8f44817318e4a891fbb184008d02f78cde926d43
[libav.git] / libavcodec / wmadec.c
1 /*
2 * WMA compatible decoder
3 * Copyright (c) 2002 The FFmpeg Project.
4 *
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
9 *
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
14 *
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19
20 /**
21 * @file wmadec.c
22 * WMA compatible decoder.
23 * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
24 * WMA v1 is identified by audio format 0x160 in Microsoft media files
25 * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
26 *
27 * To use this decoder, a calling application must supply the extra data
28 * bytes provided with the WMA data. These are the extra, codec-specific
29 * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
30 * to the decoder using the extradata[_size] fields in AVCodecContext. There
31 * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
32 */
33
34 #include "avcodec.h"
35 #include "bitstream.h"
36 #include "dsputil.h"
37
38 /* size of blocks */
39 #define BLOCK_MIN_BITS 7
40 #define BLOCK_MAX_BITS 11
41 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
42
43 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
44
45 /* XXX: find exact max size */
46 #define HIGH_BAND_MAX_SIZE 16
47
48 #define NB_LSP_COEFS 10
49
50 /* XXX: is it a suitable value ? */
51 #define MAX_CODED_SUPERFRAME_SIZE 16384
52
53 #define MAX_CHANNELS 2
54
55 #define NOISE_TAB_SIZE 8192
56
57 #define LSP_POW_BITS 7
58
59 #define VLCBITS 9
60 #define VLCMAX ((22+VLCBITS-1)/VLCBITS)
61
62 #define EXPVLCBITS 8
63 #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
64
65 #define HGAINVLCBITS 9
66 #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
67
68 typedef struct WMADecodeContext {
69 GetBitContext gb;
70 int sample_rate;
71 int nb_channels;
72 int bit_rate;
73 int version; /* 1 = 0x160 (WMAV1), 2 = 0x161 (WMAV2) */
74 int block_align;
75 int use_bit_reservoir;
76 int use_variable_block_len;
77 int use_exp_vlc; /* exponent coding: 0 = lsp, 1 = vlc + delta */
78 int use_noise_coding; /* true if perceptual noise is added */
79 int byte_offset_bits;
80 VLC exp_vlc;
81 int exponent_sizes[BLOCK_NB_SIZES];
82 uint16_t exponent_bands[BLOCK_NB_SIZES][25];
83 int high_band_start[BLOCK_NB_SIZES]; /* index of first coef in high band */
84 int coefs_start; /* first coded coef */
85 int coefs_end[BLOCK_NB_SIZES]; /* max number of coded coefficients */
86 int exponent_high_sizes[BLOCK_NB_SIZES];
87 int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
88 VLC hgain_vlc;
89
90 /* coded values in high bands */
91 int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
92 int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
93
94 /* there are two possible tables for spectral coefficients */
95 VLC coef_vlc[2];
96 uint16_t *run_table[2];
97 uint16_t *level_table[2];
98 /* frame info */
99 int frame_len; /* frame length in samples */
100 int frame_len_bits; /* frame_len = 1 << frame_len_bits */
101 int nb_block_sizes; /* number of block sizes */
102 /* block info */
103 int reset_block_lengths;
104 int block_len_bits; /* log2 of current block length */
105 int next_block_len_bits; /* log2 of next block length */
106 int prev_block_len_bits; /* log2 of prev block length */
107 int block_len; /* block length in samples */
108 int block_num; /* block number in current frame */
109 int block_pos; /* current position in frame */
110 uint8_t ms_stereo; /* true if mid/side stereo mode */
111 uint8_t channel_coded[MAX_CHANNELS]; /* true if channel is coded */
112 DECLARE_ALIGNED_16(float, exponents[MAX_CHANNELS][BLOCK_MAX_SIZE]);
113 float max_exponent[MAX_CHANNELS];
114 int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
115 DECLARE_ALIGNED_16(float, coefs[MAX_CHANNELS][BLOCK_MAX_SIZE]);
116 MDCTContext mdct_ctx[BLOCK_NB_SIZES];
117 float *windows[BLOCK_NB_SIZES];
118 DECLARE_ALIGNED_16(FFTSample, mdct_tmp[BLOCK_MAX_SIZE]); /* temporary storage for imdct */
119 /* output buffer for one frame and the last for IMDCT windowing */
120 DECLARE_ALIGNED_16(float, frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2]);
121 /* last frame info */
122 uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
123 int last_bitoffset;
124 int last_superframe_len;
125 float noise_table[NOISE_TAB_SIZE];
126 int noise_index;
127 float noise_mult; /* XXX: suppress that and integrate it in the noise array */
128 /* lsp_to_curve tables */
129 float lsp_cos_table[BLOCK_MAX_SIZE];
130 float lsp_pow_e_table[256];
131 float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
132 float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
133 DSPContext dsp;
134
135 #ifdef TRACE
136 int frame_count;
137 #endif
138 } WMADecodeContext;
139
140 typedef struct CoefVLCTable {
141 int n; /* total number of codes */
142 const uint32_t *huffcodes; /* VLC bit values */
143 const uint8_t *huffbits; /* VLC bit size */
144 const uint16_t *levels; /* table to build run/level tables */
145 } CoefVLCTable;
146
147 static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len);
148
149 #include "wmadata.h"
150
151 #ifdef TRACE
152 static void dump_shorts(const char *name, const short *tab, int n)
153 {
154 int i;
155
156 tprintf("%s[%d]:\n", name, n);
157 for(i=0;i<n;i++) {
158 if ((i & 7) == 0)
159 tprintf("%4d: ", i);
160 tprintf(" %5d.0", tab[i]);
161 if ((i & 7) == 7)
162 tprintf("\n");
163 }
164 }
165
166 static void dump_floats(const char *name, int prec, const float *tab, int n)
167 {
168 int i;
169
170 tprintf("%s[%d]:\n", name, n);
171 for(i=0;i<n;i++) {
172 if ((i & 7) == 0)
173 tprintf("%4d: ", i);
174 tprintf(" %8.*f", prec, tab[i]);
175 if ((i & 7) == 7)
176 tprintf("\n");
177 }
178 if ((i & 7) != 0)
179 tprintf("\n");
180 }
181 #endif
182
183 /* XXX: use same run/length optimization as mpeg decoders */
184 static void init_coef_vlc(VLC *vlc,
185 uint16_t **prun_table, uint16_t **plevel_table,
186 const CoefVLCTable *vlc_table)
187 {
188 int n = vlc_table->n;
189 const uint8_t *table_bits = vlc_table->huffbits;
190 const uint32_t *table_codes = vlc_table->huffcodes;
191 const uint16_t *levels_table = vlc_table->levels;
192 uint16_t *run_table, *level_table;
193 const uint16_t *p;
194 int i, l, j, level;
195
196 init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0);
197
198 run_table = av_malloc(n * sizeof(uint16_t));
199 level_table = av_malloc(n * sizeof(uint16_t));
200 p = levels_table;
201 i = 2;
202 level = 1;
203 while (i < n) {
204 l = *p++;
205 for(j=0;j<l;j++) {
206 run_table[i] = j;
207 level_table[i] = level;
208 i++;
209 }
210 level++;
211 }
212 *prun_table = run_table;
213 *plevel_table = level_table;
214 }
215
216 static int wma_decode_init(AVCodecContext * avctx)
217 {
218 WMADecodeContext *s = avctx->priv_data;
219 int i, flags1, flags2;
220 float *window;
221 uint8_t *extradata;
222 float bps1, high_freq;
223 volatile float bps;
224 int sample_rate1;
225 int coef_vlc_table;
226
227 s->sample_rate = avctx->sample_rate;
228 s->nb_channels = avctx->channels;
229 s->bit_rate = avctx->bit_rate;
230 s->block_align = avctx->block_align;
231
232 dsputil_init(&s->dsp, avctx);
233
234 if (avctx->codec->id == CODEC_ID_WMAV1) {
235 s->version = 1;
236 } else {
237 s->version = 2;
238 }
239
240 /* extract flag infos */
241 flags1 = 0;
242 flags2 = 0;
243 extradata = avctx->extradata;
244 if (s->version == 1 && avctx->extradata_size >= 4) {
245 flags1 = extradata[0] | (extradata[1] << 8);
246 flags2 = extradata[2] | (extradata[3] << 8);
247 } else if (s->version == 2 && avctx->extradata_size >= 6) {
248 flags1 = extradata[0] | (extradata[1] << 8) |
249 (extradata[2] << 16) | (extradata[3] << 24);
250 flags2 = extradata[4] | (extradata[5] << 8);
251 }
252 s->use_exp_vlc = flags2 & 0x0001;
253 s->use_bit_reservoir = flags2 & 0x0002;
254 s->use_variable_block_len = flags2 & 0x0004;
255
256 /* compute MDCT block size */
257 if (s->sample_rate <= 16000) {
258 s->frame_len_bits = 9;
259 } else if (s->sample_rate <= 22050 ||
260 (s->sample_rate <= 32000 && s->version == 1)) {
261 s->frame_len_bits = 10;
262 } else {
263 s->frame_len_bits = 11;
264 }
265 s->frame_len = 1 << s->frame_len_bits;
266 if (s->use_variable_block_len) {
267 int nb_max, nb;
268 nb = ((flags2 >> 3) & 3) + 1;
269 if ((s->bit_rate / s->nb_channels) >= 32000)
270 nb += 2;
271 nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
272 if (nb > nb_max)
273 nb = nb_max;
274 s->nb_block_sizes = nb + 1;
275 } else {
276 s->nb_block_sizes = 1;
277 }
278
279 /* init rate dependant parameters */
280 s->use_noise_coding = 1;
281 high_freq = s->sample_rate * 0.5;
282
283 /* if version 2, then the rates are normalized */
284 sample_rate1 = s->sample_rate;
285 if (s->version == 2) {
286 if (sample_rate1 >= 44100)
287 sample_rate1 = 44100;
288 else if (sample_rate1 >= 22050)
289 sample_rate1 = 22050;
290 else if (sample_rate1 >= 16000)
291 sample_rate1 = 16000;
292 else if (sample_rate1 >= 11025)
293 sample_rate1 = 11025;
294 else if (sample_rate1 >= 8000)
295 sample_rate1 = 8000;
296 }
297
298 bps = (float)s->bit_rate / (float)(s->nb_channels * s->sample_rate);
299 s->byte_offset_bits = av_log2((int)(bps * s->frame_len / 8.0 + 0.5)) + 2;
300
301 /* compute high frequency value and choose if noise coding should
302 be activated */
303 bps1 = bps;
304 if (s->nb_channels == 2)
305 bps1 = bps * 1.6;
306 if (sample_rate1 == 44100) {
307 if (bps1 >= 0.61)
308 s->use_noise_coding = 0;
309 else
310 high_freq = high_freq * 0.4;
311 } else if (sample_rate1 == 22050) {
312 if (bps1 >= 1.16)
313 s->use_noise_coding = 0;
314 else if (bps1 >= 0.72)
315 high_freq = high_freq * 0.7;
316 else
317 high_freq = high_freq * 0.6;
318 } else if (sample_rate1 == 16000) {
319 if (bps > 0.5)
320 high_freq = high_freq * 0.5;
321 else
322 high_freq = high_freq * 0.3;
323 } else if (sample_rate1 == 11025) {
324 high_freq = high_freq * 0.7;
325 } else if (sample_rate1 == 8000) {
326 if (bps <= 0.625) {
327 high_freq = high_freq * 0.5;
328 } else if (bps > 0.75) {
329 s->use_noise_coding = 0;
330 } else {
331 high_freq = high_freq * 0.65;
332 }
333 } else {
334 if (bps >= 0.8) {
335 high_freq = high_freq * 0.75;
336 } else if (bps >= 0.6) {
337 high_freq = high_freq * 0.6;
338 } else {
339 high_freq = high_freq * 0.5;
340 }
341 }
342 dprintf("flags1=0x%x flags2=0x%x\n", flags1, flags2);
343 dprintf("version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
344 s->version, s->nb_channels, s->sample_rate, s->bit_rate,
345 s->block_align);
346 dprintf("bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
347 bps, bps1, high_freq, s->byte_offset_bits);
348 dprintf("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
349 s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
350
351 /* compute the scale factor band sizes for each MDCT block size */
352 {
353 int a, b, pos, lpos, k, block_len, i, j, n;
354 const uint8_t *table;
355
356 if (s->version == 1) {
357 s->coefs_start = 3;
358 } else {
359 s->coefs_start = 0;
360 }
361 for(k = 0; k < s->nb_block_sizes; k++) {
362 block_len = s->frame_len >> k;
363
364 if (s->version == 1) {
365 lpos = 0;
366 for(i=0;i<25;i++) {
367 a = wma_critical_freqs[i];
368 b = s->sample_rate;
369 pos = ((block_len * 2 * a) + (b >> 1)) / b;
370 if (pos > block_len)
371 pos = block_len;
372 s->exponent_bands[0][i] = pos - lpos;
373 if (pos >= block_len) {
374 i++;
375 break;
376 }
377 lpos = pos;
378 }
379 s->exponent_sizes[0] = i;
380 } else {
381 /* hardcoded tables */
382 table = NULL;
383 a = s->frame_len_bits - BLOCK_MIN_BITS - k;
384 if (a < 3) {
385 if (s->sample_rate >= 44100)
386 table = exponent_band_44100[a];
387 else if (s->sample_rate >= 32000)
388 table = exponent_band_32000[a];
389 else if (s->sample_rate >= 22050)
390 table = exponent_band_22050[a];
391 }
392 if (table) {
393 n = *table++;
394 for(i=0;i<n;i++)
395 s->exponent_bands[k][i] = table[i];
396 s->exponent_sizes[k] = n;
397 } else {
398 j = 0;
399 lpos = 0;
400 for(i=0;i<25;i++) {
401 a = wma_critical_freqs[i];
402 b = s->sample_rate;
403 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
404 pos <<= 2;
405 if (pos > block_len)
406 pos = block_len;
407 if (pos > lpos)
408 s->exponent_bands[k][j++] = pos - lpos;
409 if (pos >= block_len)
410 break;
411 lpos = pos;
412 }
413 s->exponent_sizes[k] = j;
414 }
415 }
416
417 /* max number of coefs */
418 s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
419 /* high freq computation */
420 s->high_band_start[k] = (int)((block_len * 2 * high_freq) /
421 s->sample_rate + 0.5);
422 n = s->exponent_sizes[k];
423 j = 0;
424 pos = 0;
425 for(i=0;i<n;i++) {
426 int start, end;
427 start = pos;
428 pos += s->exponent_bands[k][i];
429 end = pos;
430 if (start < s->high_band_start[k])
431 start = s->high_band_start[k];
432 if (end > s->coefs_end[k])
433 end = s->coefs_end[k];
434 if (end > start)
435 s->exponent_high_bands[k][j++] = end - start;
436 }
437 s->exponent_high_sizes[k] = j;
438 #if 0
439 tprintf("%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
440 s->frame_len >> k,
441 s->coefs_end[k],
442 s->high_band_start[k],
443 s->exponent_high_sizes[k]);
444 for(j=0;j<s->exponent_high_sizes[k];j++)
445 tprintf(" %d", s->exponent_high_bands[k][j]);
446 tprintf("\n");
447 #endif
448 }
449 }
450
451 #ifdef TRACE
452 {
453 int i, j;
454 for(i = 0; i < s->nb_block_sizes; i++) {
455 tprintf("%5d: n=%2d:",
456 s->frame_len >> i,
457 s->exponent_sizes[i]);
458 for(j=0;j<s->exponent_sizes[i];j++)
459 tprintf(" %d", s->exponent_bands[i][j]);
460 tprintf("\n");
461 }
462 }
463 #endif
464
465 /* init MDCT */
466 for(i = 0; i < s->nb_block_sizes; i++)
467 ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1);
468
469 /* init MDCT windows : simple sinus window */
470 for(i = 0; i < s->nb_block_sizes; i++) {
471 int n, j;
472 float alpha;
473 n = 1 << (s->frame_len_bits - i);
474 window = av_malloc(sizeof(float) * n);
475 alpha = M_PI / (2.0 * n);
476 for(j=0;j<n;j++) {
477 window[n - j - 1] = sin((j + 0.5) * alpha);
478 }
479 s->windows[i] = window;
480 }
481
482 s->reset_block_lengths = 1;
483
484 if (s->use_noise_coding) {
485
486 /* init the noise generator */
487 if (s->use_exp_vlc)
488 s->noise_mult = 0.02;
489 else
490 s->noise_mult = 0.04;
491
492 #ifdef TRACE
493 for(i=0;i<NOISE_TAB_SIZE;i++)
494 s->noise_table[i] = 1.0 * s->noise_mult;
495 #else
496 {
497 unsigned int seed;
498 float norm;
499 seed = 1;
500 norm = (1.0 / (float)(1LL << 31)) * sqrt(3) * s->noise_mult;
501 for(i=0;i<NOISE_TAB_SIZE;i++) {
502 seed = seed * 314159 + 1;
503 s->noise_table[i] = (float)((int)seed) * norm;
504 }
505 }
506 #endif
507 init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(hgain_huffbits),
508 hgain_huffbits, 1, 1,
509 hgain_huffcodes, 2, 2, 0);
510 }
511
512 if (s->use_exp_vlc) {
513 init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(scale_huffbits),
514 scale_huffbits, 1, 1,
515 scale_huffcodes, 4, 4, 0);
516 } else {
517 wma_lsp_to_curve_init(s, s->frame_len);
518 }
519
520 /* choose the VLC tables for the coefficients */
521 coef_vlc_table = 2;
522 if (s->sample_rate >= 32000) {
523 if (bps1 < 0.72)
524 coef_vlc_table = 0;
525 else if (bps1 < 1.16)
526 coef_vlc_table = 1;
527 }
528
529 init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
530 &coef_vlcs[coef_vlc_table * 2]);
531 init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
532 &coef_vlcs[coef_vlc_table * 2 + 1]);
533 return 0;
534 }
535
536 /* interpolate values for a bigger or smaller block. The block must
537 have multiple sizes */
538 static void interpolate_array(float *scale, int old_size, int new_size)
539 {
540 int i, j, jincr, k;
541 float v;
542
543 if (new_size > old_size) {
544 jincr = new_size / old_size;
545 j = new_size;
546 for(i = old_size - 1; i >=0; i--) {
547 v = scale[i];
548 k = jincr;
549 do {
550 scale[--j] = v;
551 } while (--k);
552 }
553 } else if (new_size < old_size) {
554 j = 0;
555 jincr = old_size / new_size;
556 for(i = 0; i < new_size; i++) {
557 scale[i] = scale[j];
558 j += jincr;
559 }
560 }
561 }
562
563 /* compute x^-0.25 with an exponent and mantissa table. We use linear
564 interpolation to reduce the mantissa table size at a small speed
565 expense (linear interpolation approximately doubles the number of
566 bits of precision). */
567 static inline float pow_m1_4(WMADecodeContext *s, float x)
568 {
569 union {
570 float f;
571 unsigned int v;
572 } u, t;
573 unsigned int e, m;
574 float a, b;
575
576 u.f = x;
577 e = u.v >> 23;
578 m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
579 /* build interpolation scale: 1 <= t < 2. */
580 t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
581 a = s->lsp_pow_m_table1[m];
582 b = s->lsp_pow_m_table2[m];
583 return s->lsp_pow_e_table[e] * (a + b * t.f);
584 }
585
586 static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len)
587 {
588 float wdel, a, b;
589 int i, e, m;
590
591 wdel = M_PI / frame_len;
592 for(i=0;i<frame_len;i++)
593 s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
594
595 /* tables for x^-0.25 computation */
596 for(i=0;i<256;i++) {
597 e = i - 126;
598 s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
599 }
600
601 /* NOTE: these two tables are needed to avoid two operations in
602 pow_m1_4 */
603 b = 1.0;
604 for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
605 m = (1 << LSP_POW_BITS) + i;
606 a = (float)m * (0.5 / (1 << LSP_POW_BITS));
607 a = pow(a, -0.25);
608 s->lsp_pow_m_table1[i] = 2 * a - b;
609 s->lsp_pow_m_table2[i] = b - a;
610 b = a;
611 }
612 #if 0
613 for(i=1;i<20;i++) {
614 float v, r1, r2;
615 v = 5.0 / i;
616 r1 = pow_m1_4(s, v);
617 r2 = pow(v,-0.25);
618 printf("%f^-0.25=%f e=%f\n", v, r1, r2 - r1);
619 }
620 #endif
621 }
622
623 /* NOTE: We use the same code as Vorbis here */
624 /* XXX: optimize it further with SSE/3Dnow */
625 static void wma_lsp_to_curve(WMADecodeContext *s,
626 float *out, float *val_max_ptr,
627 int n, float *lsp)
628 {
629 int i, j;
630 float p, q, w, v, val_max;
631
632 val_max = 0;
633 for(i=0;i<n;i++) {
634 p = 0.5f;
635 q = 0.5f;
636 w = s->lsp_cos_table[i];
637 for(j=1;j<NB_LSP_COEFS;j+=2){
638 q *= w - lsp[j - 1];
639 p *= w - lsp[j];
640 }
641 p *= p * (2.0f - w);
642 q *= q * (2.0f + w);
643 v = p + q;
644 v = pow_m1_4(s, v);
645 if (v > val_max)
646 val_max = v;
647 out[i] = v;
648 }
649 *val_max_ptr = val_max;
650 }
651
652 /* decode exponents coded with LSP coefficients (same idea as Vorbis) */
653 static void decode_exp_lsp(WMADecodeContext *s, int ch)
654 {
655 float lsp_coefs[NB_LSP_COEFS];
656 int val, i;
657
658 for(i = 0; i < NB_LSP_COEFS; i++) {
659 if (i == 0 || i >= 8)
660 val = get_bits(&s->gb, 3);
661 else
662 val = get_bits(&s->gb, 4);
663 lsp_coefs[i] = lsp_codebook[i][val];
664 }
665
666 wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
667 s->block_len, lsp_coefs);
668 }
669
670 /* decode exponents coded with VLC codes */
671 static int decode_exp_vlc(WMADecodeContext *s, int ch)
672 {
673 int last_exp, n, code;
674 const uint16_t *ptr, *band_ptr;
675 float v, *q, max_scale, *q_end;
676
677 band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
678 ptr = band_ptr;
679 q = s->exponents[ch];
680 q_end = q + s->block_len;
681 max_scale = 0;
682 if (s->version == 1) {
683 last_exp = get_bits(&s->gb, 5) + 10;
684 /* XXX: use a table */
685 v = pow(10, last_exp * (1.0 / 16.0));
686 max_scale = v;
687 n = *ptr++;
688 do {
689 *q++ = v;
690 } while (--n);
691 }
692 last_exp = 36;
693 while (q < q_end) {
694 code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
695 if (code < 0)
696 return -1;
697 /* NOTE: this offset is the same as MPEG4 AAC ! */
698 last_exp += code - 60;
699 /* XXX: use a table */
700 v = pow(10, last_exp * (1.0 / 16.0));
701 if (v > max_scale)
702 max_scale = v;
703 n = *ptr++;
704 do {
705 *q++ = v;
706 } while (--n);
707 }
708 s->max_exponent[ch] = max_scale;
709 return 0;
710 }
711
712 /* return 0 if OK. return 1 if last block of frame. return -1 if
713 unrecorrable error. */
714 static int wma_decode_block(WMADecodeContext *s)
715 {
716 int n, v, a, ch, code, bsize;
717 int coef_nb_bits, total_gain, parse_exponents;
718 float window[BLOCK_MAX_SIZE * 2];
719 // XXX: FIXME!! there's a bug somewhere which makes this mandatory under altivec
720 #ifdef HAVE_ALTIVEC
721 volatile int nb_coefs[MAX_CHANNELS] __attribute__((aligned(16)));
722 #else
723 int nb_coefs[MAX_CHANNELS];
724 #endif
725 float mdct_norm;
726
727 #ifdef TRACE
728 tprintf("***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
729 #endif
730
731 /* compute current block length */
732 if (s->use_variable_block_len) {
733 n = av_log2(s->nb_block_sizes - 1) + 1;
734
735 if (s->reset_block_lengths) {
736 s->reset_block_lengths = 0;
737 v = get_bits(&s->gb, n);
738 if (v >= s->nb_block_sizes)
739 return -1;
740 s->prev_block_len_bits = s->frame_len_bits - v;
741 v = get_bits(&s->gb, n);
742 if (v >= s->nb_block_sizes)
743 return -1;
744 s->block_len_bits = s->frame_len_bits - v;
745 } else {
746 /* update block lengths */
747 s->prev_block_len_bits = s->block_len_bits;
748 s->block_len_bits = s->next_block_len_bits;
749 }
750 v = get_bits(&s->gb, n);
751 if (v >= s->nb_block_sizes)
752 return -1;
753 s->next_block_len_bits = s->frame_len_bits - v;
754 } else {
755 /* fixed block len */
756 s->next_block_len_bits = s->frame_len_bits;
757 s->prev_block_len_bits = s->frame_len_bits;
758 s->block_len_bits = s->frame_len_bits;
759 }
760
761 /* now check if the block length is coherent with the frame length */
762 s->block_len = 1 << s->block_len_bits;
763 if ((s->block_pos + s->block_len) > s->frame_len)
764 return -1;
765
766 if (s->nb_channels == 2) {
767 s->ms_stereo = get_bits(&s->gb, 1);
768 }
769 v = 0;
770 for(ch = 0; ch < s->nb_channels; ch++) {
771 a = get_bits(&s->gb, 1);
772 s->channel_coded[ch] = a;
773 v |= a;
774 }
775 /* if no channel coded, no need to go further */
776 /* XXX: fix potential framing problems */
777 if (!v)
778 goto next;
779
780 bsize = s->frame_len_bits - s->block_len_bits;
781
782 /* read total gain and extract corresponding number of bits for
783 coef escape coding */
784 total_gain = 1;
785 for(;;) {
786 a = get_bits(&s->gb, 7);
787 total_gain += a;
788 if (a != 127)
789 break;
790 }
791
792 if (total_gain < 15)
793 coef_nb_bits = 13;
794 else if (total_gain < 32)
795 coef_nb_bits = 12;
796 else if (total_gain < 40)
797 coef_nb_bits = 11;
798 else if (total_gain < 45)
799 coef_nb_bits = 10;
800 else
801 coef_nb_bits = 9;
802
803 /* compute number of coefficients */
804 n = s->coefs_end[bsize] - s->coefs_start;
805 for(ch = 0; ch < s->nb_channels; ch++)
806 nb_coefs[ch] = n;
807
808 /* complex coding */
809 if (s->use_noise_coding) {
810
811 for(ch = 0; ch < s->nb_channels; ch++) {
812 if (s->channel_coded[ch]) {
813 int i, n, a;
814 n = s->exponent_high_sizes[bsize];
815 for(i=0;i<n;i++) {
816 a = get_bits(&s->gb, 1);
817 s->high_band_coded[ch][i] = a;
818 /* if noise coding, the coefficients are not transmitted */
819 if (a)
820 nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
821 }
822 }
823 }
824 for(ch = 0; ch < s->nb_channels; ch++) {
825 if (s->channel_coded[ch]) {
826 int i, n, val, code;
827
828 n = s->exponent_high_sizes[bsize];
829 val = (int)0x80000000;
830 for(i=0;i<n;i++) {
831 if (s->high_band_coded[ch][i]) {
832 if (val == (int)0x80000000) {
833 val = get_bits(&s->gb, 7) - 19;
834 } else {
835 code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
836 if (code < 0)
837 return -1;
838 val += code - 18;
839 }
840 s->high_band_values[ch][i] = val;
841 }
842 }
843 }
844 }
845 }
846
847 /* exposant can be interpolated in short blocks. */
848 parse_exponents = 1;
849 if (s->block_len_bits != s->frame_len_bits) {
850 parse_exponents = get_bits(&s->gb, 1);
851 }
852
853 if (parse_exponents) {
854 for(ch = 0; ch < s->nb_channels; ch++) {
855 if (s->channel_coded[ch]) {
856 if (s->use_exp_vlc) {
857 if (decode_exp_vlc(s, ch) < 0)
858 return -1;
859 } else {
860 decode_exp_lsp(s, ch);
861 }
862 }
863 }
864 } else {
865 for(ch = 0; ch < s->nb_channels; ch++) {
866 if (s->channel_coded[ch]) {
867 interpolate_array(s->exponents[ch], 1 << s->prev_block_len_bits,
868 s->block_len);
869 }
870 }
871 }
872
873 /* parse spectral coefficients : just RLE encoding */
874 for(ch = 0; ch < s->nb_channels; ch++) {
875 if (s->channel_coded[ch]) {
876 VLC *coef_vlc;
877 int level, run, sign, tindex;
878 int16_t *ptr, *eptr;
879 const int16_t *level_table, *run_table;
880
881 /* special VLC tables are used for ms stereo because
882 there is potentially less energy there */
883 tindex = (ch == 1 && s->ms_stereo);
884 coef_vlc = &s->coef_vlc[tindex];
885 run_table = s->run_table[tindex];
886 level_table = s->level_table[tindex];
887 /* XXX: optimize */
888 ptr = &s->coefs1[ch][0];
889 eptr = ptr + nb_coefs[ch];
890 memset(ptr, 0, s->block_len * sizeof(int16_t));
891 for(;;) {
892 code = get_vlc2(&s->gb, coef_vlc->table, VLCBITS, VLCMAX);
893 if (code < 0)
894 return -1;
895 if (code == 1) {
896 /* EOB */
897 break;
898 } else if (code == 0) {
899 /* escape */
900 level = get_bits(&s->gb, coef_nb_bits);
901 /* NOTE: this is rather suboptimal. reading
902 block_len_bits would be better */
903 run = get_bits(&s->gb, s->frame_len_bits);
904 } else {
905 /* normal code */
906 run = run_table[code];
907 level = level_table[code];
908 }
909 sign = get_bits(&s->gb, 1);
910 if (!sign)
911 level = -level;
912 ptr += run;
913 if (ptr >= eptr)
914 {
915 av_log(NULL, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n");
916 break;
917 }
918 *ptr++ = level;
919 /* NOTE: EOB can be omitted */
920 if (ptr >= eptr)
921 break;
922 }
923 }
924 if (s->version == 1 && s->nb_channels >= 2) {
925 align_get_bits(&s->gb);
926 }
927 }
928
929 /* normalize */
930 {
931 int n4 = s->block_len / 2;
932 mdct_norm = 1.0 / (float)n4;
933 if (s->version == 1) {
934 mdct_norm *= sqrt(n4);
935 }
936 }
937
938 /* finally compute the MDCT coefficients */
939 for(ch = 0; ch < s->nb_channels; ch++) {
940 if (s->channel_coded[ch]) {
941 int16_t *coefs1;
942 float *coefs, *exponents, mult, mult1, noise, *exp_ptr;
943 int i, j, n, n1, last_high_band;
944 float exp_power[HIGH_BAND_MAX_SIZE];
945
946 coefs1 = s->coefs1[ch];
947 exponents = s->exponents[ch];
948 mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
949 mult *= mdct_norm;
950 coefs = s->coefs[ch];
951 if (s->use_noise_coding) {
952 mult1 = mult;
953 /* very low freqs : noise */
954 for(i = 0;i < s->coefs_start; i++) {
955 *coefs++ = s->noise_table[s->noise_index] * (*exponents++) * mult1;
956 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
957 }
958
959 n1 = s->exponent_high_sizes[bsize];
960
961 /* compute power of high bands */
962 exp_ptr = exponents +
963 s->high_band_start[bsize] -
964 s->coefs_start;
965 last_high_band = 0; /* avoid warning */
966 for(j=0;j<n1;j++) {
967 n = s->exponent_high_bands[s->frame_len_bits -
968 s->block_len_bits][j];
969 if (s->high_band_coded[ch][j]) {
970 float e2, v;
971 e2 = 0;
972 for(i = 0;i < n; i++) {
973 v = exp_ptr[i];
974 e2 += v * v;
975 }
976 exp_power[j] = e2 / n;
977 last_high_band = j;
978 tprintf("%d: power=%f (%d)\n", j, exp_power[j], n);
979 }
980 exp_ptr += n;
981 }
982
983 /* main freqs and high freqs */
984 for(j=-1;j<n1;j++) {
985 if (j < 0) {
986 n = s->high_band_start[bsize] -
987 s->coefs_start;
988 } else {
989 n = s->exponent_high_bands[s->frame_len_bits -
990 s->block_len_bits][j];
991 }
992 if (j >= 0 && s->high_band_coded[ch][j]) {
993 /* use noise with specified power */
994 mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
995 /* XXX: use a table */
996 mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
997 mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
998 mult1 *= mdct_norm;
999 for(i = 0;i < n; i++) {
1000 noise = s->noise_table[s->noise_index];
1001 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
1002 *coefs++ = (*exponents++) * noise * mult1;
1003 }
1004 } else {
1005 /* coded values + small noise */
1006 for(i = 0;i < n; i++) {
1007 noise = s->noise_table[s->noise_index];
1008 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
1009 *coefs++ = ((*coefs1++) + noise) * (*exponents++) * mult;
1010 }
1011 }
1012 }
1013
1014 /* very high freqs : noise */
1015 n = s->block_len - s->coefs_end[bsize];
1016 mult1 = mult * exponents[-1];
1017 for(i = 0; i < n; i++) {
1018 *coefs++ = s->noise_table[s->noise_index] * mult1;
1019 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
1020 }
1021 } else {
1022 /* XXX: optimize more */
1023 for(i = 0;i < s->coefs_start; i++)
1024 *coefs++ = 0.0;
1025 n = nb_coefs[ch];
1026 for(i = 0;i < n; i++) {
1027 *coefs++ = coefs1[i] * exponents[i] * mult;
1028 }
1029 n = s->block_len - s->coefs_end[bsize];
1030 for(i = 0;i < n; i++)
1031 *coefs++ = 0.0;
1032 }
1033 }
1034 }
1035
1036 #ifdef TRACE
1037 for(ch = 0; ch < s->nb_channels; ch++) {
1038 if (s->channel_coded[ch]) {
1039 dump_floats("exponents", 3, s->exponents[ch], s->block_len);
1040 dump_floats("coefs", 1, s->coefs[ch], s->block_len);
1041 }
1042 }
1043 #endif
1044
1045 if (s->ms_stereo && s->channel_coded[1]) {
1046 float a, b;
1047 int i;
1048
1049 /* nominal case for ms stereo: we do it before mdct */
1050 /* no need to optimize this case because it should almost
1051 never happen */
1052 if (!s->channel_coded[0]) {
1053 tprintf("rare ms-stereo case happened\n");
1054 memset(s->coefs[0], 0, sizeof(float) * s->block_len);
1055 s->channel_coded[0] = 1;
1056 }
1057
1058 for(i = 0; i < s->block_len; i++) {
1059 a = s->coefs[0][i];
1060 b = s->coefs[1][i];
1061 s->coefs[0][i] = a + b;
1062 s->coefs[1][i] = a - b;
1063 }
1064 }
1065
1066 /* build the window : we ensure that when the windows overlap
1067 their squared sum is always 1 (MDCT reconstruction rule) */
1068 /* XXX: merge with output */
1069 {
1070 int i, next_block_len, block_len, prev_block_len, n;
1071 float *wptr;
1072
1073 block_len = s->block_len;
1074 prev_block_len = 1 << s->prev_block_len_bits;
1075 next_block_len = 1 << s->next_block_len_bits;
1076
1077 /* right part */
1078 wptr = window + block_len;
1079 if (block_len <= next_block_len) {
1080 for(i=0;i<block_len;i++)
1081 *wptr++ = s->windows[bsize][i];
1082 } else {
1083 /* overlap */
1084 n = (block_len / 2) - (next_block_len / 2);
1085 for(i=0;i<n;i++)
1086 *wptr++ = 1.0;
1087 for(i=0;i<next_block_len;i++)
1088 *wptr++ = s->windows[s->frame_len_bits - s->next_block_len_bits][i];
1089 for(i=0;i<n;i++)
1090 *wptr++ = 0.0;
1091 }
1092
1093 /* left part */
1094 wptr = window + block_len;
1095 if (block_len <= prev_block_len) {
1096 for(i=0;i<block_len;i++)
1097 *--wptr = s->windows[bsize][i];
1098 } else {
1099 /* overlap */
1100 n = (block_len / 2) - (prev_block_len / 2);
1101 for(i=0;i<n;i++)
1102 *--wptr = 1.0;
1103 for(i=0;i<prev_block_len;i++)
1104 *--wptr = s->windows[s->frame_len_bits - s->prev_block_len_bits][i];
1105 for(i=0;i<n;i++)
1106 *--wptr = 0.0;
1107 }
1108 }
1109
1110
1111 for(ch = 0; ch < s->nb_channels; ch++) {
1112 if (s->channel_coded[ch]) {
1113 DECLARE_ALIGNED_16(FFTSample, output[BLOCK_MAX_SIZE * 2]);
1114 float *ptr;
1115 int n4, index, n;
1116
1117 n = s->block_len;
1118 n4 = s->block_len / 2;
1119 s->mdct_ctx[bsize].fft.imdct_calc(&s->mdct_ctx[bsize],
1120 output, s->coefs[ch], s->mdct_tmp);
1121
1122 /* XXX: optimize all that by build the window and
1123 multipying/adding at the same time */
1124
1125 /* multiply by the window and add in the frame */
1126 index = (s->frame_len / 2) + s->block_pos - n4;
1127 ptr = &s->frame_out[ch][index];
1128 s->dsp.vector_fmul_add_add(ptr,window,output,ptr,0,2*n,1);
1129
1130 /* specific fast case for ms-stereo : add to second
1131 channel if it is not coded */
1132 if (s->ms_stereo && !s->channel_coded[1]) {
1133 ptr = &s->frame_out[1][index];
1134 s->dsp.vector_fmul_add_add(ptr,window,output,ptr,0,2*n,1);
1135 }
1136 }
1137 }
1138 next:
1139 /* update block number */
1140 s->block_num++;
1141 s->block_pos += s->block_len;
1142 if (s->block_pos >= s->frame_len)
1143 return 1;
1144 else
1145 return 0;
1146 }
1147
1148 /* decode a frame of frame_len samples */
1149 static int wma_decode_frame(WMADecodeContext *s, int16_t *samples)
1150 {
1151 int ret, i, n, a, ch, incr;
1152 int16_t *ptr;
1153 float *iptr;
1154
1155 #ifdef TRACE
1156 tprintf("***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
1157 #endif
1158
1159 /* read each block */
1160 s->block_num = 0;
1161 s->block_pos = 0;
1162 for(;;) {
1163 ret = wma_decode_block(s);
1164 if (ret < 0)
1165 return -1;
1166 if (ret)
1167 break;
1168 }
1169
1170 /* convert frame to integer */
1171 n = s->frame_len;
1172 incr = s->nb_channels;
1173 for(ch = 0; ch < s->nb_channels; ch++) {
1174 ptr = samples + ch;
1175 iptr = s->frame_out[ch];
1176
1177 for(i=0;i<n;i++) {
1178 a = lrintf(*iptr++);
1179 if (a > 32767)
1180 a = 32767;
1181 else if (a < -32768)
1182 a = -32768;
1183 *ptr = a;
1184 ptr += incr;
1185 }
1186 /* prepare for next block */
1187 memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
1188 s->frame_len * sizeof(float));
1189 /* XXX: suppress this */
1190 memset(&s->frame_out[ch][s->frame_len], 0,
1191 s->frame_len * sizeof(float));
1192 }
1193
1194 #ifdef TRACE
1195 dump_shorts("samples", samples, n * s->nb_channels);
1196 #endif
1197 return 0;
1198 }
1199
1200 static int wma_decode_superframe(AVCodecContext *avctx,
1201 void *data, int *data_size,
1202 uint8_t *buf, int buf_size)
1203 {
1204 WMADecodeContext *s = avctx->priv_data;
1205 int nb_frames, bit_offset, i, pos, len;
1206 uint8_t *q;
1207 int16_t *samples;
1208
1209 tprintf("***decode_superframe:\n");
1210
1211 if(buf_size==0){
1212 s->last_superframe_len = 0;
1213 return 0;
1214 }
1215
1216 samples = data;
1217
1218 init_get_bits(&s->gb, buf, buf_size*8);
1219
1220 if (s->use_bit_reservoir) {
1221 /* read super frame header */
1222 get_bits(&s->gb, 4); /* super frame index */
1223 nb_frames = get_bits(&s->gb, 4) - 1;
1224
1225 bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
1226
1227 if (s->last_superframe_len > 0) {
1228 // printf("skip=%d\n", s->last_bitoffset);
1229 /* add bit_offset bits to last frame */
1230 if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
1231 MAX_CODED_SUPERFRAME_SIZE)
1232 goto fail;
1233 q = s->last_superframe + s->last_superframe_len;
1234 len = bit_offset;
1235 while (len > 7) {
1236 *q++ = (get_bits)(&s->gb, 8);
1237 len -= 8;
1238 }
1239 if (len > 0) {
1240 *q++ = (get_bits)(&s->gb, len) << (8 - len);
1241 }
1242
1243 /* XXX: bit_offset bits into last frame */
1244 init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8);
1245 /* skip unused bits */
1246 if (s->last_bitoffset > 0)
1247 skip_bits(&s->gb, s->last_bitoffset);
1248 /* this frame is stored in the last superframe and in the
1249 current one */
1250 if (wma_decode_frame(s, samples) < 0)
1251 goto fail;
1252 samples += s->nb_channels * s->frame_len;
1253 }
1254
1255 /* read each frame starting from bit_offset */
1256 pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
1257 init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8);
1258 len = pos & 7;
1259 if (len > 0)
1260 skip_bits(&s->gb, len);
1261
1262 s->reset_block_lengths = 1;
1263 for(i=0;i<nb_frames;i++) {
1264 if (wma_decode_frame(s, samples) < 0)
1265 goto fail;
1266 samples += s->nb_channels * s->frame_len;
1267 }
1268
1269 /* we copy the end of the frame in the last frame buffer */
1270 pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
1271 s->last_bitoffset = pos & 7;
1272 pos >>= 3;
1273 len = buf_size - pos;
1274 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
1275 goto fail;
1276 }
1277 s->last_superframe_len = len;
1278 memcpy(s->last_superframe, buf + pos, len);
1279 } else {
1280 /* single frame decode */
1281 if (wma_decode_frame(s, samples) < 0)
1282 goto fail;
1283 samples += s->nb_channels * s->frame_len;
1284 }
1285 *data_size = (int8_t *)samples - (int8_t *)data;
1286 return s->block_align;
1287 fail:
1288 /* when error, we reset the bit reservoir */
1289 s->last_superframe_len = 0;
1290 return -1;
1291 }
1292
1293 static int wma_decode_end(AVCodecContext *avctx)
1294 {
1295 WMADecodeContext *s = avctx->priv_data;
1296 int i;
1297
1298 for(i = 0; i < s->nb_block_sizes; i++)
1299 ff_mdct_end(&s->mdct_ctx[i]);
1300 for(i = 0; i < s->nb_block_sizes; i++)
1301 av_free(s->windows[i]);
1302
1303 if (s->use_exp_vlc) {
1304 free_vlc(&s->exp_vlc);
1305 }
1306 if (s->use_noise_coding) {
1307 free_vlc(&s->hgain_vlc);
1308 }
1309 for(i = 0;i < 2; i++) {
1310 free_vlc(&s->coef_vlc[i]);
1311 av_free(s->run_table[i]);
1312 av_free(s->level_table[i]);
1313 }
1314
1315 return 0;
1316 }
1317
1318 AVCodec wmav1_decoder =
1319 {
1320 "wmav1",
1321 CODEC_TYPE_AUDIO,
1322 CODEC_ID_WMAV1,
1323 sizeof(WMADecodeContext),
1324 wma_decode_init,
1325 NULL,
1326 wma_decode_end,
1327 wma_decode_superframe,
1328 };
1329
1330 AVCodec wmav2_decoder =
1331 {
1332 "wmav2",
1333 CODEC_TYPE_AUDIO,
1334 CODEC_ID_WMAV2,
1335 sizeof(WMADecodeContext),
1336 wma_decode_init,
1337 NULL,
1338 wma_decode_end,
1339 wma_decode_superframe,
1340 };