694b15d1fb8b876e6e69dfb0a34d851278693a1e
[libav.git] / libavcodec / wmadec.c
1 /*
2 * WMA compatible decoder
3 * Copyright (c) 2002 The FFmpeg Project
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file
24 * WMA compatible decoder.
25 * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
26 * WMA v1 is identified by audio format 0x160 in Microsoft media files
27 * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
28 *
29 * To use this decoder, a calling application must supply the extra data
30 * bytes provided with the WMA data. These are the extra, codec-specific
31 * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
32 * to the decoder using the extradata[_size] fields in AVCodecContext. There
33 * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
34 */
35
36 #include "avcodec.h"
37 #include "wma.h"
38
39 #undef NDEBUG
40 #include <assert.h>
41
42 #define EXPVLCBITS 8
43 #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
44
45 #define HGAINVLCBITS 9
46 #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
47
48 static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len);
49
50 #ifdef TRACE
51 static void dump_shorts(WMACodecContext *s, const char *name, const short *tab, int n)
52 {
53 int i;
54
55 tprintf(s->avctx, "%s[%d]:\n", name, n);
56 for(i=0;i<n;i++) {
57 if ((i & 7) == 0)
58 tprintf(s->avctx, "%4d: ", i);
59 tprintf(s->avctx, " %5d.0", tab[i]);
60 if ((i & 7) == 7)
61 tprintf(s->avctx, "\n");
62 }
63 }
64
65 static void dump_floats(WMACodecContext *s, const char *name, int prec, const float *tab, int n)
66 {
67 int i;
68
69 tprintf(s->avctx, "%s[%d]:\n", name, n);
70 for(i=0;i<n;i++) {
71 if ((i & 7) == 0)
72 tprintf(s->avctx, "%4d: ", i);
73 tprintf(s->avctx, " %8.*f", prec, tab[i]);
74 if ((i & 7) == 7)
75 tprintf(s->avctx, "\n");
76 }
77 if ((i & 7) != 0)
78 tprintf(s->avctx, "\n");
79 }
80 #endif
81
82 static int wma_decode_init(AVCodecContext * avctx)
83 {
84 WMACodecContext *s = avctx->priv_data;
85 int i, flags2;
86 uint8_t *extradata;
87
88 s->avctx = avctx;
89
90 /* extract flag infos */
91 flags2 = 0;
92 extradata = avctx->extradata;
93 if (avctx->codec->id == CODEC_ID_WMAV1 && avctx->extradata_size >= 4) {
94 flags2 = AV_RL16(extradata+2);
95 } else if (avctx->codec->id == CODEC_ID_WMAV2 && avctx->extradata_size >= 6) {
96 flags2 = AV_RL16(extradata+4);
97 }
98 // for(i=0; i<avctx->extradata_size; i++)
99 // av_log(NULL, AV_LOG_ERROR, "%02X ", extradata[i]);
100
101 s->use_exp_vlc = flags2 & 0x0001;
102 s->use_bit_reservoir = flags2 & 0x0002;
103 s->use_variable_block_len = flags2 & 0x0004;
104
105 if(ff_wma_init(avctx, flags2)<0)
106 return -1;
107
108 /* init MDCT */
109 for(i = 0; i < s->nb_block_sizes; i++)
110 ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1, 1.0);
111
112 if (s->use_noise_coding) {
113 init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits),
114 ff_wma_hgain_huffbits, 1, 1,
115 ff_wma_hgain_huffcodes, 2, 2, 0);
116 }
117
118 if (s->use_exp_vlc) {
119 init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_aac_scalefactor_bits), //FIXME move out of context
120 ff_aac_scalefactor_bits, 1, 1,
121 ff_aac_scalefactor_code, 4, 4, 0);
122 } else {
123 wma_lsp_to_curve_init(s, s->frame_len);
124 }
125
126 avctx->sample_fmt = AV_SAMPLE_FMT_S16;
127 return 0;
128 }
129
130 /**
131 * compute x^-0.25 with an exponent and mantissa table. We use linear
132 * interpolation to reduce the mantissa table size at a small speed
133 * expense (linear interpolation approximately doubles the number of
134 * bits of precision).
135 */
136 static inline float pow_m1_4(WMACodecContext *s, float x)
137 {
138 union {
139 float f;
140 unsigned int v;
141 } u, t;
142 unsigned int e, m;
143 float a, b;
144
145 u.f = x;
146 e = u.v >> 23;
147 m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
148 /* build interpolation scale: 1 <= t < 2. */
149 t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
150 a = s->lsp_pow_m_table1[m];
151 b = s->lsp_pow_m_table2[m];
152 return s->lsp_pow_e_table[e] * (a + b * t.f);
153 }
154
155 static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len)
156 {
157 float wdel, a, b;
158 int i, e, m;
159
160 wdel = M_PI / frame_len;
161 for(i=0;i<frame_len;i++)
162 s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
163
164 /* tables for x^-0.25 computation */
165 for(i=0;i<256;i++) {
166 e = i - 126;
167 s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
168 }
169
170 /* NOTE: these two tables are needed to avoid two operations in
171 pow_m1_4 */
172 b = 1.0;
173 for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
174 m = (1 << LSP_POW_BITS) + i;
175 a = (float)m * (0.5 / (1 << LSP_POW_BITS));
176 a = pow(a, -0.25);
177 s->lsp_pow_m_table1[i] = 2 * a - b;
178 s->lsp_pow_m_table2[i] = b - a;
179 b = a;
180 }
181 #if 0
182 for(i=1;i<20;i++) {
183 float v, r1, r2;
184 v = 5.0 / i;
185 r1 = pow_m1_4(s, v);
186 r2 = pow(v,-0.25);
187 printf("%f^-0.25=%f e=%f\n", v, r1, r2 - r1);
188 }
189 #endif
190 }
191
192 /**
193 * NOTE: We use the same code as Vorbis here
194 * @todo optimize it further with SSE/3Dnow
195 */
196 static void wma_lsp_to_curve(WMACodecContext *s,
197 float *out, float *val_max_ptr,
198 int n, float *lsp)
199 {
200 int i, j;
201 float p, q, w, v, val_max;
202
203 val_max = 0;
204 for(i=0;i<n;i++) {
205 p = 0.5f;
206 q = 0.5f;
207 w = s->lsp_cos_table[i];
208 for(j=1;j<NB_LSP_COEFS;j+=2){
209 q *= w - lsp[j - 1];
210 p *= w - lsp[j];
211 }
212 p *= p * (2.0f - w);
213 q *= q * (2.0f + w);
214 v = p + q;
215 v = pow_m1_4(s, v);
216 if (v > val_max)
217 val_max = v;
218 out[i] = v;
219 }
220 *val_max_ptr = val_max;
221 }
222
223 /**
224 * decode exponents coded with LSP coefficients (same idea as Vorbis)
225 */
226 static void decode_exp_lsp(WMACodecContext *s, int ch)
227 {
228 float lsp_coefs[NB_LSP_COEFS];
229 int val, i;
230
231 for(i = 0; i < NB_LSP_COEFS; i++) {
232 if (i == 0 || i >= 8)
233 val = get_bits(&s->gb, 3);
234 else
235 val = get_bits(&s->gb, 4);
236 lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
237 }
238
239 wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
240 s->block_len, lsp_coefs);
241 }
242
243 /** pow(10, i / 16.0) for i in -60..95 */
244 static const float pow_tab[] = {
245 1.7782794100389e-04, 2.0535250264571e-04,
246 2.3713737056617e-04, 2.7384196342644e-04,
247 3.1622776601684e-04, 3.6517412725484e-04,
248 4.2169650342858e-04, 4.8696752516586e-04,
249 5.6234132519035e-04, 6.4938163157621e-04,
250 7.4989420933246e-04, 8.6596432336006e-04,
251 1.0000000000000e-03, 1.1547819846895e-03,
252 1.3335214321633e-03, 1.5399265260595e-03,
253 1.7782794100389e-03, 2.0535250264571e-03,
254 2.3713737056617e-03, 2.7384196342644e-03,
255 3.1622776601684e-03, 3.6517412725484e-03,
256 4.2169650342858e-03, 4.8696752516586e-03,
257 5.6234132519035e-03, 6.4938163157621e-03,
258 7.4989420933246e-03, 8.6596432336006e-03,
259 1.0000000000000e-02, 1.1547819846895e-02,
260 1.3335214321633e-02, 1.5399265260595e-02,
261 1.7782794100389e-02, 2.0535250264571e-02,
262 2.3713737056617e-02, 2.7384196342644e-02,
263 3.1622776601684e-02, 3.6517412725484e-02,
264 4.2169650342858e-02, 4.8696752516586e-02,
265 5.6234132519035e-02, 6.4938163157621e-02,
266 7.4989420933246e-02, 8.6596432336007e-02,
267 1.0000000000000e-01, 1.1547819846895e-01,
268 1.3335214321633e-01, 1.5399265260595e-01,
269 1.7782794100389e-01, 2.0535250264571e-01,
270 2.3713737056617e-01, 2.7384196342644e-01,
271 3.1622776601684e-01, 3.6517412725484e-01,
272 4.2169650342858e-01, 4.8696752516586e-01,
273 5.6234132519035e-01, 6.4938163157621e-01,
274 7.4989420933246e-01, 8.6596432336007e-01,
275 1.0000000000000e+00, 1.1547819846895e+00,
276 1.3335214321633e+00, 1.5399265260595e+00,
277 1.7782794100389e+00, 2.0535250264571e+00,
278 2.3713737056617e+00, 2.7384196342644e+00,
279 3.1622776601684e+00, 3.6517412725484e+00,
280 4.2169650342858e+00, 4.8696752516586e+00,
281 5.6234132519035e+00, 6.4938163157621e+00,
282 7.4989420933246e+00, 8.6596432336007e+00,
283 1.0000000000000e+01, 1.1547819846895e+01,
284 1.3335214321633e+01, 1.5399265260595e+01,
285 1.7782794100389e+01, 2.0535250264571e+01,
286 2.3713737056617e+01, 2.7384196342644e+01,
287 3.1622776601684e+01, 3.6517412725484e+01,
288 4.2169650342858e+01, 4.8696752516586e+01,
289 5.6234132519035e+01, 6.4938163157621e+01,
290 7.4989420933246e+01, 8.6596432336007e+01,
291 1.0000000000000e+02, 1.1547819846895e+02,
292 1.3335214321633e+02, 1.5399265260595e+02,
293 1.7782794100389e+02, 2.0535250264571e+02,
294 2.3713737056617e+02, 2.7384196342644e+02,
295 3.1622776601684e+02, 3.6517412725484e+02,
296 4.2169650342858e+02, 4.8696752516586e+02,
297 5.6234132519035e+02, 6.4938163157621e+02,
298 7.4989420933246e+02, 8.6596432336007e+02,
299 1.0000000000000e+03, 1.1547819846895e+03,
300 1.3335214321633e+03, 1.5399265260595e+03,
301 1.7782794100389e+03, 2.0535250264571e+03,
302 2.3713737056617e+03, 2.7384196342644e+03,
303 3.1622776601684e+03, 3.6517412725484e+03,
304 4.2169650342858e+03, 4.8696752516586e+03,
305 5.6234132519035e+03, 6.4938163157621e+03,
306 7.4989420933246e+03, 8.6596432336007e+03,
307 1.0000000000000e+04, 1.1547819846895e+04,
308 1.3335214321633e+04, 1.5399265260595e+04,
309 1.7782794100389e+04, 2.0535250264571e+04,
310 2.3713737056617e+04, 2.7384196342644e+04,
311 3.1622776601684e+04, 3.6517412725484e+04,
312 4.2169650342858e+04, 4.8696752516586e+04,
313 5.6234132519035e+04, 6.4938163157621e+04,
314 7.4989420933246e+04, 8.6596432336007e+04,
315 1.0000000000000e+05, 1.1547819846895e+05,
316 1.3335214321633e+05, 1.5399265260595e+05,
317 1.7782794100389e+05, 2.0535250264571e+05,
318 2.3713737056617e+05, 2.7384196342644e+05,
319 3.1622776601684e+05, 3.6517412725484e+05,
320 4.2169650342858e+05, 4.8696752516586e+05,
321 5.6234132519035e+05, 6.4938163157621e+05,
322 7.4989420933246e+05, 8.6596432336007e+05,
323 };
324
325 /**
326 * decode exponents coded with VLC codes
327 */
328 static int decode_exp_vlc(WMACodecContext *s, int ch)
329 {
330 int last_exp, n, code;
331 const uint16_t *ptr;
332 float v, max_scale;
333 uint32_t *q, *q_end, iv;
334 const float *ptab = pow_tab + 60;
335 const uint32_t *iptab = (const uint32_t*)ptab;
336
337 ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
338 q = (uint32_t *)s->exponents[ch];
339 q_end = q + s->block_len;
340 max_scale = 0;
341 if (s->version == 1) {
342 last_exp = get_bits(&s->gb, 5) + 10;
343 v = ptab[last_exp];
344 iv = iptab[last_exp];
345 max_scale = v;
346 n = *ptr++;
347 switch (n & 3) do {
348 case 0: *q++ = iv;
349 case 3: *q++ = iv;
350 case 2: *q++ = iv;
351 case 1: *q++ = iv;
352 } while ((n -= 4) > 0);
353 }else
354 last_exp = 36;
355
356 while (q < q_end) {
357 code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
358 if (code < 0){
359 av_log(s->avctx, AV_LOG_ERROR, "Exponent vlc invalid\n");
360 return -1;
361 }
362 /* NOTE: this offset is the same as MPEG4 AAC ! */
363 last_exp += code - 60;
364 if ((unsigned)last_exp + 60 > FF_ARRAY_ELEMS(pow_tab)) {
365 av_log(s->avctx, AV_LOG_ERROR, "Exponent out of range: %d\n",
366 last_exp);
367 return -1;
368 }
369 v = ptab[last_exp];
370 iv = iptab[last_exp];
371 if (v > max_scale)
372 max_scale = v;
373 n = *ptr++;
374 switch (n & 3) do {
375 case 0: *q++ = iv;
376 case 3: *q++ = iv;
377 case 2: *q++ = iv;
378 case 1: *q++ = iv;
379 } while ((n -= 4) > 0);
380 }
381 s->max_exponent[ch] = max_scale;
382 return 0;
383 }
384
385
386 /**
387 * Apply MDCT window and add into output.
388 *
389 * We ensure that when the windows overlap their squared sum
390 * is always 1 (MDCT reconstruction rule).
391 */
392 static void wma_window(WMACodecContext *s, float *out)
393 {
394 float *in = s->output;
395 int block_len, bsize, n;
396
397 /* left part */
398 if (s->block_len_bits <= s->prev_block_len_bits) {
399 block_len = s->block_len;
400 bsize = s->frame_len_bits - s->block_len_bits;
401
402 s->dsp.vector_fmul_add(out, in, s->windows[bsize],
403 out, block_len);
404
405 } else {
406 block_len = 1 << s->prev_block_len_bits;
407 n = (s->block_len - block_len) / 2;
408 bsize = s->frame_len_bits - s->prev_block_len_bits;
409
410 s->dsp.vector_fmul_add(out+n, in+n, s->windows[bsize],
411 out+n, block_len);
412
413 memcpy(out+n+block_len, in+n+block_len, n*sizeof(float));
414 }
415
416 out += s->block_len;
417 in += s->block_len;
418
419 /* right part */
420 if (s->block_len_bits <= s->next_block_len_bits) {
421 block_len = s->block_len;
422 bsize = s->frame_len_bits - s->block_len_bits;
423
424 s->dsp.vector_fmul_reverse(out, in, s->windows[bsize], block_len);
425
426 } else {
427 block_len = 1 << s->next_block_len_bits;
428 n = (s->block_len - block_len) / 2;
429 bsize = s->frame_len_bits - s->next_block_len_bits;
430
431 memcpy(out, in, n*sizeof(float));
432
433 s->dsp.vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len);
434
435 memset(out+n+block_len, 0, n*sizeof(float));
436 }
437 }
438
439
440 /**
441 * @return 0 if OK. 1 if last block of frame. return -1 if
442 * unrecorrable error.
443 */
444 static int wma_decode_block(WMACodecContext *s)
445 {
446 int n, v, a, ch, bsize;
447 int coef_nb_bits, total_gain;
448 int nb_coefs[MAX_CHANNELS];
449 float mdct_norm;
450
451 #ifdef TRACE
452 tprintf(s->avctx, "***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
453 #endif
454
455 /* compute current block length */
456 if (s->use_variable_block_len) {
457 n = av_log2(s->nb_block_sizes - 1) + 1;
458
459 if (s->reset_block_lengths) {
460 s->reset_block_lengths = 0;
461 v = get_bits(&s->gb, n);
462 if (v >= s->nb_block_sizes){
463 av_log(s->avctx, AV_LOG_ERROR, "prev_block_len_bits %d out of range\n", s->frame_len_bits - v);
464 return -1;
465 }
466 s->prev_block_len_bits = s->frame_len_bits - v;
467 v = get_bits(&s->gb, n);
468 if (v >= s->nb_block_sizes){
469 av_log(s->avctx, AV_LOG_ERROR, "block_len_bits %d out of range\n", s->frame_len_bits - v);
470 return -1;
471 }
472 s->block_len_bits = s->frame_len_bits - v;
473 } else {
474 /* update block lengths */
475 s->prev_block_len_bits = s->block_len_bits;
476 s->block_len_bits = s->next_block_len_bits;
477 }
478 v = get_bits(&s->gb, n);
479 if (v >= s->nb_block_sizes){
480 av_log(s->avctx, AV_LOG_ERROR, "next_block_len_bits %d out of range\n", s->frame_len_bits - v);
481 return -1;
482 }
483 s->next_block_len_bits = s->frame_len_bits - v;
484 } else {
485 /* fixed block len */
486 s->next_block_len_bits = s->frame_len_bits;
487 s->prev_block_len_bits = s->frame_len_bits;
488 s->block_len_bits = s->frame_len_bits;
489 }
490
491 /* now check if the block length is coherent with the frame length */
492 s->block_len = 1 << s->block_len_bits;
493 if ((s->block_pos + s->block_len) > s->frame_len){
494 av_log(s->avctx, AV_LOG_ERROR, "frame_len overflow\n");
495 return -1;
496 }
497
498 if (s->nb_channels == 2) {
499 s->ms_stereo = get_bits1(&s->gb);
500 }
501 v = 0;
502 for(ch = 0; ch < s->nb_channels; ch++) {
503 a = get_bits1(&s->gb);
504 s->channel_coded[ch] = a;
505 v |= a;
506 }
507
508 bsize = s->frame_len_bits - s->block_len_bits;
509
510 /* if no channel coded, no need to go further */
511 /* XXX: fix potential framing problems */
512 if (!v)
513 goto next;
514
515 /* read total gain and extract corresponding number of bits for
516 coef escape coding */
517 total_gain = 1;
518 for(;;) {
519 a = get_bits(&s->gb, 7);
520 total_gain += a;
521 if (a != 127)
522 break;
523 }
524
525 coef_nb_bits= ff_wma_total_gain_to_bits(total_gain);
526
527 /* compute number of coefficients */
528 n = s->coefs_end[bsize] - s->coefs_start;
529 for(ch = 0; ch < s->nb_channels; ch++)
530 nb_coefs[ch] = n;
531
532 /* complex coding */
533 if (s->use_noise_coding) {
534
535 for(ch = 0; ch < s->nb_channels; ch++) {
536 if (s->channel_coded[ch]) {
537 int i, n, a;
538 n = s->exponent_high_sizes[bsize];
539 for(i=0;i<n;i++) {
540 a = get_bits1(&s->gb);
541 s->high_band_coded[ch][i] = a;
542 /* if noise coding, the coefficients are not transmitted */
543 if (a)
544 nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
545 }
546 }
547 }
548 for(ch = 0; ch < s->nb_channels; ch++) {
549 if (s->channel_coded[ch]) {
550 int i, n, val, code;
551
552 n = s->exponent_high_sizes[bsize];
553 val = (int)0x80000000;
554 for(i=0;i<n;i++) {
555 if (s->high_band_coded[ch][i]) {
556 if (val == (int)0x80000000) {
557 val = get_bits(&s->gb, 7) - 19;
558 } else {
559 code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
560 if (code < 0){
561 av_log(s->avctx, AV_LOG_ERROR, "hgain vlc invalid\n");
562 return -1;
563 }
564 val += code - 18;
565 }
566 s->high_band_values[ch][i] = val;
567 }
568 }
569 }
570 }
571 }
572
573 /* exponents can be reused in short blocks. */
574 if ((s->block_len_bits == s->frame_len_bits) ||
575 get_bits1(&s->gb)) {
576 for(ch = 0; ch < s->nb_channels; ch++) {
577 if (s->channel_coded[ch]) {
578 if (s->use_exp_vlc) {
579 if (decode_exp_vlc(s, ch) < 0)
580 return -1;
581 } else {
582 decode_exp_lsp(s, ch);
583 }
584 s->exponents_bsize[ch] = bsize;
585 }
586 }
587 }
588
589 /* parse spectral coefficients : just RLE encoding */
590 for(ch = 0; ch < s->nb_channels; ch++) {
591 if (s->channel_coded[ch]) {
592 int tindex;
593 WMACoef* ptr = &s->coefs1[ch][0];
594
595 /* special VLC tables are used for ms stereo because
596 there is potentially less energy there */
597 tindex = (ch == 1 && s->ms_stereo);
598 memset(ptr, 0, s->block_len * sizeof(WMACoef));
599 ff_wma_run_level_decode(s->avctx, &s->gb, &s->coef_vlc[tindex],
600 s->level_table[tindex], s->run_table[tindex],
601 0, ptr, 0, nb_coefs[ch],
602 s->block_len, s->frame_len_bits, coef_nb_bits);
603 }
604 if (s->version == 1 && s->nb_channels >= 2) {
605 align_get_bits(&s->gb);
606 }
607 }
608
609 /* normalize */
610 {
611 int n4 = s->block_len / 2;
612 mdct_norm = 1.0 / (float)n4;
613 if (s->version == 1) {
614 mdct_norm *= sqrt(n4);
615 }
616 }
617
618 /* finally compute the MDCT coefficients */
619 for(ch = 0; ch < s->nb_channels; ch++) {
620 if (s->channel_coded[ch]) {
621 WMACoef *coefs1;
622 float *coefs, *exponents, mult, mult1, noise;
623 int i, j, n, n1, last_high_band, esize;
624 float exp_power[HIGH_BAND_MAX_SIZE];
625
626 coefs1 = s->coefs1[ch];
627 exponents = s->exponents[ch];
628 esize = s->exponents_bsize[ch];
629 mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
630 mult *= mdct_norm;
631 coefs = s->coefs[ch];
632 if (s->use_noise_coding) {
633 mult1 = mult;
634 /* very low freqs : noise */
635 for(i = 0;i < s->coefs_start; i++) {
636 *coefs++ = s->noise_table[s->noise_index] *
637 exponents[i<<bsize>>esize] * mult1;
638 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
639 }
640
641 n1 = s->exponent_high_sizes[bsize];
642
643 /* compute power of high bands */
644 exponents = s->exponents[ch] +
645 (s->high_band_start[bsize]<<bsize>>esize);
646 last_high_band = 0; /* avoid warning */
647 for(j=0;j<n1;j++) {
648 n = s->exponent_high_bands[s->frame_len_bits -
649 s->block_len_bits][j];
650 if (s->high_band_coded[ch][j]) {
651 float e2, v;
652 e2 = 0;
653 for(i = 0;i < n; i++) {
654 v = exponents[i<<bsize>>esize];
655 e2 += v * v;
656 }
657 exp_power[j] = e2 / n;
658 last_high_band = j;
659 tprintf(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n);
660 }
661 exponents += n<<bsize>>esize;
662 }
663
664 /* main freqs and high freqs */
665 exponents = s->exponents[ch] + (s->coefs_start<<bsize>>esize);
666 for(j=-1;j<n1;j++) {
667 if (j < 0) {
668 n = s->high_band_start[bsize] -
669 s->coefs_start;
670 } else {
671 n = s->exponent_high_bands[s->frame_len_bits -
672 s->block_len_bits][j];
673 }
674 if (j >= 0 && s->high_band_coded[ch][j]) {
675 /* use noise with specified power */
676 mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
677 /* XXX: use a table */
678 mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
679 mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
680 mult1 *= mdct_norm;
681 for(i = 0;i < n; i++) {
682 noise = s->noise_table[s->noise_index];
683 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
684 *coefs++ = noise *
685 exponents[i<<bsize>>esize] * mult1;
686 }
687 exponents += n<<bsize>>esize;
688 } else {
689 /* coded values + small noise */
690 for(i = 0;i < n; i++) {
691 noise = s->noise_table[s->noise_index];
692 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
693 *coefs++ = ((*coefs1++) + noise) *
694 exponents[i<<bsize>>esize] * mult;
695 }
696 exponents += n<<bsize>>esize;
697 }
698 }
699
700 /* very high freqs : noise */
701 n = s->block_len - s->coefs_end[bsize];
702 mult1 = mult * exponents[((-1<<bsize))>>esize];
703 for(i = 0; i < n; i++) {
704 *coefs++ = s->noise_table[s->noise_index] * mult1;
705 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
706 }
707 } else {
708 /* XXX: optimize more */
709 for(i = 0;i < s->coefs_start; i++)
710 *coefs++ = 0.0;
711 n = nb_coefs[ch];
712 for(i = 0;i < n; i++) {
713 *coefs++ = coefs1[i] * exponents[i<<bsize>>esize] * mult;
714 }
715 n = s->block_len - s->coefs_end[bsize];
716 for(i = 0;i < n; i++)
717 *coefs++ = 0.0;
718 }
719 }
720 }
721
722 #ifdef TRACE
723 for(ch = 0; ch < s->nb_channels; ch++) {
724 if (s->channel_coded[ch]) {
725 dump_floats(s, "exponents", 3, s->exponents[ch], s->block_len);
726 dump_floats(s, "coefs", 1, s->coefs[ch], s->block_len);
727 }
728 }
729 #endif
730
731 if (s->ms_stereo && s->channel_coded[1]) {
732 /* nominal case for ms stereo: we do it before mdct */
733 /* no need to optimize this case because it should almost
734 never happen */
735 if (!s->channel_coded[0]) {
736 tprintf(s->avctx, "rare ms-stereo case happened\n");
737 memset(s->coefs[0], 0, sizeof(float) * s->block_len);
738 s->channel_coded[0] = 1;
739 }
740
741 s->dsp.butterflies_float(s->coefs[0], s->coefs[1], s->block_len);
742 }
743
744 next:
745 for(ch = 0; ch < s->nb_channels; ch++) {
746 int n4, index;
747
748 n4 = s->block_len / 2;
749 if(s->channel_coded[ch]){
750 ff_imdct_calc(&s->mdct_ctx[bsize], s->output, s->coefs[ch]);
751 }else if(!(s->ms_stereo && ch==1))
752 memset(s->output, 0, sizeof(s->output));
753
754 /* multiply by the window and add in the frame */
755 index = (s->frame_len / 2) + s->block_pos - n4;
756 wma_window(s, &s->frame_out[ch][index]);
757 }
758
759 /* update block number */
760 s->block_num++;
761 s->block_pos += s->block_len;
762 if (s->block_pos >= s->frame_len)
763 return 1;
764 else
765 return 0;
766 }
767
768 /* decode a frame of frame_len samples */
769 static int wma_decode_frame(WMACodecContext *s, int16_t *samples)
770 {
771 int ret, i, n, ch, incr;
772 int16_t *ptr;
773 float *iptr;
774
775 #ifdef TRACE
776 tprintf(s->avctx, "***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
777 #endif
778
779 /* read each block */
780 s->block_num = 0;
781 s->block_pos = 0;
782 for(;;) {
783 ret = wma_decode_block(s);
784 if (ret < 0)
785 return -1;
786 if (ret)
787 break;
788 }
789
790 /* convert frame to integer */
791 n = s->frame_len;
792 incr = s->nb_channels;
793 if (s->dsp.float_to_int16_interleave == ff_float_to_int16_interleave_c) {
794 for(ch = 0; ch < s->nb_channels; ch++) {
795 ptr = samples + ch;
796 iptr = s->frame_out[ch];
797
798 for(i=0;i<n;i++) {
799 *ptr = av_clip_int16(lrintf(*iptr++));
800 ptr += incr;
801 }
802 /* prepare for next block */
803 memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
804 s->frame_len * sizeof(float));
805 }
806 } else {
807 const float *output[MAX_CHANNELS];
808 for (ch = 0; ch < MAX_CHANNELS; ch++)
809 output[ch] = s->frame_out[ch];
810 s->dsp.float_to_int16_interleave(samples, output, n, incr);
811 for(ch = 0; ch < incr; ch++) {
812 /* prepare for next block */
813 memmove(&s->frame_out[ch][0], &s->frame_out[ch][n], n * sizeof(float));
814 }
815 }
816
817 #ifdef TRACE
818 dump_shorts(s, "samples", samples, n * s->nb_channels);
819 #endif
820 return 0;
821 }
822
823 static int wma_decode_superframe(AVCodecContext *avctx,
824 void *data, int *data_size,
825 AVPacket *avpkt)
826 {
827 const uint8_t *buf = avpkt->data;
828 int buf_size = avpkt->size;
829 WMACodecContext *s = avctx->priv_data;
830 int nb_frames, bit_offset, i, pos, len;
831 uint8_t *q;
832 int16_t *samples;
833
834 tprintf(avctx, "***decode_superframe:\n");
835
836 if(buf_size==0){
837 s->last_superframe_len = 0;
838 return 0;
839 }
840 if (buf_size < s->block_align)
841 return 0;
842 buf_size = s->block_align;
843
844 samples = data;
845
846 init_get_bits(&s->gb, buf, buf_size*8);
847
848 if (s->use_bit_reservoir) {
849 /* read super frame header */
850 skip_bits(&s->gb, 4); /* super frame index */
851 nb_frames = get_bits(&s->gb, 4) - 1;
852
853 if((nb_frames+1) * s->nb_channels * s->frame_len * sizeof(int16_t) > *data_size){
854 av_log(s->avctx, AV_LOG_ERROR, "Insufficient output space\n");
855 goto fail;
856 }
857
858 bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
859
860 if (s->last_superframe_len > 0) {
861 // printf("skip=%d\n", s->last_bitoffset);
862 /* add bit_offset bits to last frame */
863 if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
864 MAX_CODED_SUPERFRAME_SIZE)
865 goto fail;
866 q = s->last_superframe + s->last_superframe_len;
867 len = bit_offset;
868 while (len > 7) {
869 *q++ = (get_bits)(&s->gb, 8);
870 len -= 8;
871 }
872 if (len > 0) {
873 *q++ = (get_bits)(&s->gb, len) << (8 - len);
874 }
875
876 /* XXX: bit_offset bits into last frame */
877 init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8);
878 /* skip unused bits */
879 if (s->last_bitoffset > 0)
880 skip_bits(&s->gb, s->last_bitoffset);
881 /* this frame is stored in the last superframe and in the
882 current one */
883 if (wma_decode_frame(s, samples) < 0)
884 goto fail;
885 samples += s->nb_channels * s->frame_len;
886 }
887
888 /* read each frame starting from bit_offset */
889 pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
890 init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8);
891 len = pos & 7;
892 if (len > 0)
893 skip_bits(&s->gb, len);
894
895 s->reset_block_lengths = 1;
896 for(i=0;i<nb_frames;i++) {
897 if (wma_decode_frame(s, samples) < 0)
898 goto fail;
899 samples += s->nb_channels * s->frame_len;
900 }
901
902 /* we copy the end of the frame in the last frame buffer */
903 pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
904 s->last_bitoffset = pos & 7;
905 pos >>= 3;
906 len = buf_size - pos;
907 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
908 av_log(s->avctx, AV_LOG_ERROR, "len %d invalid\n", len);
909 goto fail;
910 }
911 s->last_superframe_len = len;
912 memcpy(s->last_superframe, buf + pos, len);
913 } else {
914 if(s->nb_channels * s->frame_len * sizeof(int16_t) > *data_size){
915 av_log(s->avctx, AV_LOG_ERROR, "Insufficient output space\n");
916 goto fail;
917 }
918 /* single frame decode */
919 if (wma_decode_frame(s, samples) < 0)
920 goto fail;
921 samples += s->nb_channels * s->frame_len;
922 }
923
924 //av_log(NULL, AV_LOG_ERROR, "%d %d %d %d outbytes:%d eaten:%d\n", s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len, (int8_t *)samples - (int8_t *)data, s->block_align);
925
926 *data_size = (int8_t *)samples - (int8_t *)data;
927 return s->block_align;
928 fail:
929 /* when error, we reset the bit reservoir */
930 s->last_superframe_len = 0;
931 return -1;
932 }
933
934 static av_cold void flush(AVCodecContext *avctx)
935 {
936 WMACodecContext *s = avctx->priv_data;
937
938 s->last_bitoffset=
939 s->last_superframe_len= 0;
940 }
941
942 AVCodec wmav1_decoder =
943 {
944 "wmav1",
945 AVMEDIA_TYPE_AUDIO,
946 CODEC_ID_WMAV1,
947 sizeof(WMACodecContext),
948 wma_decode_init,
949 NULL,
950 ff_wma_end,
951 wma_decode_superframe,
952 .flush=flush,
953 .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
954 };
955
956 AVCodec wmav2_decoder =
957 {
958 "wmav2",
959 AVMEDIA_TYPE_AUDIO,
960 CODEC_ID_WMAV2,
961 sizeof(WMACodecContext),
962 wma_decode_init,
963 NULL,
964 ff_wma_end,
965 wma_decode_superframe,
966 .flush=flush,
967 .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
968 };