2 * WMA compatible decoder
3 * Copyright (c) 2002 The FFmpeg Project.
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 * WMA compatible decoder.
29 #define BLOCK_MIN_BITS 7
30 #define BLOCK_MAX_BITS 11
31 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
33 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
35 /* XXX: find exact max size */
36 #define HIGH_BAND_MAX_SIZE 16
38 #define NB_LSP_COEFS 10
40 /* XXX: is it a suitable value ? */
41 #define MAX_CODED_SUPERFRAME_SIZE 4096
43 #define MAX_CHANNELS 2
45 #define NOISE_TAB_SIZE 8192
47 #define LSP_POW_BITS 7
49 typedef struct WMADecodeContext
{
54 int version
; /* 1 = 0x160 (WMAV1), 2 = 0x161 (WMAV2) */
56 int use_bit_reservoir
;
57 int use_variable_block_len
;
58 int use_exp_vlc
; /* exponent coding: 0 = lsp, 1 = vlc + delta */
59 int use_noise_coding
; /* true if perceptual noise is added */
62 int exponent_sizes
[BLOCK_NB_SIZES
];
63 uint16_t exponent_bands
[BLOCK_NB_SIZES
][25];
64 int high_band_start
[BLOCK_NB_SIZES
]; /* index of first coef in high band */
65 int coefs_start
; /* first coded coef */
66 int coefs_end
[BLOCK_NB_SIZES
]; /* max number of coded coefficients */
67 int exponent_high_sizes
[BLOCK_NB_SIZES
];
68 int exponent_high_bands
[BLOCK_NB_SIZES
][HIGH_BAND_MAX_SIZE
];
71 /* coded values in high bands */
72 int high_band_coded
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
73 int high_band_values
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
75 /* there are two possible tables for spectral coefficients */
77 uint16_t *run_table
[2];
78 uint16_t *level_table
[2];
80 int frame_len
; /* frame length in samples */
81 int frame_len_bits
; /* frame_len = 1 << frame_len_bits */
82 int nb_block_sizes
; /* number of block sizes */
84 int reset_block_lengths
;
85 int block_len_bits
; /* log2 of current block length */
86 int next_block_len_bits
; /* log2 of next block length */
87 int prev_block_len_bits
; /* log2 of prev block length */
88 int block_len
; /* block length in samples */
89 int block_num
; /* block number in current frame */
90 int block_pos
; /* current position in frame */
91 uint8_t ms_stereo
; /* true if mid/side stereo mode */
92 uint8_t channel_coded
[MAX_CHANNELS
]; /* true if channel is coded */
93 float exponents
[MAX_CHANNELS
][BLOCK_MAX_SIZE
] __attribute__((aligned(16)));
94 float max_exponent
[MAX_CHANNELS
];
95 int16_t coefs1
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
96 float coefs
[MAX_CHANNELS
][BLOCK_MAX_SIZE
] __attribute__((aligned(16)));
97 MDCTContext mdct_ctx
[BLOCK_NB_SIZES
];
98 float *windows
[BLOCK_NB_SIZES
];
99 FFTSample mdct_tmp
[BLOCK_MAX_SIZE
] __attribute__((aligned(16))); /* temporary storage for imdct */
100 /* output buffer for one frame and the last for IMDCT windowing */
101 float frame_out
[MAX_CHANNELS
][BLOCK_MAX_SIZE
* 2] __attribute__((aligned(16)));
102 /* last frame info */
103 uint8_t last_superframe
[MAX_CODED_SUPERFRAME_SIZE
+ 4]; /* padding added */
105 int last_superframe_len
;
106 float noise_table
[NOISE_TAB_SIZE
];
108 float noise_mult
; /* XXX: suppress that and integrate it in the noise array */
109 /* lsp_to_curve tables */
110 float lsp_cos_table
[BLOCK_MAX_SIZE
];
111 float lsp_pow_e_table
[256];
112 float lsp_pow_m_table1
[(1 << LSP_POW_BITS
)];
113 float lsp_pow_m_table2
[(1 << LSP_POW_BITS
)];
120 typedef struct CoefVLCTable
{
121 int n
; /* total number of codes */
122 const uint32_t *huffcodes
; /* VLC bit values */
123 const uint8_t *huffbits
; /* VLC bit size */
124 const uint16_t *levels
; /* table to build run/level tables */
127 static void wma_lsp_to_curve_init(WMADecodeContext
*s
, int frame_len
);
132 static void dump_shorts(const char *name
, const short *tab
, int n
)
136 tprintf("%s[%d]:\n", name
, n
);
140 tprintf(" %5d.0", tab
[i
]);
146 static void dump_floats(const char *name
, int prec
, const float *tab
, int n
)
150 tprintf("%s[%d]:\n", name
, n
);
154 tprintf(" %8.*f", prec
, tab
[i
]);
163 /* XXX: use same run/length optimization as mpeg decoders */
164 static void init_coef_vlc(VLC
*vlc
,
165 uint16_t **prun_table
, uint16_t **plevel_table
,
166 const CoefVLCTable
*vlc_table
)
168 int n
= vlc_table
->n
;
169 const uint8_t *table_bits
= vlc_table
->huffbits
;
170 const uint32_t *table_codes
= vlc_table
->huffcodes
;
171 const uint16_t *levels_table
= vlc_table
->levels
;
172 uint16_t *run_table
, *level_table
;
176 init_vlc(vlc
, 9, n
, table_bits
, 1, 1, table_codes
, 4, 4);
178 run_table
= av_malloc(n
* sizeof(uint16_t));
179 level_table
= av_malloc(n
* sizeof(uint16_t));
187 level_table
[i
] = level
;
192 *prun_table
= run_table
;
193 *plevel_table
= level_table
;
196 static int wma_decode_init(AVCodecContext
* avctx
)
198 WMADecodeContext
*s
= avctx
->priv_data
;
199 int i
, flags1
, flags2
;
202 float bps1
, high_freq
, bps
;
206 s
->sample_rate
= avctx
->sample_rate
;
207 s
->nb_channels
= avctx
->channels
;
208 s
->bit_rate
= avctx
->bit_rate
;
209 s
->block_align
= avctx
->block_align
;
211 if (avctx
->codec
->id
== CODEC_ID_WMAV1
) {
217 /* extract flag infos */
220 extradata
= avctx
->extradata
;
221 if (s
->version
== 1 && avctx
->extradata_size
>= 4) {
222 flags1
= extradata
[0] | (extradata
[1] << 8);
223 flags2
= extradata
[2] | (extradata
[3] << 8);
224 } else if (s
->version
== 2 && avctx
->extradata_size
>= 6) {
225 flags1
= extradata
[0] | (extradata
[1] << 8) |
226 (extradata
[2] << 16) | (extradata
[3] << 24);
227 flags2
= extradata
[4] | (extradata
[5] << 8);
229 s
->use_exp_vlc
= flags2
& 0x0001;
230 s
->use_bit_reservoir
= flags2
& 0x0002;
231 s
->use_variable_block_len
= flags2
& 0x0004;
233 /* compute MDCT block size */
234 if (s
->sample_rate
<= 16000) {
235 s
->frame_len_bits
= 9;
236 } else if (s
->sample_rate
<= 22050 ||
237 (s
->sample_rate
<= 32000 && s
->version
== 1)) {
238 s
->frame_len_bits
= 10;
240 s
->frame_len_bits
= 11;
242 s
->frame_len
= 1 << s
->frame_len_bits
;
243 if (s
->use_variable_block_len
) {
245 nb
= ((flags2
>> 3) & 3) + 1;
246 if ((s
->bit_rate
/ s
->nb_channels
) >= 32000)
248 nb_max
= s
->frame_len_bits
- BLOCK_MIN_BITS
;
251 s
->nb_block_sizes
= nb
+ 1;
253 s
->nb_block_sizes
= 1;
256 /* init rate dependant parameters */
257 s
->use_noise_coding
= 1;
258 high_freq
= s
->sample_rate
* 0.5;
260 /* if version 2, then the rates are normalized */
261 sample_rate1
= s
->sample_rate
;
262 if (s
->version
== 2) {
263 if (sample_rate1
>= 44100)
264 sample_rate1
= 44100;
265 else if (sample_rate1
>= 22050)
266 sample_rate1
= 22050;
267 else if (sample_rate1
>= 16000)
268 sample_rate1
= 16000;
269 else if (sample_rate1
>= 11025)
270 sample_rate1
= 11025;
271 else if (sample_rate1
>= 8000)
275 bps
= (float)s
->bit_rate
/ (float)(s
->nb_channels
* s
->sample_rate
);
276 s
->byte_offset_bits
= av_log2((int)(bps
* s
->frame_len
/ 8.0)) + 2;
278 /* compute high frequency value and choose if noise coding should
281 if (s
->nb_channels
== 2)
283 if (sample_rate1
== 44100) {
285 s
->use_noise_coding
= 0;
287 high_freq
= high_freq
* 0.4;
288 } else if (sample_rate1
== 22050) {
290 s
->use_noise_coding
= 0;
291 else if (bps1
>= 0.72)
292 high_freq
= high_freq
* 0.7;
294 high_freq
= high_freq
* 0.6;
295 } else if (sample_rate1
== 16000) {
297 high_freq
= high_freq
* 0.5;
299 high_freq
= high_freq
* 0.3;
300 } else if (sample_rate1
== 11025) {
301 high_freq
= high_freq
* 0.7;
302 } else if (sample_rate1
== 8000) {
304 high_freq
= high_freq
* 0.5;
305 } else if (bps
> 0.75) {
306 s
->use_noise_coding
= 0;
308 high_freq
= high_freq
* 0.65;
312 high_freq
= high_freq
* 0.75;
313 } else if (bps
>= 0.6) {
314 high_freq
= high_freq
* 0.6;
316 high_freq
= high_freq
* 0.5;
319 dprintf("flags1=0x%x flags2=0x%x\n", flags1
, flags2
);
320 dprintf("version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
321 s
->version
, s
->nb_channels
, s
->sample_rate
, s
->bit_rate
,
323 dprintf("bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
324 bps
, bps1
, high_freq
, s
->byte_offset_bits
);
325 dprintf("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
326 s
->use_noise_coding
, s
->use_exp_vlc
, s
->nb_block_sizes
);
328 /* compute the scale factor band sizes for each MDCT block size */
330 int a
, b
, pos
, lpos
, k
, block_len
, i
, j
, n
;
331 const uint8_t *table
;
333 if (s
->version
== 1) {
338 for(k
= 0; k
< s
->nb_block_sizes
; k
++) {
339 block_len
= s
->frame_len
>> k
;
341 if (s
->version
== 1) {
344 a
= wma_critical_freqs
[i
];
346 pos
= ((block_len
* 2 * a
) + (b
>> 1)) / b
;
349 s
->exponent_bands
[0][i
] = pos
- lpos
;
350 if (pos
>= block_len
) {
356 s
->exponent_sizes
[0] = i
;
358 /* hardcoded tables */
360 a
= s
->frame_len_bits
- BLOCK_MIN_BITS
- k
;
362 if (s
->sample_rate
>= 44100)
363 table
= exponent_band_44100
[a
];
364 else if (s
->sample_rate
>= 32000)
365 table
= exponent_band_32000
[a
];
366 else if (s
->sample_rate
>= 22050)
367 table
= exponent_band_22050
[a
];
372 s
->exponent_bands
[k
][i
] = table
[i
];
373 s
->exponent_sizes
[k
] = n
;
378 a
= wma_critical_freqs
[i
];
380 pos
= ((block_len
* 2 * a
) + (b
<< 1)) / (4 * b
);
385 s
->exponent_bands
[k
][j
++] = pos
- lpos
;
386 if (pos
>= block_len
)
390 s
->exponent_sizes
[k
] = j
;
394 /* max number of coefs */
395 s
->coefs_end
[k
] = (s
->frame_len
- ((s
->frame_len
* 9) / 100)) >> k
;
396 /* high freq computation */
397 s
->high_band_start
[k
] = (int)((block_len
* 2 * high_freq
) /
398 s
->sample_rate
+ 0.5);
399 n
= s
->exponent_sizes
[k
];
405 pos
+= s
->exponent_bands
[k
][i
];
407 if (start
< s
->high_band_start
[k
])
408 start
= s
->high_band_start
[k
];
409 if (end
> s
->coefs_end
[k
])
410 end
= s
->coefs_end
[k
];
412 s
->exponent_high_bands
[k
][j
++] = end
- start
;
414 s
->exponent_high_sizes
[k
] = j
;
416 tprintf("%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
419 s
->high_band_start
[k
],
420 s
->exponent_high_sizes
[k
]);
421 for(j
=0;j
<s
->exponent_high_sizes
[k
];j
++)
422 tprintf(" %d", s
->exponent_high_bands
[k
][j
]);
431 for(i
= 0; i
< s
->nb_block_sizes
; i
++) {
432 tprintf("%5d: n=%2d:",
434 s
->exponent_sizes
[i
]);
435 for(j
=0;j
<s
->exponent_sizes
[i
];j
++)
436 tprintf(" %d", s
->exponent_bands
[i
][j
]);
443 for(i
= 0; i
< s
->nb_block_sizes
; i
++)
444 ff_mdct_init(&s
->mdct_ctx
[i
], s
->frame_len_bits
- i
+ 1, 1);
446 /* init MDCT windows : simple sinus window */
447 for(i
= 0; i
< s
->nb_block_sizes
; i
++) {
450 n
= 1 << (s
->frame_len_bits
- i
);
451 window
= av_malloc(sizeof(float) * n
);
452 alpha
= M_PI
/ (2.0 * n
);
454 window
[n
- j
- 1] = sin((j
+ 0.5) * alpha
);
456 s
->windows
[i
] = window
;
459 s
->reset_block_lengths
= 1;
461 if (s
->use_noise_coding
) {
463 /* init the noise generator */
465 s
->noise_mult
= 0.02;
467 s
->noise_mult
= 0.04;
470 for(i
=0;i
<NOISE_TAB_SIZE
;i
++)
471 s
->noise_table
[i
] = 1.0 * s
->noise_mult
;
477 norm
= (1.0 / (float)(1LL << 31)) * sqrt(3) * s
->noise_mult
;
478 for(i
=0;i
<NOISE_TAB_SIZE
;i
++) {
479 seed
= seed
* 314159 + 1;
480 s
->noise_table
[i
] = (float)((int)seed
) * norm
;
484 init_vlc(&s
->hgain_vlc
, 9, sizeof(hgain_huffbits
),
485 hgain_huffbits
, 1, 1,
486 hgain_huffcodes
, 2, 2);
489 if (s
->use_exp_vlc
) {
490 init_vlc(&s
->exp_vlc
, 9, sizeof(scale_huffbits
),
491 scale_huffbits
, 1, 1,
492 scale_huffcodes
, 4, 4);
494 wma_lsp_to_curve_init(s
, s
->frame_len
);
497 /* choose the VLC tables for the coefficients */
499 if (s
->sample_rate
>= 32000) {
502 else if (bps1
< 1.16)
506 init_coef_vlc(&s
->coef_vlc
[0], &s
->run_table
[0], &s
->level_table
[0],
507 &coef_vlcs
[coef_vlc_table
* 2]);
508 init_coef_vlc(&s
->coef_vlc
[1], &s
->run_table
[1], &s
->level_table
[1],
509 &coef_vlcs
[coef_vlc_table
* 2 + 1]);
513 /* interpolate values for a bigger or smaller block. The block must
514 have multiple sizes */
515 static void interpolate_array(float *scale
, int old_size
, int new_size
)
520 if (new_size
> old_size
) {
521 jincr
= new_size
/ old_size
;
523 for(i
= old_size
- 1; i
>=0; i
--) {
530 } else if (new_size
< old_size
) {
532 jincr
= old_size
/ new_size
;
533 for(i
= 0; i
< new_size
; i
++) {
540 /* compute x^-0.25 with an exponent and mantissa table. We use linear
541 interpolation to reduce the mantissa table size at a small speed
542 expense (linear interpolation approximately doubles the number of
543 bits of precision). */
544 static inline float pow_m1_4(WMADecodeContext
*s
, float x
)
555 m
= (u
.v
>> (23 - LSP_POW_BITS
)) & ((1 << LSP_POW_BITS
) - 1);
556 /* build interpolation scale: 1 <= t < 2. */
557 t
.v
= ((u
.v
<< LSP_POW_BITS
) & ((1 << 23) - 1)) | (127 << 23);
558 a
= s
->lsp_pow_m_table1
[m
];
559 b
= s
->lsp_pow_m_table2
[m
];
560 return s
->lsp_pow_e_table
[e
] * (a
+ b
* t
.f
);
563 static void wma_lsp_to_curve_init(WMADecodeContext
*s
, int frame_len
)
568 wdel
= M_PI
/ frame_len
;
569 for(i
=0;i
<frame_len
;i
++)
570 s
->lsp_cos_table
[i
] = 2.0f
* cos(wdel
* i
);
572 /* tables for x^-0.25 computation */
575 s
->lsp_pow_e_table
[i
] = pow(2.0, e
* -0.25);
578 /* NOTE: these two tables are needed to avoid two operations in
581 for(i
=(1 << LSP_POW_BITS
) - 1;i
>=0;i
--) {
582 m
= (1 << LSP_POW_BITS
) + i
;
583 a
= (float)m
* (0.5 / (1 << LSP_POW_BITS
));
585 s
->lsp_pow_m_table1
[i
] = 2 * a
- b
;
586 s
->lsp_pow_m_table2
[i
] = b
- a
;
595 printf("%f^-0.25=%f e=%f\n", v
, r1
, r2
- r1
);
600 /* NOTE: We use the same code as Vorbis here */
601 /* XXX: optimize it further with SSE/3Dnow */
602 static void wma_lsp_to_curve(WMADecodeContext
*s
,
603 float *out
, float *val_max_ptr
,
607 float p
, q
, w
, v
, val_max
;
613 w
= s
->lsp_cos_table
[i
];
614 for(j
=1;j
<NB_LSP_COEFS
;j
+=2){
626 *val_max_ptr
= val_max
;
629 /* decode exponents coded with LSP coefficients (same idea as Vorbis) */
630 static void decode_exp_lsp(WMADecodeContext
*s
, int ch
)
632 float lsp_coefs
[NB_LSP_COEFS
];
635 for(i
= 0; i
< NB_LSP_COEFS
; i
++) {
636 if (i
== 0 || i
>= 8)
637 val
= get_bits(&s
->gb
, 3);
639 val
= get_bits(&s
->gb
, 4);
640 lsp_coefs
[i
] = lsp_codebook
[i
][val
];
643 wma_lsp_to_curve(s
, s
->exponents
[ch
], &s
->max_exponent
[ch
],
644 s
->block_len
, lsp_coefs
);
647 /* decode exponents coded with VLC codes */
648 static int decode_exp_vlc(WMADecodeContext
*s
, int ch
)
650 int last_exp
, n
, code
;
651 const uint16_t *ptr
, *band_ptr
;
652 float v
, *q
, max_scale
, *q_end
;
654 band_ptr
= s
->exponent_bands
[s
->frame_len_bits
- s
->block_len_bits
];
656 q
= s
->exponents
[ch
];
657 q_end
= q
+ s
->block_len
;
659 if (s
->version
== 1) {
660 last_exp
= get_bits(&s
->gb
, 5) + 10;
661 /* XXX: use a table */
662 v
= pow(10, last_exp
* (1.0 / 16.0));
671 code
= get_vlc(&s
->gb
, &s
->exp_vlc
);
674 /* NOTE: this offset is the same as MPEG4 AAC ! */
675 last_exp
+= code
- 60;
676 /* XXX: use a table */
677 v
= pow(10, last_exp
* (1.0 / 16.0));
685 s
->max_exponent
[ch
] = max_scale
;
689 /* return 0 if OK. return 1 if last block of frame. return -1 if
690 unrecorrable error. */
691 static int wma_decode_block(WMADecodeContext
*s
)
693 int n
, v
, a
, ch
, code
, bsize
;
694 int coef_nb_bits
, total_gain
, parse_exponents
;
695 float window
[BLOCK_MAX_SIZE
* 2];
696 int nb_coefs
[MAX_CHANNELS
];
700 tprintf("***decode_block: %d:%d\n", s
->frame_count
- 1, s
->block_num
);
703 /* compute current block length */
704 if (s
->use_variable_block_len
) {
705 n
= av_log2(s
->nb_block_sizes
- 1) + 1;
707 if (s
->reset_block_lengths
) {
708 s
->reset_block_lengths
= 0;
709 v
= get_bits(&s
->gb
, n
);
710 if (v
>= s
->nb_block_sizes
)
712 s
->prev_block_len_bits
= s
->frame_len_bits
- v
;
713 v
= get_bits(&s
->gb
, n
);
714 if (v
>= s
->nb_block_sizes
)
716 s
->block_len_bits
= s
->frame_len_bits
- v
;
718 /* update block lengths */
719 s
->prev_block_len_bits
= s
->block_len_bits
;
720 s
->block_len_bits
= s
->next_block_len_bits
;
722 v
= get_bits(&s
->gb
, n
);
723 if (v
>= s
->nb_block_sizes
)
725 s
->next_block_len_bits
= s
->frame_len_bits
- v
;
727 /* fixed block len */
728 s
->next_block_len_bits
= s
->frame_len_bits
;
729 s
->prev_block_len_bits
= s
->frame_len_bits
;
730 s
->block_len_bits
= s
->frame_len_bits
;
733 /* now check if the block length is coherent with the frame length */
734 s
->block_len
= 1 << s
->block_len_bits
;
735 if ((s
->block_pos
+ s
->block_len
) > s
->frame_len
)
738 if (s
->nb_channels
== 2) {
739 s
->ms_stereo
= get_bits(&s
->gb
, 1);
742 for(ch
= 0; ch
< s
->nb_channels
; ch
++) {
743 a
= get_bits(&s
->gb
, 1);
744 s
->channel_coded
[ch
] = a
;
747 /* if no channel coded, no need to go further */
748 /* XXX: fix potential framing problems */
752 bsize
= s
->frame_len_bits
- s
->block_len_bits
;
754 /* read total gain and extract corresponding number of bits for
755 coef escape coding */
758 a
= get_bits(&s
->gb
, 7);
766 else if (total_gain
< 32)
768 else if (total_gain
< 40)
770 else if (total_gain
< 45)
775 /* compute number of coefficients */
776 n
= s
->coefs_end
[bsize
] - s
->coefs_start
;
777 for(ch
= 0; ch
< s
->nb_channels
; ch
++)
781 if (s
->use_noise_coding
) {
783 for(ch
= 0; ch
< s
->nb_channels
; ch
++) {
784 if (s
->channel_coded
[ch
]) {
786 n
= s
->exponent_high_sizes
[bsize
];
788 a
= get_bits(&s
->gb
, 1);
789 s
->high_band_coded
[ch
][i
] = a
;
790 /* if noise coding, the coefficients are not transmitted */
792 nb_coefs
[ch
] -= s
->exponent_high_bands
[bsize
][i
];
796 for(ch
= 0; ch
< s
->nb_channels
; ch
++) {
797 if (s
->channel_coded
[ch
]) {
800 n
= s
->exponent_high_sizes
[bsize
];
801 val
= (int)0x80000000;
803 if (s
->high_band_coded
[ch
][i
]) {
804 if (val
== (int)0x80000000) {
805 val
= get_bits(&s
->gb
, 7) - 19;
807 code
= get_vlc(&s
->gb
, &s
->hgain_vlc
);
812 s
->high_band_values
[ch
][i
] = val
;
819 /* exposant can be interpolated in short blocks. */
821 if (s
->block_len_bits
!= s
->frame_len_bits
) {
822 parse_exponents
= get_bits(&s
->gb
, 1);
825 if (parse_exponents
) {
826 for(ch
= 0; ch
< s
->nb_channels
; ch
++) {
827 if (s
->channel_coded
[ch
]) {
828 if (s
->use_exp_vlc
) {
829 if (decode_exp_vlc(s
, ch
) < 0)
832 decode_exp_lsp(s
, ch
);
837 for(ch
= 0; ch
< s
->nb_channels
; ch
++) {
838 if (s
->channel_coded
[ch
]) {
839 interpolate_array(s
->exponents
[ch
], 1 << s
->prev_block_len_bits
,
845 /* parse spectral coefficients : just RLE encoding */
846 for(ch
= 0; ch
< s
->nb_channels
; ch
++) {
847 if (s
->channel_coded
[ch
]) {
849 int level
, run
, sign
, tindex
;
851 const int16_t *level_table
, *run_table
;
853 /* special VLC tables are used for ms stereo because
854 there is potentially less energy there */
855 tindex
= (ch
== 1 && s
->ms_stereo
);
856 coef_vlc
= &s
->coef_vlc
[tindex
];
857 run_table
= s
->run_table
[tindex
];
858 level_table
= s
->level_table
[tindex
];
860 ptr
= &s
->coefs1
[ch
][0];
861 eptr
= ptr
+ nb_coefs
[ch
];
862 memset(ptr
, 0, s
->block_len
* sizeof(int16_t));
864 code
= get_vlc(&s
->gb
, coef_vlc
);
870 } else if (code
== 0) {
872 level
= get_bits(&s
->gb
, coef_nb_bits
);
873 /* NOTE: this is rather suboptimal. reading
874 block_len_bits would be better */
875 run
= get_bits(&s
->gb
, s
->frame_len_bits
);
878 run
= run_table
[code
];
879 level
= level_table
[code
];
881 sign
= get_bits(&s
->gb
, 1);
888 /* NOTE: EOB can be omitted */
893 if (s
->version
== 1 && s
->nb_channels
>= 2) {
894 align_get_bits(&s
->gb
);
900 int n4
= s
->block_len
/ 2;
901 mdct_norm
= 1.0 / (float)n4
;
902 if (s
->version
== 1) {
903 mdct_norm
*= sqrt(n4
);
907 /* finally compute the MDCT coefficients */
908 for(ch
= 0; ch
< s
->nb_channels
; ch
++) {
909 if (s
->channel_coded
[ch
]) {
911 float *coefs
, *exponents
, mult
, mult1
, noise
, *exp_ptr
;
912 int i
, j
, n
, n1
, last_high_band
;
913 float exp_power
[HIGH_BAND_MAX_SIZE
];
915 coefs1
= s
->coefs1
[ch
];
916 exponents
= s
->exponents
[ch
];
917 mult
= pow(10, total_gain
* 0.05) / s
->max_exponent
[ch
];
919 coefs
= s
->coefs
[ch
];
920 if (s
->use_noise_coding
) {
922 /* very low freqs : noise */
923 for(i
= 0;i
< s
->coefs_start
; i
++) {
924 *coefs
++ = s
->noise_table
[s
->noise_index
] * (*exponents
++) * mult1
;
925 s
->noise_index
= (s
->noise_index
+ 1) & (NOISE_TAB_SIZE
- 1);
928 n1
= s
->exponent_high_sizes
[bsize
];
930 /* compute power of high bands */
931 exp_ptr
= exponents
+
932 s
->high_band_start
[bsize
] -
934 last_high_band
= 0; /* avoid warning */
936 n
= s
->exponent_high_bands
[s
->frame_len_bits
-
937 s
->block_len_bits
][j
];
938 if (s
->high_band_coded
[ch
][j
]) {
941 for(i
= 0;i
< n
; i
++) {
945 exp_power
[j
] = e2
/ n
;
947 tprintf("%d: power=%f (%d)\n", j
, exp_power
[j
], n
);
952 /* main freqs and high freqs */
955 n
= s
->high_band_start
[bsize
] -
958 n
= s
->exponent_high_bands
[s
->frame_len_bits
-
959 s
->block_len_bits
][j
];
961 if (j
>= 0 && s
->high_band_coded
[ch
][j
]) {
962 /* use noise with specified power */
963 mult1
= sqrt(exp_power
[j
] / exp_power
[last_high_band
]);
964 /* XXX: use a table */
965 mult1
= mult1
* pow(10, s
->high_band_values
[ch
][j
] * 0.05);
966 mult1
= mult1
/ (s
->max_exponent
[ch
] * s
->noise_mult
);
968 for(i
= 0;i
< n
; i
++) {
969 noise
= s
->noise_table
[s
->noise_index
];
970 s
->noise_index
= (s
->noise_index
+ 1) & (NOISE_TAB_SIZE
- 1);
971 *coefs
++ = (*exponents
++) * noise
* mult1
;
974 /* coded values + small noise */
975 for(i
= 0;i
< n
; i
++) {
976 noise
= s
->noise_table
[s
->noise_index
];
977 s
->noise_index
= (s
->noise_index
+ 1) & (NOISE_TAB_SIZE
- 1);
978 *coefs
++ = ((*coefs1
++) + noise
) * (*exponents
++) * mult
;
983 /* very high freqs : noise */
984 n
= s
->block_len
- s
->coefs_end
[bsize
];
985 mult1
= mult
* exponents
[-1];
986 for(i
= 0; i
< n
; i
++) {
987 *coefs
++ = s
->noise_table
[s
->noise_index
] * mult1
;
988 s
->noise_index
= (s
->noise_index
+ 1) & (NOISE_TAB_SIZE
- 1);
991 /* XXX: optimize more */
992 for(i
= 0;i
< s
->coefs_start
; i
++)
995 for(i
= 0;i
< n
; i
++) {
996 *coefs
++ = coefs1
[i
] * exponents
[i
] * mult
;
998 n
= s
->block_len
- s
->coefs_end
[bsize
];
999 for(i
= 0;i
< n
; i
++)
1006 for(ch
= 0; ch
< s
->nb_channels
; ch
++) {
1007 if (s
->channel_coded
[ch
]) {
1008 dump_floats("exponents", 3, s
->exponents
[ch
], s
->block_len
);
1009 dump_floats("coefs", 1, s
->coefs
[ch
], s
->block_len
);
1014 if (s
->ms_stereo
&& s
->channel_coded
[1]) {
1018 /* nominal case for ms stereo: we do it before mdct */
1019 /* no need to optimize this case because it should almost
1021 if (!s
->channel_coded
[0]) {
1022 tprintf("rare ms-stereo case happened\n");
1023 memset(s
->coefs
[0], 0, sizeof(float) * s
->block_len
);
1024 s
->channel_coded
[0] = 1;
1027 for(i
= 0; i
< s
->block_len
; i
++) {
1030 s
->coefs
[0][i
] = a
+ b
;
1031 s
->coefs
[1][i
] = a
- b
;
1035 /* build the window : we ensure that when the windows overlap
1036 their squared sum is always 1 (MDCT reconstruction rule) */
1037 /* XXX: merge with output */
1039 int i
, next_block_len
, block_len
, prev_block_len
, n
;
1042 block_len
= s
->block_len
;
1043 prev_block_len
= 1 << s
->prev_block_len_bits
;
1044 next_block_len
= 1 << s
->next_block_len_bits
;
1047 wptr
= window
+ block_len
;
1048 if (block_len
<= next_block_len
) {
1049 for(i
=0;i
<block_len
;i
++)
1050 *wptr
++ = s
->windows
[bsize
][i
];
1053 n
= (block_len
/ 2) - (next_block_len
/ 2);
1056 for(i
=0;i
<next_block_len
;i
++)
1057 *wptr
++ = s
->windows
[s
->frame_len_bits
- s
->next_block_len_bits
][i
];
1063 wptr
= window
+ block_len
;
1064 if (block_len
<= prev_block_len
) {
1065 for(i
=0;i
<block_len
;i
++)
1066 *--wptr
= s
->windows
[bsize
][i
];
1069 n
= (block_len
/ 2) - (prev_block_len
/ 2);
1072 for(i
=0;i
<prev_block_len
;i
++)
1073 *--wptr
= s
->windows
[s
->frame_len_bits
- s
->prev_block_len_bits
][i
];
1080 for(ch
= 0; ch
< s
->nb_channels
; ch
++) {
1081 if (s
->channel_coded
[ch
]) {
1082 FFTSample output
[BLOCK_MAX_SIZE
* 2] __attribute__((aligned(16)));
1084 int i
, n4
, index
, n
;
1087 n4
= s
->block_len
/ 2;
1088 ff_imdct_calc(&s
->mdct_ctx
[bsize
],
1089 output
, s
->coefs
[ch
], s
->mdct_tmp
);
1091 /* XXX: optimize all that by build the window and
1092 multipying/adding at the same time */
1093 /* multiply by the window */
1094 for(i
=0;i
<n
* 2;i
++) {
1095 output
[i
] *= window
[i
];
1098 /* add in the frame */
1099 index
= (s
->frame_len
/ 2) + s
->block_pos
- n4
;
1100 ptr
= &s
->frame_out
[ch
][index
];
1101 for(i
=0;i
<n
* 2;i
++) {
1106 /* specific fast case for ms-stereo : add to second
1107 channel if it is not coded */
1108 if (s
->ms_stereo
&& !s
->channel_coded
[1]) {
1109 ptr
= &s
->frame_out
[1][index
];
1110 for(i
=0;i
<n
* 2;i
++) {
1118 /* update block number */
1120 s
->block_pos
+= s
->block_len
;
1121 if (s
->block_pos
>= s
->frame_len
)
1127 /* decode a frame of frame_len samples */
1128 static int wma_decode_frame(WMADecodeContext
*s
, int16_t *samples
)
1130 int ret
, i
, n
, a
, ch
, incr
;
1135 tprintf("***decode_frame: %d size=%d\n", s
->frame_count
++, s
->frame_len
);
1138 /* read each block */
1142 ret
= wma_decode_block(s
);
1149 /* convert frame to integer */
1151 incr
= s
->nb_channels
;
1152 for(ch
= 0; ch
< s
->nb_channels
; ch
++) {
1154 iptr
= s
->frame_out
[ch
];
1157 a
= lrintf(*iptr
++);
1160 else if (a
< -32768)
1165 /* prepare for next block */
1166 memmove(&s
->frame_out
[ch
][0], &s
->frame_out
[ch
][s
->frame_len
],
1167 s
->frame_len
* sizeof(float));
1168 /* XXX: suppress this */
1169 memset(&s
->frame_out
[ch
][s
->frame_len
], 0,
1170 s
->frame_len
* sizeof(float));
1174 dump_shorts("samples", samples
, n
* s
->nb_channels
);
1179 static int wma_decode_superframe(AVCodecContext
*avctx
,
1180 void *data
, int *data_size
,
1181 uint8_t *buf
, int buf_size
)
1183 WMADecodeContext
*s
= avctx
->priv_data
;
1184 int nb_frames
, bit_offset
, i
, pos
, len
;
1188 tprintf("***decode_superframe:\n");
1191 s
->last_superframe_len
= 0;
1197 init_get_bits(&s
->gb
, buf
, buf_size
*8);
1199 if (s
->use_bit_reservoir
) {
1200 /* read super frame header */
1201 get_bits(&s
->gb
, 4); /* super frame index */
1202 nb_frames
= get_bits(&s
->gb
, 4) - 1;
1204 bit_offset
= get_bits(&s
->gb
, s
->byte_offset_bits
+ 3);
1206 if (s
->last_superframe_len
> 0) {
1207 // printf("skip=%d\n", s->last_bitoffset);
1208 /* add bit_offset bits to last frame */
1209 if ((s
->last_superframe_len
+ ((bit_offset
+ 7) >> 3)) >
1210 MAX_CODED_SUPERFRAME_SIZE
)
1212 q
= s
->last_superframe
+ s
->last_superframe_len
;
1215 *q
++ = (get_bits
)(&s
->gb
, 8);
1219 *q
++ = (get_bits
)(&s
->gb
, len
) << (8 - len
);
1222 /* XXX: bit_offset bits into last frame */
1223 init_get_bits(&s
->gb
, s
->last_superframe
, MAX_CODED_SUPERFRAME_SIZE
*8);
1224 /* skip unused bits */
1225 if (s
->last_bitoffset
> 0)
1226 skip_bits(&s
->gb
, s
->last_bitoffset
);
1227 /* this frame is stored in the last superframe and in the
1229 if (wma_decode_frame(s
, samples
) < 0)
1231 samples
+= s
->nb_channels
* s
->frame_len
;
1234 /* read each frame starting from bit_offset */
1235 pos
= bit_offset
+ 4 + 4 + s
->byte_offset_bits
+ 3;
1236 init_get_bits(&s
->gb
, buf
+ (pos
>> 3), (MAX_CODED_SUPERFRAME_SIZE
- (pos
>> 3))*8);
1239 skip_bits(&s
->gb
, len
);
1241 s
->reset_block_lengths
= 1;
1242 for(i
=0;i
<nb_frames
;i
++) {
1243 if (wma_decode_frame(s
, samples
) < 0)
1245 samples
+= s
->nb_channels
* s
->frame_len
;
1248 /* we copy the end of the frame in the last frame buffer */
1249 pos
= get_bits_count(&s
->gb
) + ((bit_offset
+ 4 + 4 + s
->byte_offset_bits
+ 3) & ~7);
1250 s
->last_bitoffset
= pos
& 7;
1252 len
= buf_size
- pos
;
1253 if (len
> MAX_CODED_SUPERFRAME_SIZE
|| len
< 0) {
1256 s
->last_superframe_len
= len
;
1257 memcpy(s
->last_superframe
, buf
+ pos
, len
);
1259 /* single frame decode */
1260 if (wma_decode_frame(s
, samples
) < 0)
1262 samples
+= s
->nb_channels
* s
->frame_len
;
1264 *data_size
= (int8_t *)samples
- (int8_t *)data
;
1265 return s
->block_align
;
1267 /* when error, we reset the bit reservoir */
1268 s
->last_superframe_len
= 0;
1272 static int wma_decode_end(AVCodecContext
*avctx
)
1274 WMADecodeContext
*s
= avctx
->priv_data
;
1277 for(i
= 0; i
< s
->nb_block_sizes
; i
++)
1278 ff_mdct_end(&s
->mdct_ctx
[i
]);
1279 for(i
= 0; i
< s
->nb_block_sizes
; i
++)
1280 av_free(s
->windows
[i
]);
1282 if (s
->use_exp_vlc
) {
1283 free_vlc(&s
->exp_vlc
);
1285 if (s
->use_noise_coding
) {
1286 free_vlc(&s
->hgain_vlc
);
1288 for(i
= 0;i
< 2; i
++) {
1289 free_vlc(&s
->coef_vlc
[i
]);
1290 av_free(s
->run_table
[i
]);
1291 av_free(s
->level_table
[i
]);
1297 AVCodec wmav1_decoder
=
1302 sizeof(WMADecodeContext
),
1306 wma_decode_superframe
,
1309 AVCodec wmav2_decoder
=
1314 sizeof(WMADecodeContext
),
1318 wma_decode_superframe
,