2 * WMA compatible decoder
3 * Copyright (c) 2002 The FFmpeg Project.
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 //#define DEBUG_PARAMS
26 #define BLOCK_MIN_BITS 7
27 #define BLOCK_MAX_BITS 11
28 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
30 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
32 /* XXX: find exact max size */
33 #define HIGH_BAND_MAX_SIZE 16
35 #define NB_LSP_COEFS 10
37 /* XXX: is it a suitable value ? */
38 #define MAX_CODED_SUPERFRAME_SIZE 4096
40 #define MAX_CHANNELS 2
42 #define NOISE_TAB_SIZE 8192
44 #define LSP_POW_BITS 7
46 typedef struct WMADecodeContext
{
51 int version
; /* 1 = 0x160 (WMAV1), 2 = 0x161 (WMAV2) */
53 int use_bit_reservoir
;
54 int use_variable_block_len
;
55 int use_exp_vlc
; /* exponent coding: 0 = lsp, 1 = vlc + delta */
56 int use_noise_coding
; /* true if perceptual noise is added */
59 int exponent_sizes
[BLOCK_NB_SIZES
];
60 uint16_t exponent_bands
[BLOCK_NB_SIZES
][25];
61 int high_band_start
[BLOCK_NB_SIZES
]; /* index of first coef in high band */
62 int coefs_start
; /* first coded coef */
63 int coefs_end
[BLOCK_NB_SIZES
]; /* max number of coded coefficients */
64 int exponent_high_sizes
[BLOCK_NB_SIZES
];
65 int exponent_high_bands
[BLOCK_NB_SIZES
][HIGH_BAND_MAX_SIZE
];
68 /* coded values in high bands */
69 int high_band_coded
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
70 int high_band_values
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
72 /* there are two possible tables for spectral coefficients */
74 uint16_t *run_table
[2];
75 uint16_t *level_table
[2];
77 int frame_len
; /* frame length in samples */
78 int frame_len_bits
; /* frame_len = 1 << frame_len_bits */
79 int nb_block_sizes
; /* number of block sizes */
81 int reset_block_lengths
;
82 int block_len_bits
; /* log2 of current block length */
83 int next_block_len_bits
; /* log2 of next block length */
84 int prev_block_len_bits
; /* log2 of prev block length */
85 int block_len
; /* block length in samples */
86 int block_num
; /* block number in current frame */
87 int block_pos
; /* current position in frame */
88 uint8_t ms_stereo
; /* true if mid/side stereo mode */
89 uint8_t channel_coded
[MAX_CHANNELS
]; /* true if channel is coded */
90 float exponents
[MAX_CHANNELS
][BLOCK_MAX_SIZE
] __attribute__((aligned(16)));
91 float max_exponent
[MAX_CHANNELS
];
92 int16_t coefs1
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
93 float coefs
[MAX_CHANNELS
][BLOCK_MAX_SIZE
] __attribute__((aligned(16)));
94 MDCTContext mdct_ctx
[BLOCK_NB_SIZES
];
95 float *windows
[BLOCK_NB_SIZES
] __attribute__((aligned(16)));
96 FFTSample mdct_tmp
[BLOCK_MAX_SIZE
] __attribute__((aligned(16))); /* temporary storage for imdct */
97 /* output buffer for one frame and the last for IMDCT windowing */
98 float frame_out
[MAX_CHANNELS
][BLOCK_MAX_SIZE
* 2] __attribute__((aligned(16)));
100 uint8_t last_superframe
[MAX_CODED_SUPERFRAME_SIZE
+ 4]; /* padding added */
102 int last_superframe_len
;
103 float noise_table
[NOISE_TAB_SIZE
];
105 float noise_mult
; /* XXX: suppress that and integrate it in the noise array */
106 /* lsp_to_curve tables */
107 float lsp_cos_table
[BLOCK_MAX_SIZE
];
108 float lsp_pow_e_table
[256];
109 float lsp_pow_m_table1
[(1 << LSP_POW_BITS
)];
110 float lsp_pow_m_table2
[(1 << LSP_POW_BITS
)];
113 typedef struct CoefVLCTable
{
114 int n
; /* total number of codes */
115 const uint32_t *huffcodes
; /* VLC bit values */
116 const uint8_t *huffbits
; /* VLC bit size */
117 const uint16_t *levels
; /* table to build run/level tables */
120 static void wma_lsp_to_curve_init(WMADecodeContext
*s
, int frame_len
);
130 void trace(const char *fmt
, ...)
136 flog
= fopen("/tmp/out.log", "w");
141 vfprintf(flog
, fmt
, ap
);
145 #define get_bits(s, n) get_bits_trace(s, n)
146 #define get_vlc(s, vlc) get_vlc_trace(s, vlc)
148 unsigned int get_bits_trace(GetBitContext
*s
, int n
)
151 val
= (get_bits
)(s
, n
);
152 trace("get_bits(%d) : 0x%x\n", n
, val
);
156 static int get_vlc_trace(GetBitContext
*s
, VLC
*vlc
)
159 code
= (get_vlc
)(s
, vlc
);
160 trace("get_vlc() : %d\n", code
);
164 static void dump_shorts(const char *name
, const short *tab
, int n
)
168 trace("%s[%d]:\n", name
, n
);
172 trace(" %5d.0", tab
[i
]);
178 static void dump_floats(const char *name
, int prec
, const float *tab
, int n
)
182 trace("%s[%d]:\n", name
, n
);
186 trace(" %8.*f", prec
, tab
[i
]);
196 #define trace(fmt, ...)
200 /* XXX: use same run/length optimization as mpeg decoders */
201 static void init_coef_vlc(VLC
*vlc
,
202 uint16_t **prun_table
, uint16_t **plevel_table
,
203 const CoefVLCTable
*vlc_table
)
205 int n
= vlc_table
->n
;
206 const uint8_t *table_bits
= vlc_table
->huffbits
;
207 const uint32_t *table_codes
= vlc_table
->huffcodes
;
208 const uint16_t *levels_table
= vlc_table
->levels
;
209 uint16_t *run_table
, *level_table
;
213 init_vlc(vlc
, 9, n
, table_bits
, 1, 1, table_codes
, 4, 4);
215 run_table
= malloc(n
* sizeof(uint16_t));
216 level_table
= malloc(n
* sizeof(uint16_t));
224 level_table
[i
] = level
;
229 *prun_table
= run_table
;
230 *plevel_table
= level_table
;
233 static int wma_decode_init(AVCodecContext
* avctx
)
235 WMADecodeContext
*s
= avctx
->priv_data
;
236 int i
, flags1
, flags2
;
239 float bps1
, high_freq
, bps
;
243 s
->sample_rate
= avctx
->sample_rate
;
244 s
->nb_channels
= avctx
->channels
;
245 s
->bit_rate
= avctx
->bit_rate
;
246 s
->block_align
= avctx
->block_align
;
248 if (avctx
->codec
->id
== CODEC_ID_WMAV1
) {
254 /* extract flag infos */
257 extradata
= avctx
->extradata
;
258 if (s
->version
== 1 && avctx
->extradata_size
>= 4) {
259 flags1
= extradata
[0] | (extradata
[1] << 8);
260 flags2
= extradata
[2] | (extradata
[3] << 8);
261 } else if (s
->version
== 2 && avctx
->extradata_size
>= 6) {
262 flags1
= extradata
[0] | (extradata
[1] << 8) |
263 (extradata
[2] << 16) | (extradata
[3] << 24);
264 flags2
= extradata
[4] | (extradata
[5] << 8);
266 s
->use_exp_vlc
= flags2
& 0x0001;
267 s
->use_bit_reservoir
= flags2
& 0x0002;
268 s
->use_variable_block_len
= flags2
& 0x0004;
270 /* compute MDCT block size */
271 if (s
->sample_rate
<= 16000) {
272 s
->frame_len_bits
= 9;
273 } else if (s
->sample_rate
<= 22050 ||
274 (s
->sample_rate
<= 32000 && s
->version
== 1)) {
275 s
->frame_len_bits
= 10;
277 s
->frame_len_bits
= 11;
279 s
->frame_len
= 1 << s
->frame_len_bits
;
280 if (s
->use_variable_block_len
) {
282 nb
= ((flags2
>> 3) & 3) + 1;
283 if ((s
->bit_rate
/ s
->nb_channels
) >= 32000)
285 nb_max
= s
->frame_len_bits
- BLOCK_MIN_BITS
;
288 s
->nb_block_sizes
= nb
+ 1;
290 s
->nb_block_sizes
= 1;
293 /* init rate dependant parameters */
294 s
->use_noise_coding
= 1;
295 high_freq
= s
->sample_rate
* 0.5;
297 /* if version 2, then the rates are normalized */
298 sample_rate1
= s
->sample_rate
;
299 if (s
->version
== 2) {
300 if (sample_rate1
>= 44100)
301 sample_rate1
= 44100;
302 else if (sample_rate1
>= 22050)
303 sample_rate1
= 22050;
304 else if (sample_rate1
>= 16000)
305 sample_rate1
= 16000;
306 else if (sample_rate1
>= 11025)
307 sample_rate1
= 11025;
308 else if (sample_rate1
>= 8000)
312 bps
= (float)s
->bit_rate
/ (float)(s
->nb_channels
* s
->sample_rate
);
313 s
->byte_offset_bits
= av_log2((int)(bps
* s
->frame_len
/ 8.0)) + 2;
315 /* compute high frequency value and choose if noise coding should
318 if (s
->nb_channels
== 2)
320 if (sample_rate1
== 44100) {
322 s
->use_noise_coding
= 0;
324 high_freq
= high_freq
* 0.4;
325 } else if (sample_rate1
== 22050) {
327 s
->use_noise_coding
= 0;
328 else if (bps1
>= 0.72)
329 high_freq
= high_freq
* 0.7;
331 high_freq
= high_freq
* 0.6;
332 } else if (sample_rate1
== 16000) {
334 high_freq
= high_freq
* 0.5;
336 high_freq
= high_freq
* 0.3;
337 } else if (sample_rate1
== 11025) {
338 high_freq
= high_freq
* 0.7;
339 } else if (sample_rate1
== 8000) {
341 high_freq
= high_freq
* 0.5;
342 } else if (bps
> 0.75) {
343 s
->use_noise_coding
= 0;
345 high_freq
= high_freq
* 0.65;
349 high_freq
= high_freq
* 0.75;
350 } else if (bps
>= 0.6) {
351 high_freq
= high_freq
* 0.6;
353 high_freq
= high_freq
* 0.5;
357 printf("flags1=0x%x flags2=0x%x\n", flags1
, flags2
);
358 printf("version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
359 s
->version
, s
->nb_channels
, s
->sample_rate
, s
->bit_rate
,
361 printf("bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
362 bps
, bps1
, high_freq
, s
->byte_offset_bits
);
363 printf("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
364 s
->use_noise_coding
, s
->use_exp_vlc
, s
->nb_block_sizes
);
367 /* compute the scale factor band sizes for each MDCT block size */
369 int a
, b
, pos
, lpos
, k
, block_len
, i
, j
, n
;
370 const uint8_t *table
;
372 if (s
->version
== 1) {
377 for(k
= 0; k
< s
->nb_block_sizes
; k
++) {
378 block_len
= s
->frame_len
>> k
;
380 if (s
->version
== 1) {
383 a
= wma_critical_freqs
[i
];
385 pos
= ((block_len
* 2 * a
) + (b
>> 1)) / b
;
388 s
->exponent_bands
[0][i
] = pos
- lpos
;
389 if (pos
>= block_len
) {
395 s
->exponent_sizes
[0] = i
;
397 /* hardcoded tables */
399 a
= s
->frame_len_bits
- BLOCK_MIN_BITS
- k
;
401 if (s
->sample_rate
>= 44100)
402 table
= exponent_band_44100
[a
];
403 else if (s
->sample_rate
>= 32000)
404 table
= exponent_band_32000
[a
];
405 else if (s
->sample_rate
>= 22050)
406 table
= exponent_band_22050
[a
];
411 s
->exponent_bands
[k
][i
] = table
[i
];
412 s
->exponent_sizes
[k
] = n
;
417 a
= wma_critical_freqs
[i
];
419 pos
= ((block_len
* 2 * a
) + (b
<< 1)) / (4 * b
);
424 s
->exponent_bands
[k
][j
++] = pos
- lpos
;
425 if (pos
>= block_len
)
429 s
->exponent_sizes
[k
] = j
;
433 /* max number of coefs */
434 s
->coefs_end
[k
] = (s
->frame_len
- ((s
->frame_len
* 9) / 100)) >> k
;
435 /* high freq computation */
436 s
->high_band_start
[k
] = (int)((block_len
* 2 * high_freq
) /
437 s
->sample_rate
+ 0.5);
438 n
= s
->exponent_sizes
[k
];
444 pos
+= s
->exponent_bands
[k
][i
];
446 if (start
< s
->high_band_start
[k
])
447 start
= s
->high_band_start
[k
];
448 if (end
> s
->coefs_end
[k
])
449 end
= s
->coefs_end
[k
];
451 s
->exponent_high_bands
[k
][j
++] = end
- start
;
453 s
->exponent_high_sizes
[k
] = j
;
455 trace("%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
458 s
->high_band_start
[k
],
459 s
->exponent_high_sizes
[k
]);
460 for(j
=0;j
<s
->exponent_high_sizes
[k
];j
++)
461 trace(" %d", s
->exponent_high_bands
[k
][j
]);
470 for(i
= 0; i
< s
->nb_block_sizes
; i
++) {
473 s
->exponent_sizes
[i
]);
474 for(j
=0;j
<s
->exponent_sizes
[i
];j
++)
475 trace(" %d", s
->exponent_bands
[i
][j
]);
482 for(i
= 0; i
< s
->nb_block_sizes
; i
++)
483 ff_mdct_init(&s
->mdct_ctx
[i
], s
->frame_len_bits
- i
+ 1, 1);
485 /* init MDCT windows : simple sinus window */
486 for(i
= 0; i
< s
->nb_block_sizes
; i
++) {
489 n
= 1 << (s
->frame_len_bits
- i
);
490 window
= av_malloc(sizeof(float) * n
);
491 alpha
= M_PI
/ (2.0 * n
);
493 window
[n
- j
- 1] = sin((j
+ 0.5) * alpha
);
495 s
->windows
[i
] = window
;
498 s
->reset_block_lengths
= 1;
500 if (s
->use_noise_coding
) {
502 /* init the noise generator */
504 s
->noise_mult
= 0.02;
506 s
->noise_mult
= 0.04;
508 #if defined(DEBUG_TRACE)
509 for(i
=0;i
<NOISE_TAB_SIZE
;i
++)
510 s
->noise_table
[i
] = 1.0 * s
->noise_mult
;
516 norm
= (1.0 / (float)(1LL << 31)) * sqrt(3) * s
->noise_mult
;
517 for(i
=0;i
<NOISE_TAB_SIZE
;i
++) {
518 seed
= seed
* 314159 + 1;
519 s
->noise_table
[i
] = (float)((int)seed
) * norm
;
523 init_vlc(&s
->hgain_vlc
, 9, sizeof(hgain_huffbits
),
524 hgain_huffbits
, 1, 1,
525 hgain_huffcodes
, 2, 2);
528 if (s
->use_exp_vlc
) {
529 init_vlc(&s
->exp_vlc
, 9, sizeof(scale_huffbits
),
530 scale_huffbits
, 1, 1,
531 scale_huffcodes
, 4, 4);
533 wma_lsp_to_curve_init(s
, s
->frame_len
);
536 /* choose the VLC tables for the coefficients */
538 if (s
->sample_rate
>= 32000) {
541 else if (bps1
< 1.16)
545 init_coef_vlc(&s
->coef_vlc
[0], &s
->run_table
[0], &s
->level_table
[0],
546 &coef_vlcs
[coef_vlc_table
* 2]);
547 init_coef_vlc(&s
->coef_vlc
[1], &s
->run_table
[1], &s
->level_table
[1],
548 &coef_vlcs
[coef_vlc_table
* 2 + 1]);
552 /* interpolate values for a bigger or smaller block. The block must
553 have multiple sizes */
554 static void interpolate_array(float *scale
, int old_size
, int new_size
)
559 if (new_size
> old_size
) {
560 jincr
= new_size
/ old_size
;
562 for(i
= old_size
- 1; i
>=0; i
--) {
569 } else if (new_size
< old_size
) {
571 jincr
= old_size
/ new_size
;
572 for(i
= 0; i
< new_size
; i
++) {
579 /* compute x^-0.25 with an exponent and mantissa table. We use linear
580 interpolation to reduce the mantissa table size at a small speed
581 expense (linear interpolation approximately doubles the number of
582 bits of precision). */
583 static inline float pow_m1_4(WMADecodeContext
*s
, float x
)
594 m
= (u
.v
>> (23 - LSP_POW_BITS
)) & ((1 << LSP_POW_BITS
) - 1);
595 /* build interpolation scale: 1 <= t < 2. */
596 t
.v
= ((u
.v
<< LSP_POW_BITS
) & ((1 << 23) - 1)) | (127 << 23);
597 a
= s
->lsp_pow_m_table1
[m
];
598 b
= s
->lsp_pow_m_table2
[m
];
599 return s
->lsp_pow_e_table
[e
] * (a
+ b
* t
.f
);
602 static void wma_lsp_to_curve_init(WMADecodeContext
*s
, int frame_len
)
607 wdel
= M_PI
/ frame_len
;
608 for(i
=0;i
<frame_len
;i
++)
609 s
->lsp_cos_table
[i
] = 2.0f
* cos(wdel
* i
);
611 /* tables for x^-0.25 computation */
614 s
->lsp_pow_e_table
[i
] = pow(2.0, e
* -0.25);
617 /* NOTE: these two tables are needed to avoid two operations in
620 for(i
=(1 << LSP_POW_BITS
) - 1;i
>=0;i
--) {
621 m
= (1 << LSP_POW_BITS
) + i
;
622 a
= (float)m
* (0.5 / (1 << LSP_POW_BITS
));
624 s
->lsp_pow_m_table1
[i
] = 2 * a
- b
;
625 s
->lsp_pow_m_table2
[i
] = b
- a
;
634 printf("%f^-0.25=%f e=%f\n", v
, r1
, r2
- r1
);
639 /* NOTE: We use the same code as Vorbis here */
640 /* XXX: optimize it further with SSE/3Dnow */
641 static void wma_lsp_to_curve(WMADecodeContext
*s
,
642 float *out
, float *val_max_ptr
,
646 float p
, q
, w
, v
, val_max
;
652 w
= s
->lsp_cos_table
[i
];
653 for(j
=1;j
<NB_LSP_COEFS
;j
+=2){
665 *val_max_ptr
= val_max
;
668 /* decode exponents coded with LSP coefficients (same idea as Vorbis) */
669 static void decode_exp_lsp(WMADecodeContext
*s
, int ch
)
671 float lsp_coefs
[NB_LSP_COEFS
];
674 for(i
= 0; i
< NB_LSP_COEFS
; i
++) {
675 if (i
== 0 || i
>= 8)
676 val
= get_bits(&s
->gb
, 3);
678 val
= get_bits(&s
->gb
, 4);
679 lsp_coefs
[i
] = lsp_codebook
[i
][val
];
682 wma_lsp_to_curve(s
, s
->exponents
[ch
], &s
->max_exponent
[ch
],
683 s
->block_len
, lsp_coefs
);
686 /* decode exponents coded with VLC codes */
687 static int decode_exp_vlc(WMADecodeContext
*s
, int ch
)
689 int last_exp
, n
, code
;
690 const uint16_t *ptr
, *band_ptr
;
691 float v
, *q
, max_scale
, *q_end
;
693 band_ptr
= s
->exponent_bands
[s
->frame_len_bits
- s
->block_len_bits
];
695 q
= s
->exponents
[ch
];
696 q_end
= q
+ s
->block_len
;
698 if (s
->version
== 1) {
699 last_exp
= get_bits(&s
->gb
, 5) + 10;
700 /* XXX: use a table */
701 v
= pow(10, last_exp
* (1.0 / 16.0));
710 code
= get_vlc(&s
->gb
, &s
->exp_vlc
);
713 /* NOTE: this offset is the same as MPEG4 AAC ! */
714 last_exp
+= code
- 60;
715 /* XXX: use a table */
716 v
= pow(10, last_exp
* (1.0 / 16.0));
724 s
->max_exponent
[ch
] = max_scale
;
728 /* return 0 if OK. return 1 if last block of frame. return -1 if
729 unrecorrable error. */
730 static int wma_decode_block(WMADecodeContext
*s
)
732 int n
, v
, a
, ch
, code
, bsize
;
733 int coef_nb_bits
, total_gain
, parse_exponents
;
734 float window
[BLOCK_MAX_SIZE
* 2];
735 int nb_coefs
[MAX_CHANNELS
];
738 trace("***decode_block: %d:%d\n", frame_count
- 1, s
->block_num
);
740 /* compute current block length */
741 if (s
->use_variable_block_len
) {
742 n
= av_log2(s
->nb_block_sizes
- 1) + 1;
744 if (s
->reset_block_lengths
) {
745 s
->reset_block_lengths
= 0;
746 v
= get_bits(&s
->gb
, n
);
747 if (v
>= s
->nb_block_sizes
)
749 s
->prev_block_len_bits
= s
->frame_len_bits
- v
;
750 v
= get_bits(&s
->gb
, n
);
751 if (v
>= s
->nb_block_sizes
)
753 s
->block_len_bits
= s
->frame_len_bits
- v
;
755 /* update block lengths */
756 s
->prev_block_len_bits
= s
->block_len_bits
;
757 s
->block_len_bits
= s
->next_block_len_bits
;
759 v
= get_bits(&s
->gb
, n
);
760 if (v
>= s
->nb_block_sizes
)
762 s
->next_block_len_bits
= s
->frame_len_bits
- v
;
764 /* fixed block len */
765 s
->next_block_len_bits
= s
->frame_len_bits
;
766 s
->prev_block_len_bits
= s
->frame_len_bits
;
767 s
->block_len_bits
= s
->frame_len_bits
;
770 /* now check if the block length is coherent with the frame length */
771 s
->block_len
= 1 << s
->block_len_bits
;
772 if ((s
->block_pos
+ s
->block_len
) > s
->frame_len
)
775 if (s
->nb_channels
== 2) {
776 s
->ms_stereo
= get_bits(&s
->gb
, 1);
779 for(ch
= 0; ch
< s
->nb_channels
; ch
++) {
780 a
= get_bits(&s
->gb
, 1);
781 s
->channel_coded
[ch
] = a
;
784 /* if no channel coded, no need to go further */
785 /* XXX: fix potential framing problems */
789 bsize
= s
->frame_len_bits
- s
->block_len_bits
;
791 /* read total gain and extract corresponding number of bits for
792 coef escape coding */
795 a
= get_bits(&s
->gb
, 7);
803 else if (total_gain
< 32)
805 else if (total_gain
< 40)
807 else if (total_gain
< 45)
812 /* compute number of coefficients */
813 n
= s
->coefs_end
[bsize
] - s
->coefs_start
;
814 for(ch
= 0; ch
< s
->nb_channels
; ch
++)
818 if (s
->use_noise_coding
) {
820 for(ch
= 0; ch
< s
->nb_channels
; ch
++) {
821 if (s
->channel_coded
[ch
]) {
823 n
= s
->exponent_high_sizes
[bsize
];
825 a
= get_bits(&s
->gb
, 1);
826 s
->high_band_coded
[ch
][i
] = a
;
827 /* if noise coding, the coefficients are not transmitted */
829 nb_coefs
[ch
] -= s
->exponent_high_bands
[bsize
][i
];
833 for(ch
= 0; ch
< s
->nb_channels
; ch
++) {
834 if (s
->channel_coded
[ch
]) {
837 n
= s
->exponent_high_sizes
[bsize
];
838 val
= (int)0x80000000;
840 if (s
->high_band_coded
[ch
][i
]) {
841 if (val
== (int)0x80000000) {
842 val
= get_bits(&s
->gb
, 7) - 19;
844 code
= get_vlc(&s
->gb
, &s
->hgain_vlc
);
849 s
->high_band_values
[ch
][i
] = val
;
856 /* exposant can be interpolated in short blocks. */
858 if (s
->block_len_bits
!= s
->frame_len_bits
) {
859 parse_exponents
= get_bits(&s
->gb
, 1);
862 if (parse_exponents
) {
863 for(ch
= 0; ch
< s
->nb_channels
; ch
++) {
864 if (s
->channel_coded
[ch
]) {
865 if (s
->use_exp_vlc
) {
866 if (decode_exp_vlc(s
, ch
) < 0)
869 decode_exp_lsp(s
, ch
);
874 for(ch
= 0; ch
< s
->nb_channels
; ch
++) {
875 if (s
->channel_coded
[ch
]) {
876 interpolate_array(s
->exponents
[ch
], 1 << s
->prev_block_len_bits
,
882 /* parse spectral coefficients : just RLE encoding */
883 for(ch
= 0; ch
< s
->nb_channels
; ch
++) {
884 if (s
->channel_coded
[ch
]) {
886 int level
, run
, sign
, tindex
;
888 const int16_t *level_table
, *run_table
;
890 /* special VLC tables are used for ms stereo because
891 there is potentially less energy there */
892 tindex
= (ch
== 1 && s
->ms_stereo
);
893 coef_vlc
= &s
->coef_vlc
[tindex
];
894 run_table
= s
->run_table
[tindex
];
895 level_table
= s
->level_table
[tindex
];
897 ptr
= &s
->coefs1
[ch
][0];
898 eptr
= ptr
+ nb_coefs
[ch
];
899 memset(ptr
, 0, s
->block_len
* sizeof(int16_t));
901 code
= get_vlc(&s
->gb
, coef_vlc
);
907 } else if (code
== 0) {
909 level
= get_bits(&s
->gb
, coef_nb_bits
);
910 /* NOTE: this is rather suboptimal. reading
911 block_len_bits would be better */
912 run
= get_bits(&s
->gb
, s
->frame_len_bits
);
915 run
= run_table
[code
];
916 level
= level_table
[code
];
918 sign
= get_bits(&s
->gb
, 1);
925 /* NOTE: EOB can be omitted */
930 if (s
->version
== 1 && s
->nb_channels
>= 2) {
931 align_get_bits(&s
->gb
);
937 int n4
= s
->block_len
/ 2;
938 mdct_norm
= 1.0 / (float)n4
;
939 if (s
->version
== 1) {
940 mdct_norm
*= sqrt(n4
);
944 /* finally compute the MDCT coefficients */
945 for(ch
= 0; ch
< s
->nb_channels
; ch
++) {
946 if (s
->channel_coded
[ch
]) {
948 float *coefs
, *exponents
, mult
, mult1
, noise
, *exp_ptr
;
949 int i
, j
, n
, n1
, last_high_band
;
950 float exp_power
[HIGH_BAND_MAX_SIZE
];
952 coefs1
= s
->coefs1
[ch
];
953 exponents
= s
->exponents
[ch
];
954 mult
= pow(10, total_gain
* 0.05) / s
->max_exponent
[ch
];
956 coefs
= s
->coefs
[ch
];
957 if (s
->use_noise_coding
) {
959 /* very low freqs : noise */
960 for(i
= 0;i
< s
->coefs_start
; i
++) {
961 *coefs
++ = s
->noise_table
[s
->noise_index
] * (*exponents
++) * mult1
;
962 s
->noise_index
= (s
->noise_index
+ 1) & (NOISE_TAB_SIZE
- 1);
965 n1
= s
->exponent_high_sizes
[bsize
];
967 /* compute power of high bands */
968 exp_ptr
= exponents
+
969 s
->high_band_start
[bsize
] -
971 last_high_band
= 0; /* avoid warning */
973 n
= s
->exponent_high_bands
[s
->frame_len_bits
-
974 s
->block_len_bits
][j
];
975 if (s
->high_band_coded
[ch
][j
]) {
978 for(i
= 0;i
< n
; i
++) {
982 exp_power
[j
] = e2
/ n
;
984 trace("%d: power=%f (%d)\n", j
, exp_power
[j
], n
);
989 /* main freqs and high freqs */
992 n
= s
->high_band_start
[bsize
] -
995 n
= s
->exponent_high_bands
[s
->frame_len_bits
-
996 s
->block_len_bits
][j
];
998 if (j
>= 0 && s
->high_band_coded
[ch
][j
]) {
999 /* use noise with specified power */
1000 mult1
= sqrt(exp_power
[j
] / exp_power
[last_high_band
]);
1001 /* XXX: use a table */
1002 mult1
= mult1
* pow(10, s
->high_band_values
[ch
][j
] * 0.05);
1003 mult1
= mult1
/ (s
->max_exponent
[ch
] * s
->noise_mult
);
1005 for(i
= 0;i
< n
; i
++) {
1006 noise
= s
->noise_table
[s
->noise_index
];
1007 s
->noise_index
= (s
->noise_index
+ 1) & (NOISE_TAB_SIZE
- 1);
1008 *coefs
++ = (*exponents
++) * noise
* mult1
;
1011 /* coded values + small noise */
1012 for(i
= 0;i
< n
; i
++) {
1013 noise
= s
->noise_table
[s
->noise_index
];
1014 s
->noise_index
= (s
->noise_index
+ 1) & (NOISE_TAB_SIZE
- 1);
1015 *coefs
++ = ((*coefs1
++) + noise
) * (*exponents
++) * mult
;
1020 /* very high freqs : noise */
1021 n
= s
->block_len
- s
->coefs_end
[bsize
];
1022 mult1
= mult
* exponents
[-1];
1023 for(i
= 0; i
< n
; i
++) {
1024 *coefs
++ = s
->noise_table
[s
->noise_index
] * mult1
;
1025 s
->noise_index
= (s
->noise_index
+ 1) & (NOISE_TAB_SIZE
- 1);
1028 /* XXX: optimize more */
1029 for(i
= 0;i
< s
->coefs_start
; i
++)
1032 for(i
= 0;i
< n
; i
++) {
1033 *coefs
++ = coefs1
[i
] * exponents
[i
] * mult
;
1035 n
= s
->block_len
- s
->coefs_end
[bsize
];
1036 for(i
= 0;i
< n
; i
++)
1043 for(ch
= 0; ch
< s
->nb_channels
; ch
++) {
1044 if (s
->channel_coded
[ch
]) {
1045 dump_floats("exponents", 3, s
->exponents
[ch
], s
->block_len
);
1046 dump_floats("coefs", 1, s
->coefs
[ch
], s
->block_len
);
1051 if (s
->ms_stereo
&& s
->channel_coded
[1]) {
1055 /* nominal case for ms stereo: we do it before mdct */
1056 /* no need to optimize this case because it should almost
1058 if (!s
->channel_coded
[0]) {
1060 trace("rare ms-stereo case happened\n");
1062 memset(s
->coefs
[0], 0, sizeof(float) * s
->block_len
);
1063 s
->channel_coded
[0] = 1;
1066 for(i
= 0; i
< s
->block_len
; i
++) {
1069 s
->coefs
[0][i
] = a
+ b
;
1070 s
->coefs
[1][i
] = a
- b
;
1074 /* build the window : we ensure that when the windows overlap
1075 their squared sum is always 1 (MDCT reconstruction rule) */
1076 /* XXX: merge with output */
1078 int i
, next_block_len
, block_len
, prev_block_len
, n
;
1081 block_len
= s
->block_len
;
1082 prev_block_len
= 1 << s
->prev_block_len_bits
;
1083 next_block_len
= 1 << s
->next_block_len_bits
;
1086 wptr
= window
+ block_len
;
1087 if (block_len
<= next_block_len
) {
1088 for(i
=0;i
<block_len
;i
++)
1089 *wptr
++ = s
->windows
[bsize
][i
];
1092 n
= (block_len
/ 2) - (next_block_len
/ 2);
1095 for(i
=0;i
<next_block_len
;i
++)
1096 *wptr
++ = s
->windows
[s
->frame_len_bits
- s
->next_block_len_bits
][i
];
1102 wptr
= window
+ block_len
;
1103 if (block_len
<= prev_block_len
) {
1104 for(i
=0;i
<block_len
;i
++)
1105 *--wptr
= s
->windows
[bsize
][i
];
1108 n
= (block_len
/ 2) - (prev_block_len
/ 2);
1111 for(i
=0;i
<prev_block_len
;i
++)
1112 *--wptr
= s
->windows
[s
->frame_len_bits
- s
->prev_block_len_bits
][i
];
1119 for(ch
= 0; ch
< s
->nb_channels
; ch
++) {
1120 if (s
->channel_coded
[ch
]) {
1121 FFTSample output
[BLOCK_MAX_SIZE
* 2] __attribute__((aligned(16)));
1123 int i
, n4
, index
, n
;
1126 n4
= s
->block_len
/ 2;
1127 ff_imdct_calc(&s
->mdct_ctx
[bsize
],
1128 output
, s
->coefs
[ch
], s
->mdct_tmp
);
1130 /* XXX: optimize all that by build the window and
1131 multipying/adding at the same time */
1132 /* multiply by the window */
1133 for(i
=0;i
<n
* 2;i
++) {
1134 output
[i
] *= window
[i
];
1137 /* add in the frame */
1138 index
= (s
->frame_len
/ 2) + s
->block_pos
- n4
;
1139 ptr
= &s
->frame_out
[ch
][index
];
1140 for(i
=0;i
<n
* 2;i
++) {
1145 /* specific fast case for ms-stereo : add to second
1146 channel if it is not coded */
1147 if (s
->ms_stereo
&& !s
->channel_coded
[1]) {
1148 ptr
= &s
->frame_out
[1][index
];
1149 for(i
=0;i
<n
* 2;i
++) {
1157 /* update block number */
1159 s
->block_pos
+= s
->block_len
;
1160 if (s
->block_pos
>= s
->frame_len
)
1166 /* decode a frame of frame_len samples */
1167 static int wma_decode_frame(WMADecodeContext
*s
, int16_t *samples
)
1169 int ret
, i
, n
, a
, ch
, incr
;
1173 trace("***decode_frame: %d size=%d\n", frame_count
++, s
->frame_len
);
1175 /* read each block */
1179 ret
= wma_decode_block(s
);
1186 /* convert frame to integer */
1188 incr
= s
->nb_channels
;
1189 for(ch
= 0; ch
< s
->nb_channels
; ch
++) {
1191 iptr
= s
->frame_out
[ch
];
1194 a
= lrintf(*iptr
++);
1197 else if (a
< -32768)
1202 /* prepare for next block */
1203 memmove(&s
->frame_out
[ch
][0], &s
->frame_out
[ch
][s
->frame_len
],
1204 s
->frame_len
* sizeof(float));
1205 /* XXX: suppress this */
1206 memset(&s
->frame_out
[ch
][s
->frame_len
], 0,
1207 s
->frame_len
* sizeof(float));
1211 dump_shorts("samples", samples
, n
* s
->nb_channels
);
1216 static int wma_decode_superframe(AVCodecContext
*avctx
,
1217 void *data
, int *data_size
,
1218 UINT8
*buf
, int buf_size
)
1220 WMADecodeContext
*s
= avctx
->priv_data
;
1221 int nb_frames
, bit_offset
, i
, pos
, len
;
1225 trace("***decode_superframe:\n");
1229 init_get_bits(&s
->gb
, buf
, buf_size
);
1231 if (s
->use_bit_reservoir
) {
1232 /* read super frame header */
1233 get_bits(&s
->gb
, 4); /* super frame index */
1234 nb_frames
= get_bits(&s
->gb
, 4) - 1;
1236 bit_offset
= get_bits(&s
->gb
, s
->byte_offset_bits
+ 3);
1238 if (s
->last_superframe_len
> 0) {
1239 // printf("skip=%d\n", s->last_bitoffset);
1240 /* add bit_offset bits to last frame */
1241 if ((s
->last_superframe_len
+ ((bit_offset
+ 7) >> 3)) >
1242 MAX_CODED_SUPERFRAME_SIZE
)
1244 q
= s
->last_superframe
+ s
->last_superframe_len
;
1247 *q
++ = (get_bits
)(&s
->gb
, 8);
1251 *q
++ = (get_bits
)(&s
->gb
, len
) << (8 - len
);
1254 /* XXX: bit_offset bits into last frame */
1255 init_get_bits(&s
->gb
, s
->last_superframe
, MAX_CODED_SUPERFRAME_SIZE
);
1256 /* skip unused bits */
1257 if (s
->last_bitoffset
> 0)
1258 skip_bits(&s
->gb
, s
->last_bitoffset
);
1259 /* this frame is stored in the last superframe and in the
1261 if (wma_decode_frame(s
, samples
) < 0)
1263 samples
+= s
->nb_channels
* s
->frame_len
;
1266 /* read each frame starting from bit_offset */
1267 pos
= bit_offset
+ 4 + 4 + s
->byte_offset_bits
+ 3;
1268 init_get_bits(&s
->gb
, buf
+ (pos
>> 3), MAX_CODED_SUPERFRAME_SIZE
- (pos
>> 3));
1271 skip_bits(&s
->gb
, len
);
1273 s
->reset_block_lengths
= 1;
1274 for(i
=0;i
<nb_frames
;i
++) {
1275 if (wma_decode_frame(s
, samples
) < 0)
1277 samples
+= s
->nb_channels
* s
->frame_len
;
1280 /* we copy the end of the frame in the last frame buffer */
1281 pos
= get_bits_count(&s
->gb
) + ((bit_offset
+ 4 + 4 + s
->byte_offset_bits
+ 3) & ~7);
1282 s
->last_bitoffset
= pos
& 7;
1284 len
= buf_size
- pos
;
1285 if (len
> MAX_CODED_SUPERFRAME_SIZE
|| len
< 0) {
1288 s
->last_superframe_len
= len
;
1289 memcpy(s
->last_superframe
, buf
+ pos
, len
);
1291 /* single frame decode */
1292 if (wma_decode_frame(s
, samples
) < 0)
1294 samples
+= s
->nb_channels
* s
->frame_len
;
1296 *data_size
= (int8_t *)samples
- (int8_t *)data
;
1297 return s
->block_align
;
1299 /* when error, we reset the bit reservoir */
1300 s
->last_superframe_len
= 0;
1304 static int wma_decode_end(AVCodecContext
*avctx
)
1306 WMADecodeContext
*s
= avctx
->priv_data
;
1309 for(i
= 0; i
< s
->nb_block_sizes
; i
++)
1310 ff_mdct_end(&s
->mdct_ctx
[i
]);
1311 for(i
= 0; i
< s
->nb_block_sizes
; i
++)
1312 av_free(s
->windows
[i
]);
1314 if (s
->use_exp_vlc
) {
1315 free_vlc(&s
->exp_vlc
);
1317 if (s
->use_noise_coding
) {
1318 free_vlc(&s
->hgain_vlc
);
1320 for(i
= 0;i
< 2; i
++) {
1321 free_vlc(&s
->coef_vlc
[i
]);
1322 av_free(s
->run_table
[i
]);
1323 av_free(s
->level_table
[i
]);
1329 AVCodec wmav1_decoder
=
1334 sizeof(WMADecodeContext
),
1338 wma_decode_superframe
,
1341 AVCodec wmav2_decoder
=
1346 sizeof(WMADecodeContext
),
1350 wma_decode_superframe
,