * Macroblocks can have one of 4 different quants in a frame when
183 * segmentation is enabled.
184 * If segmentation is disabled, only the first segment's values are used.
185 */
186 struct {
187 // [0] - DC qmul [1] - AC qmul
188 int16_t luma_qmul[2];
189 int16_t luma_dc_qmul[2]; ///< luma dc-only block quant
190 int16_t chroma_qmul[2];
191 } qmat[4];
192
193 struct {
194 uint8_t enabled; ///< whether each mb can have a different strength based on mode/ref
195
196 /**
197 * filter strength adjustment for the following macroblock modes:
198 * [0-3] - i16x16 (always zero)
199 * [4] - i4x4
200 * [5] - zero mv
201 * [6] - inter modes except for zero or split mv
202 * [7] - split mv
203 * i16x16 modes never have any adjustment
204 */
205 int8_t mode[VP8_MVMODE_SPLIT+1];
206
207 /**
208 * filter strength adjustment for macroblocks that reference:
209 * [0] - intra / VP56_FRAME_CURRENT
210 * [1] - VP56_FRAME_PREVIOUS
211 * [2] - VP56_FRAME_GOLDEN
212 * [3] - altref / VP56_FRAME_GOLDEN2
213 */
214 int8_t ref[4];
215 } lf_delta;
216
217 uint8_t (*top_border)[16+8+8];
218 uint8_t (*top_nnz)[9];
219
220 VP56RangeCoder c; ///< header context, includes mb modes and motion vectors
221
222 /**
223 * These are all of the updatable probabilities for binary decisions.
224 * They are only implictly reset on keyframes, making it quite likely
225 * for an interframe to desync if a prior frame's header was corrupt
226 * or missing outright!
227 */
228 struct {
229 uint8_t segmentid[3];
230 uint8_t mbskip;
231 uint8_t intra;
232 uint8_t last;
233 uint8_t golden;
234 uint8_t pred16x16[4];
235 uint8_t pred8x8c[3];
236 uint8_t token[4][16][3][NUM_DCT_TOKENS-1];
237 uint8_t mvc[2][19];
238 } prob[2];
239
240 VP8Macroblock *macroblocks_base;
241 int invisible;
242 int update_last; ///< update VP56_FRAME_PREVIOUS with the current one
243 int update_golden; ///< VP56_FRAME_NONE if not updated, or which frame to copy if so
244 int update_altref;
245
246 /**
247 * If this flag is not set, all the probability updates
248 * are discarded after this frame is decoded.
249 */
250 int update_probabilities;
251
252 /**
253 * All coefficients are contained in separate arith coding contexts.
254 * There can be 1, 2, 4, or 8 of these after the header context.
255 */
256 int num_coeff_partitions;
257 VP56RangeCoder coeff_partition[8];
258 VideoDSPContext vdsp;
259 VP8DSPContext vp8dsp;
260 H264PredContext hpc;
261 vp8_mc_func put_pixels_tab[3][3][3];
262 VP8Frame frames[5];
263
264 int num_jobs;
265 /**
266 * This describes the macroblock memory layout.
267 * 0 -> Only width+height*2+1 macroblocks allocated (frame/single thread).
268 * 1 -> Macroblocks for entire frame alloced (sliced thread).
269 */
270 int mb_layout;
271 } VP8Context;
272
273 #endif /* AVCODEC_VP8_H */