revised palette API, courtesy of Roberto Togni (rtogni at freemail.it)
[libav.git] / libavcodec / xan.c
1 /*
2 * Wing Commander/Xan Video Decoder
3 * Copyright (C) 2003 the ffmpeg project
4 *
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
9 *
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
14 *
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 */
20
21 /**
22 * @file xan.c
23 * Xan video decoder for Wing Commander III & IV computer games
24 * by Mario Brito (mbrito@student.dei.uc.pt)
25 * and Mike Melanson (melanson@pcisys.net)
26 *
27 * The xan_wc3 decoder outputs the following colorspaces natively:
28 * PAL8 (default), RGB555, RGB565, RGB24, BGR24, RGBA32, YUV444P
29 */
30
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <string.h>
34 #include <unistd.h>
35
36 #include "common.h"
37 #include "avcodec.h"
38 #include "dsputil.h"
39
40 #define PALETTE_COUNT 256
41 #define PALETTE_CONTROL_SIZE ((256 * 3) + 1)
42
43 typedef struct XanContext {
44
45 AVCodecContext *avctx;
46 DSPContext dsp;
47 AVFrame last_frame;
48 AVFrame current_frame;
49
50 unsigned char *buf;
51 int size;
52
53 unsigned char palette[PALETTE_COUNT * 4];
54
55 /* scratch space */
56 unsigned char *buffer1;
57 unsigned char *buffer2;
58
59 } XanContext;
60
61 #define BE_16(x) ((((uint8_t*)(x))[0] << 8) | ((uint8_t*)(x))[1])
62 #define LE_16(x) ((((uint8_t*)(x))[1] << 8) | ((uint8_t*)(x))[0])
63 #define LE_32(x) ((((uint8_t*)(x))[3] << 24) | \
64 (((uint8_t*)(x))[2] << 16) | \
65 (((uint8_t*)(x))[1] << 8) | \
66 ((uint8_t*)(x))[0])
67
68 /* RGB -> YUV conversion stuff */
69 #define SCALEFACTOR 65536
70 #define CENTERSAMPLE 128
71
72 #define COMPUTE_Y(r, g, b) \
73 (unsigned char) \
74 ((y_r_table[r] + y_g_table[g] + y_b_table[b]) / SCALEFACTOR)
75 #define COMPUTE_U(r, g, b) \
76 (unsigned char) \
77 ((u_r_table[r] + u_g_table[g] + u_b_table[b]) / SCALEFACTOR + CENTERSAMPLE)
78 #define COMPUTE_V(r, g, b) \
79 (unsigned char) \
80 ((v_r_table[r] + v_g_table[g] + v_b_table[b]) / SCALEFACTOR + CENTERSAMPLE)
81
82 #define Y_R (SCALEFACTOR * 0.29900)
83 #define Y_G (SCALEFACTOR * 0.58700)
84 #define Y_B (SCALEFACTOR * 0.11400)
85
86 #define U_R (SCALEFACTOR * -0.16874)
87 #define U_G (SCALEFACTOR * -0.33126)
88 #define U_B (SCALEFACTOR * 0.50000)
89
90 #define V_R (SCALEFACTOR * 0.50000)
91 #define V_G (SCALEFACTOR * -0.41869)
92 #define V_B (SCALEFACTOR * -0.08131)
93
94 /*
95 * Precalculate all of the YUV tables since it requires fewer than
96 * 10 kilobytes to store them.
97 */
98 static int y_r_table[256];
99 static int y_g_table[256];
100 static int y_b_table[256];
101
102 static int u_r_table[256];
103 static int u_g_table[256];
104 static int u_b_table[256];
105
106 static int v_r_table[256];
107 static int v_g_table[256];
108 static int v_b_table[256];
109
110 static int xan_decode_init(AVCodecContext *avctx)
111 {
112 XanContext *s = avctx->priv_data;
113 int i;
114
115 s->avctx = avctx;
116
117 if ((avctx->codec->id == CODEC_ID_XAN_WC3) &&
118 (s->avctx->palctrl == NULL)) {
119 printf (" WC3 Xan video: palette expected.\n");
120 return -1;
121 }
122
123 avctx->pix_fmt = PIX_FMT_PAL8;
124 avctx->has_b_frames = 0;
125 dsputil_init(&s->dsp, avctx);
126
127 /* initialize the RGB -> YUV tables */
128 for (i = 0; i < 256; i++) {
129 y_r_table[i] = Y_R * i;
130 y_g_table[i] = Y_G * i;
131 y_b_table[i] = Y_B * i;
132
133 u_r_table[i] = U_R * i;
134 u_g_table[i] = U_G * i;
135 u_b_table[i] = U_B * i;
136
137 v_r_table[i] = V_R * i;
138 v_g_table[i] = V_G * i;
139 v_b_table[i] = V_B * i;
140 }
141
142 s->buffer1 = av_malloc(avctx->width * avctx->height);
143 s->buffer2 = av_malloc(avctx->width * avctx->height);
144 if (!s->buffer1 || !s->buffer2)
145 return -1;
146
147 return 0;
148 }
149
150 /* This function is used in lieu of memcpy(). This decoder can not use
151 * memcpy because the memory locations often overlap and
152 * memcpy doesn't like that; it's not uncommon, for example, for
153 * dest = src+1, to turn byte A into pattern AAAAAAAA.
154 * This was originally repz movsb in Intel x86 ASM. */
155 static inline void bytecopy(unsigned char *dest, unsigned char *src, int count)
156 {
157 int i;
158
159 for (i = 0; i < count; i++)
160 dest[i] = src[i];
161 }
162
163 static int xan_huffman_decode(unsigned char *dest, unsigned char *src)
164 {
165 unsigned char byte = *src++;
166 unsigned char ival = byte + 0x16;
167 unsigned char * ptr = src + byte*2;
168 unsigned char val = ival;
169 int counter = 0;
170
171 unsigned char bits = *ptr++;
172
173 while ( val != 0x16 ) {
174 if ( (1 << counter) & bits )
175 val = src[byte + val - 0x17];
176 else
177 val = src[val - 0x17];
178
179 if ( val < 0x16 ) {
180 *dest++ = val;
181 val = ival;
182 }
183
184 if (counter++ == 7) {
185 counter = 0;
186 bits = *ptr++;
187 }
188 }
189
190 return 0;
191 }
192
193 static void xan_unpack(unsigned char *dest, unsigned char *src)
194 {
195 unsigned char opcode;
196 int size;
197 int offset;
198 int byte1, byte2, byte3;
199
200 for (;;) {
201 opcode = *src++;
202
203 if ( (opcode & 0x80) == 0 ) {
204
205 offset = *src++;
206
207 size = opcode & 3;
208 bytecopy(dest, src, size); dest += size; src += size;
209
210 size = ((opcode & 0x1c) >> 2) + 3;
211 bytecopy (dest, dest - (((opcode & 0x60) << 3) + offset + 1), size);
212 dest += size;
213
214 } else if ( (opcode & 0x40) == 0 ) {
215
216 byte1 = *src++;
217 byte2 = *src++;
218
219 size = byte1 >> 6;
220 bytecopy (dest, src, size); dest += size; src += size;
221
222 size = (opcode & 0x3f) + 4;
223 bytecopy (dest, dest - (((byte1 & 0x3f) << 8) + byte2 + 1), size);
224 dest += size;
225
226 } else if ( (opcode & 0x20) == 0 ) {
227
228 byte1 = *src++;
229 byte2 = *src++;
230 byte3 = *src++;
231
232 size = opcode & 3;
233 bytecopy (dest, src, size); dest += size; src += size;
234
235 size = byte3 + 5 + ((opcode & 0xc) << 6);
236 bytecopy (dest,
237 dest - ((((opcode & 0x10) >> 4) << 0x10) + 1 + (byte1 << 8) + byte2),
238 size);
239 dest += size;
240 } else {
241 size = ((opcode & 0x1f) << 2) + 4;
242
243 if (size > 0x70)
244 break;
245
246 bytecopy (dest, src, size); dest += size; src += size;
247 }
248 }
249
250 size = opcode & 3;
251 bytecopy(dest, src, size); dest += size; src += size;
252 }
253
254 static void inline xan_wc3_build_palette(XanContext *s,
255 unsigned int *palette_data)
256 {
257 int i;
258 unsigned char r, g, b;
259 unsigned short *palette16;
260 unsigned int *palette32;
261 unsigned int pal_elem;
262
263 /* transform the palette passed through the palette control structure
264 * into the necessary internal format depending on colorspace */
265
266 switch (s->avctx->pix_fmt) {
267
268 case PIX_FMT_RGB555:
269 palette16 = (unsigned short *)s->palette;
270 for (i = 0; i < PALETTE_COUNT; i++) {
271 pal_elem = palette_data[i];
272 r = (pal_elem >> 16) & 0xff;
273 g = (pal_elem >> 8) & 0xff;
274 b = pal_elem & 0xff;
275 palette16[i] =
276 ((r >> 3) << 10) |
277 ((g >> 3) << 5) |
278 ((b >> 3) << 0);
279 }
280 break;
281
282 case PIX_FMT_RGB565:
283 palette16 = (unsigned short *)s->palette;
284 for (i = 0; i < PALETTE_COUNT; i++) {
285 pal_elem = palette_data[i];
286 r = (pal_elem >> 16) & 0xff;
287 g = (pal_elem >> 8) & 0xff;
288 b = pal_elem & 0xff;
289 palette16[i] =
290 ((r >> 3) << 11) |
291 ((g >> 2) << 5) |
292 ((b >> 3) << 0);
293 }
294 break;
295
296 case PIX_FMT_RGB24:
297 for (i = 0; i < PALETTE_COUNT; i++) {
298 pal_elem = palette_data[i];
299 r = (pal_elem >> 16) & 0xff;
300 g = (pal_elem >> 8) & 0xff;
301 b = pal_elem & 0xff;
302 s->palette[i * 4 + 0] = r;
303 s->palette[i * 4 + 1] = g;
304 s->palette[i * 4 + 2] = b;
305 }
306 break;
307
308 case PIX_FMT_BGR24:
309 for (i = 0; i < PALETTE_COUNT; i++) {
310 pal_elem = palette_data[i];
311 r = (pal_elem >> 16) & 0xff;
312 g = (pal_elem >> 8) & 0xff;
313 b = pal_elem & 0xff;
314 s->palette[i * 4 + 0] = b;
315 s->palette[i * 4 + 1] = g;
316 s->palette[i * 4 + 2] = r;
317 }
318 break;
319
320 case PIX_FMT_PAL8:
321 case PIX_FMT_RGBA32:
322 palette32 = (unsigned int *)s->palette;
323 memcpy (palette32, palette_data, PALETTE_COUNT * sizeof(unsigned int));
324 break;
325
326 case PIX_FMT_YUV444P:
327 for (i = 0; i < PALETTE_COUNT; i++) {
328 pal_elem = palette_data[i];
329 r = (pal_elem >> 16) & 0xff;
330 g = (pal_elem >> 8) & 0xff;
331 b = pal_elem & 0xff;
332 s->palette[i * 4 + 0] = COMPUTE_Y(r, g, b);
333 s->palette[i * 4 + 1] = COMPUTE_U(r, g, b);
334 s->palette[i * 4 + 2] = COMPUTE_V(r, g, b);
335 }
336 break;
337
338 default:
339 printf (" Xan WC3: Unhandled colorspace\n");
340 break;
341 }
342 }
343
344 /* advance current_x variable; reset accounting variables if current_x
345 * moves beyond width */
346 #define ADVANCE_CURRENT_X() \
347 current_x++; \
348 if (current_x >= width) { \
349 index += line_inc; \
350 current_x = 0; \
351 }
352
353 static void inline xan_wc3_output_pixel_run(XanContext *s,
354 unsigned char *pixel_buffer, int x, int y, int pixel_count)
355 {
356 int stride;
357 int line_inc;
358 int index;
359 int current_x;
360 int width = s->avctx->width;
361 unsigned char pix;
362 unsigned char *palette_plane;
363 unsigned char *y_plane;
364 unsigned char *u_plane;
365 unsigned char *v_plane;
366 unsigned char *rgb_plane;
367 unsigned short *rgb16_plane;
368 unsigned short *palette16;
369 unsigned int *rgb32_plane;
370 unsigned int *palette32;
371
372 switch (s->avctx->pix_fmt) {
373
374 case PIX_FMT_PAL8:
375 palette_plane = s->current_frame.data[0];
376 stride = s->current_frame.linesize[0];
377 line_inc = stride - width;
378 index = y * stride + x;
379 current_x = x;
380 while(pixel_count--) {
381
382 /* don't do a memcpy() here; keyframes generally copy an entire
383 * frame of data and the stride needs to be accounted for */
384 palette_plane[index++] = *pixel_buffer++;
385
386 ADVANCE_CURRENT_X();
387 }
388 break;
389
390 case PIX_FMT_RGB555:
391 case PIX_FMT_RGB565:
392 rgb16_plane = (unsigned short *)s->current_frame.data[0];
393 palette16 = (unsigned short *)s->palette;
394 stride = s->current_frame.linesize[0] / 2;
395 line_inc = stride - width;
396 index = y * stride + x;
397 current_x = x;
398 while(pixel_count--) {
399
400 rgb16_plane[index++] = palette16[*pixel_buffer++];
401
402 ADVANCE_CURRENT_X();
403 }
404 break;
405
406 case PIX_FMT_RGB24:
407 case PIX_FMT_BGR24:
408 rgb_plane = s->current_frame.data[0];
409 stride = s->current_frame.linesize[0];
410 line_inc = stride - width * 3;
411 index = y * stride + x * 3;
412 current_x = x;
413 while(pixel_count--) {
414 pix = *pixel_buffer++;
415
416 rgb_plane[index++] = s->palette[pix * 4 + 0];
417 rgb_plane[index++] = s->palette[pix * 4 + 1];
418 rgb_plane[index++] = s->palette[pix * 4 + 2];
419
420 ADVANCE_CURRENT_X();
421 }
422 break;
423
424 case PIX_FMT_RGBA32:
425 rgb32_plane = (unsigned int *)s->current_frame.data[0];
426 palette32 = (unsigned int *)s->palette;
427 stride = s->current_frame.linesize[0] / 4;
428 line_inc = stride - width;
429 index = y * stride + x;
430 current_x = x;
431 while(pixel_count--) {
432
433 rgb32_plane[index++] = palette32[*pixel_buffer++];
434
435 ADVANCE_CURRENT_X();
436 }
437 break;
438
439 case PIX_FMT_YUV444P:
440 y_plane = s->current_frame.data[0];
441 u_plane = s->current_frame.data[1];
442 v_plane = s->current_frame.data[2];
443 stride = s->current_frame.linesize[0];
444 line_inc = stride - width;
445 index = y * stride + x;
446 current_x = x;
447 while(pixel_count--) {
448 pix = *pixel_buffer++;
449
450 y_plane[index] = s->palette[pix * 4 + 0];
451 u_plane[index] = s->palette[pix * 4 + 1];
452 v_plane[index] = s->palette[pix * 4 + 2];
453
454 index++;
455 ADVANCE_CURRENT_X();
456 }
457 break;
458
459 default:
460 printf (" Xan WC3: Unhandled colorspace\n");
461 break;
462 }
463 }
464
465 #define ADVANCE_CURFRAME_X() \
466 curframe_x++; \
467 if (curframe_x >= width) { \
468 curframe_index += line_inc; \
469 curframe_x = 0; \
470 }
471
472 #define ADVANCE_PREVFRAME_X() \
473 prevframe_x++; \
474 if (prevframe_x >= width) { \
475 prevframe_index += line_inc; \
476 prevframe_x = 0; \
477 }
478
479 static void inline xan_wc3_copy_pixel_run(XanContext *s,
480 int x, int y, int pixel_count, int motion_x, int motion_y)
481 {
482 int stride;
483 int line_inc;
484 int curframe_index, prevframe_index;
485 int curframe_x, prevframe_x;
486 int width = s->avctx->width;
487 unsigned char *palette_plane, *prev_palette_plane;
488 unsigned char *y_plane, *u_plane, *v_plane;
489 unsigned char *prev_y_plane, *prev_u_plane, *prev_v_plane;
490 unsigned char *rgb_plane, *prev_rgb_plane;
491 unsigned short *rgb16_plane, *prev_rgb16_plane;
492 unsigned int *rgb32_plane, *prev_rgb32_plane;
493
494 switch (s->avctx->pix_fmt) {
495
496 case PIX_FMT_PAL8:
497 palette_plane = s->current_frame.data[0];
498 prev_palette_plane = s->last_frame.data[0];
499 stride = s->current_frame.linesize[0];
500 line_inc = stride - width;
501 curframe_index = y * stride + x;
502 curframe_x = x;
503 prevframe_index = (y + motion_y) * stride + x + motion_x;
504 prevframe_x = x + motion_x;
505 while(pixel_count--) {
506
507 palette_plane[curframe_index++] =
508 prev_palette_plane[prevframe_index++];
509
510 ADVANCE_CURFRAME_X();
511 ADVANCE_PREVFRAME_X();
512 }
513 break;
514
515 case PIX_FMT_RGB555:
516 case PIX_FMT_RGB565:
517 rgb16_plane = (unsigned short *)s->current_frame.data[0];
518 prev_rgb16_plane = (unsigned short *)s->last_frame.data[0];
519 stride = s->current_frame.linesize[0] / 2;
520 line_inc = stride - width;
521 curframe_index = y * stride + x;
522 curframe_x = x;
523 prevframe_index = (y + motion_y) * stride + x + motion_x;
524 prevframe_x = x + motion_x;
525 while(pixel_count--) {
526
527 rgb16_plane[curframe_index++] =
528 prev_rgb16_plane[prevframe_index++];
529
530 ADVANCE_CURFRAME_X();
531 ADVANCE_PREVFRAME_X();
532 }
533 break;
534
535 case PIX_FMT_RGB24:
536 case PIX_FMT_BGR24:
537 rgb_plane = s->current_frame.data[0];
538 prev_rgb_plane = s->last_frame.data[0];
539 stride = s->current_frame.linesize[0];
540 line_inc = stride - width * 3;
541 curframe_index = y * stride + x * 3;
542 curframe_x = x;
543 prevframe_index = (y + motion_y) * stride +
544 (3 * (x + motion_x));
545 prevframe_x = x + motion_x;
546 while(pixel_count--) {
547
548 rgb_plane[curframe_index++] = prev_rgb_plane[prevframe_index++];
549 rgb_plane[curframe_index++] = prev_rgb_plane[prevframe_index++];
550 rgb_plane[curframe_index++] = prev_rgb_plane[prevframe_index++];
551
552 ADVANCE_CURFRAME_X();
553 ADVANCE_PREVFRAME_X();
554 }
555 break;
556
557 case PIX_FMT_RGBA32:
558 rgb32_plane = (unsigned int *)s->current_frame.data[0];
559 prev_rgb32_plane = (unsigned int *)s->last_frame.data[0];
560 stride = s->current_frame.linesize[0] / 4;
561 line_inc = stride - width;
562 curframe_index = y * stride + x;
563 curframe_x = x;
564 prevframe_index = (y + motion_y) * stride + x + motion_x;
565 prevframe_x = x + motion_x;
566 while(pixel_count--) {
567
568 rgb32_plane[curframe_index++] =
569 prev_rgb32_plane[prevframe_index++];
570
571 ADVANCE_CURFRAME_X();
572 ADVANCE_PREVFRAME_X();
573 }
574 break;
575
576 case PIX_FMT_YUV444P:
577 y_plane = s->current_frame.data[0];
578 u_plane = s->current_frame.data[1];
579 v_plane = s->current_frame.data[2];
580 prev_y_plane = s->last_frame.data[0];
581 prev_u_plane = s->last_frame.data[1];
582 prev_v_plane = s->last_frame.data[2];
583 stride = s->current_frame.linesize[0];
584 line_inc = stride - width;
585 curframe_index = y * stride + x;
586 curframe_x = x;
587 prevframe_index = (y + motion_y) * stride + x + motion_x;
588 prevframe_x = x + motion_x;
589 while(pixel_count--) {
590
591 y_plane[curframe_index] = prev_y_plane[prevframe_index];
592 u_plane[curframe_index] = prev_u_plane[prevframe_index];
593 v_plane[curframe_index] = prev_v_plane[prevframe_index];
594
595 curframe_index++;
596 ADVANCE_CURFRAME_X();
597 prevframe_index++;
598 ADVANCE_PREVFRAME_X();
599 }
600 break;
601
602 default:
603 printf (" Xan WC3: Unhandled colorspace\n");
604 break;
605 }
606 }
607
608 static void xan_wc3_decode_frame(XanContext *s) {
609
610 int width = s->avctx->width;
611 int height = s->avctx->height;
612 int total_pixels = width * height;
613 unsigned char opcode;
614 unsigned char flag = 0;
615 int size = 0;
616 int motion_x, motion_y;
617 int x, y;
618
619 unsigned char *opcode_buffer = s->buffer1;
620 unsigned char *imagedata_buffer = s->buffer2;
621
622 /* pointers to segments inside the compressed chunk */
623 unsigned char *huffman_segment;
624 unsigned char *size_segment;
625 unsigned char *vector_segment;
626 unsigned char *imagedata_segment;
627
628 huffman_segment = s->buf + LE_16(&s->buf[0]);
629 size_segment = s->buf + LE_16(&s->buf[2]);
630 vector_segment = s->buf + LE_16(&s->buf[4]);
631 imagedata_segment = s->buf + LE_16(&s->buf[6]);
632
633 xan_huffman_decode(opcode_buffer, huffman_segment);
634
635 if (imagedata_segment[0] == 2)
636 xan_unpack(imagedata_buffer, &imagedata_segment[1]);
637 else
638 imagedata_buffer = &imagedata_segment[1];
639
640 /* use the decoded data segments to build the frame */
641 x = y = 0;
642 while (total_pixels) {
643
644 opcode = *opcode_buffer++;
645 size = 0;
646
647 switch (opcode) {
648
649 case 0:
650 flag ^= 1;
651 continue;
652
653 case 1:
654 case 2:
655 case 3:
656 case 4:
657 case 5:
658 case 6:
659 case 7:
660 case 8:
661 size = opcode;
662 break;
663
664 case 12:
665 case 13:
666 case 14:
667 case 15:
668 case 16:
669 case 17:
670 case 18:
671 size += (opcode - 10);
672 break;
673
674 case 9:
675 case 19:
676 size = *size_segment++;
677 break;
678
679 case 10:
680 case 20:
681 size = BE_16(&size_segment[0]);
682 size_segment += 2;
683 break;
684
685 case 11:
686 case 21:
687 size = (size_segment[0] << 16) | (size_segment[1] << 8) |
688 size_segment[2];
689 size_segment += 3;
690 break;
691 }
692
693 if (opcode < 12) {
694 flag ^= 1;
695 if (flag) {
696 /* run of (size) pixels is unchanged from last frame */
697 xan_wc3_copy_pixel_run(s, x, y, size, 0, 0);
698 } else {
699 /* output a run of pixels from imagedata_buffer */
700 xan_wc3_output_pixel_run(s, imagedata_buffer, x, y, size);
701 imagedata_buffer += size;
702 }
703 } else {
704 /* run-based motion compensation from last frame */
705 motion_x = (*vector_segment >> 4) & 0xF;
706 motion_y = *vector_segment & 0xF;
707 vector_segment++;
708
709 /* sign extension */
710 if (motion_x & 0x8)
711 motion_x |= 0xFFFFFFF0;
712 if (motion_y & 0x8)
713 motion_y |= 0xFFFFFFF0;
714
715 /* copy a run of pixels from the previous frame */
716 xan_wc3_copy_pixel_run(s, x, y, size, motion_x, motion_y);
717
718 flag = 0;
719 }
720
721 /* coordinate accounting */
722 total_pixels -= size;
723 while (size) {
724 if (x + size >= width) {
725 y++;
726 size -= (width - x);
727 x = 0;
728 } else {
729 x += size;
730 size = 0;
731 }
732 }
733 }
734
735 /* for PAL8, make the palette available on the way out */
736 if (s->avctx->pix_fmt == PIX_FMT_PAL8) {
737 memcpy(s->current_frame.data[1], s->palette, PALETTE_COUNT * 4);
738 s->current_frame.palette_has_changed = 1;
739 s->avctx->palctrl->palette_changed = 0;
740 }
741 }
742
743 static void xan_wc4_decode_frame(XanContext *s) {
744 }
745
746 static int xan_decode_frame(AVCodecContext *avctx,
747 void *data, int *data_size,
748 uint8_t *buf, int buf_size)
749 {
750 XanContext *s = avctx->priv_data;
751 AVPaletteControl *palette_control = avctx->palctrl;
752 int keyframe = 0;
753
754 if (palette_control->palette_changed) {
755 /* load the new palette and reset the palette control */
756 xan_wc3_build_palette(s, palette_control->palette);
757 /* If pal8 we clear flag when we copy palette */
758 if (s->avctx->pix_fmt != PIX_FMT_PAL8)
759 palette_control->palette_changed = 0;
760 keyframe = 1;
761 }
762
763 if (avctx->get_buffer(avctx, &s->current_frame)) {
764 printf (" Xan Video: get_buffer() failed\n");
765 return -1;
766 }
767 s->current_frame.reference = 3;
768
769 s->buf = buf;
770 s->size = buf_size;
771
772 if (avctx->codec->id == CODEC_ID_XAN_WC3)
773 xan_wc3_decode_frame(s);
774 else if (avctx->codec->id == CODEC_ID_XAN_WC4)
775 xan_wc4_decode_frame(s);
776
777 /* release the last frame if it is allocated */
778 if (s->last_frame.data[0])
779 avctx->release_buffer(avctx, &s->last_frame);
780
781 /* shuffle frames */
782 s->last_frame = s->current_frame;
783
784 *data_size = sizeof(AVFrame);
785 *(AVFrame*)data = s->current_frame;
786
787 /* always report that the buffer was completely consumed */
788 return buf_size;
789 }
790
791 static int xan_decode_end(AVCodecContext *avctx)
792 {
793 XanContext *s = avctx->priv_data;
794
795 /* release the last frame */
796 avctx->release_buffer(avctx, &s->last_frame);
797
798 av_free(s->buffer1);
799 av_free(s->buffer2);
800
801 return 0;
802 }
803
804 AVCodec xan_wc3_decoder = {
805 "xan_wc3",
806 CODEC_TYPE_VIDEO,
807 CODEC_ID_XAN_WC3,
808 sizeof(XanContext),
809 xan_decode_init,
810 NULL,
811 xan_decode_end,
812 xan_decode_frame,
813 CODEC_CAP_DR1,
814 };
815
816 /*
817 AVCodec xan_wc4_decoder = {
818 "xan_wc4",
819 CODEC_TYPE_VIDEO,
820 CODEC_ID_XAN_WC4,
821 sizeof(XanContext),
822 xan_decode_init,
823 NULL,
824 xan_decode_end,
825 xan_decode_frame,
826 CODEC_CAP_DR1,
827 };
828 */