e4f4860ea0b34bc973ad28a0d9f0653b59b2eaea
[libav.git] / libavcodec / zmbvenc.c
1 /*
2 * Zip Motion Blocks Video (ZMBV) encoder
3 * Copyright (c) 2006 Konstantin Shishkov
4 *
5 * This file is part of Libav.
6 *
7 * Libav is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * Libav is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with Libav; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file
24 * Zip Motion Blocks Video encoder
25 */
26
27 #include <stdio.h>
28 #include <stdlib.h>
29
30 #include "libavutil/intreadwrite.h"
31 #include "avcodec.h"
32
33 #include <zlib.h>
34
35 #define ZMBV_KEYFRAME 1
36 #define ZMBV_DELTAPAL 2
37
38 #define ZMBV_BLOCK 16
39
40 /**
41 * Encoder context
42 */
43 typedef struct ZmbvEncContext {
44 AVCodecContext *avctx;
45 AVFrame pic;
46
47 int range;
48 uint8_t *comp_buf, *work_buf;
49 uint8_t pal[768];
50 uint32_t pal2[256]; //for quick comparisons
51 uint8_t *prev;
52 int pstride;
53 int comp_size;
54 int keyint, curfrm;
55 z_stream zstream;
56 } ZmbvEncContext;
57
58 static int score_tab[256];
59
60 /** Block comparing function
61 * XXX should be optimized and moved to DSPContext
62 * TODO handle out of edge ME
63 */
64 static inline int block_cmp(uint8_t *src, int stride, uint8_t *src2, int stride2,
65 int bw, int bh, int *xored)
66 {
67 int sum = 0;
68 int i, j;
69 uint8_t histogram[256] = {0};
70
71 *xored = 0;
72 for(j = 0; j < bh; j++){
73 for(i = 0; i < bw; i++){
74 int t = src[i] ^ src2[i];
75 histogram[t]++;
76 *xored |= t;
77 }
78 src += stride;
79 src2 += stride2;
80 }
81
82 for(i = 1; i < 256; i++)
83 sum += score_tab[histogram[i]];
84
85 return sum;
86 }
87
88 /** Motion estimation function
89 * TODO make better ME decisions
90 */
91 static int zmbv_me(ZmbvEncContext *c, uint8_t *src, int sstride, uint8_t *prev,
92 int pstride, int x, int y, int *mx, int *my, int *xored)
93 {
94 int dx, dy, tx, ty, tv, bv, bw, bh;
95
96 *mx = *my = 0;
97 bw = FFMIN(ZMBV_BLOCK, c->avctx->width - x);
98 bh = FFMIN(ZMBV_BLOCK, c->avctx->height - y);
99 bv = block_cmp(src, sstride, prev, pstride, bw, bh, xored);
100 if(!bv) return 0;
101 for(ty = FFMAX(y - c->range, 0); ty < FFMIN(y + c->range, c->avctx->height - bh); ty++){
102 for(tx = FFMAX(x - c->range, 0); tx < FFMIN(x + c->range, c->avctx->width - bw); tx++){
103 if(tx == x && ty == y) continue; // we already tested this block
104 dx = tx - x;
105 dy = ty - y;
106 tv = block_cmp(src, sstride, prev + dx + dy*pstride, pstride, bw, bh, xored);
107 if(tv < bv){
108 bv = tv;
109 *mx = dx;
110 *my = dy;
111 if(!bv) return 0;
112 }
113 }
114 }
115 return bv;
116 }
117
118 static int encode_frame(AVCodecContext *avctx, uint8_t *buf, int buf_size, void *data)
119 {
120 ZmbvEncContext * const c = avctx->priv_data;
121 AVFrame *pict = data;
122 AVFrame * const p = &c->pic;
123 uint8_t *src, *prev;
124 uint32_t *palptr;
125 int len = 0;
126 int keyframe, chpal;
127 int fl;
128 int work_size = 0;
129 int bw, bh;
130 int i, j;
131
132 keyframe = !c->curfrm;
133 c->curfrm++;
134 if(c->curfrm == c->keyint)
135 c->curfrm = 0;
136 *p = *pict;
137 p->pict_type= keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
138 p->key_frame= keyframe;
139 chpal = !keyframe && memcmp(p->data[1], c->pal2, 1024);
140
141 fl = (keyframe ? ZMBV_KEYFRAME : 0) | (chpal ? ZMBV_DELTAPAL : 0);
142 *buf++ = fl; len++;
143 if(keyframe){
144 deflateReset(&c->zstream);
145 *buf++ = 0; len++; // hi ver
146 *buf++ = 1; len++; // lo ver
147 *buf++ = 1; len++; // comp
148 *buf++ = 4; len++; // format - 8bpp
149 *buf++ = ZMBV_BLOCK; len++; // block width
150 *buf++ = ZMBV_BLOCK; len++; // block height
151 }
152 palptr = (uint32_t*)p->data[1];
153 src = p->data[0];
154 prev = c->prev;
155 if(chpal){
156 uint8_t tpal[3];
157 for(i = 0; i < 256; i++){
158 AV_WB24(tpal, palptr[i]);
159 c->work_buf[work_size++] = tpal[0] ^ c->pal[i * 3 + 0];
160 c->work_buf[work_size++] = tpal[1] ^ c->pal[i * 3 + 1];
161 c->work_buf[work_size++] = tpal[2] ^ c->pal[i * 3 + 2];
162 c->pal[i * 3 + 0] = tpal[0];
163 c->pal[i * 3 + 1] = tpal[1];
164 c->pal[i * 3 + 2] = tpal[2];
165 }
166 memcpy(c->pal2, p->data[1], 1024);
167 }
168 if(keyframe){
169 for(i = 0; i < 256; i++){
170 AV_WB24(c->pal+(i*3), palptr[i]);
171 }
172 memcpy(c->work_buf, c->pal, 768);
173 memcpy(c->pal2, p->data[1], 1024);
174 work_size = 768;
175 for(i = 0; i < avctx->height; i++){
176 memcpy(c->work_buf + work_size, src, avctx->width);
177 src += p->linesize[0];
178 work_size += avctx->width;
179 }
180 }else{
181 int x, y, bh2, bw2, xored;
182 uint8_t *tsrc, *tprev;
183 uint8_t *mv;
184 int mx, my;
185
186 bw = (avctx->width + ZMBV_BLOCK - 1) / ZMBV_BLOCK;
187 bh = (avctx->height + ZMBV_BLOCK - 1) / ZMBV_BLOCK;
188 mv = c->work_buf + work_size;
189 memset(c->work_buf + work_size, 0, (bw * bh * 2 + 3) & ~3);
190 work_size += (bw * bh * 2 + 3) & ~3;
191 /* for now just XOR'ing */
192 for(y = 0; y < avctx->height; y += ZMBV_BLOCK) {
193 bh2 = FFMIN(avctx->height - y, ZMBV_BLOCK);
194 for(x = 0; x < avctx->width; x += ZMBV_BLOCK, mv += 2) {
195 bw2 = FFMIN(avctx->width - x, ZMBV_BLOCK);
196
197 tsrc = src + x;
198 tprev = prev + x;
199
200 zmbv_me(c, tsrc, p->linesize[0], tprev, c->pstride, x, y, &mx, &my, &xored);
201 mv[0] = (mx << 1) | !!xored;
202 mv[1] = my << 1;
203 tprev += mx + my * c->pstride;
204 if(xored){
205 for(j = 0; j < bh2; j++){
206 for(i = 0; i < bw2; i++)
207 c->work_buf[work_size++] = tsrc[i] ^ tprev[i];
208 tsrc += p->linesize[0];
209 tprev += c->pstride;
210 }
211 }
212 }
213 src += p->linesize[0] * ZMBV_BLOCK;
214 prev += c->pstride * ZMBV_BLOCK;
215 }
216 }
217 /* save the previous frame */
218 src = p->data[0];
219 prev = c->prev;
220 for(i = 0; i < avctx->height; i++){
221 memcpy(prev, src, avctx->width);
222 prev += c->pstride;
223 src += p->linesize[0];
224 }
225
226 c->zstream.next_in = c->work_buf;
227 c->zstream.avail_in = work_size;
228 c->zstream.total_in = 0;
229
230 c->zstream.next_out = c->comp_buf;
231 c->zstream.avail_out = c->comp_size;
232 c->zstream.total_out = 0;
233 if(deflate(&c->zstream, Z_SYNC_FLUSH) != Z_OK){
234 av_log(avctx, AV_LOG_ERROR, "Error compressing data\n");
235 return -1;
236 }
237
238 memcpy(buf, c->comp_buf, c->zstream.total_out);
239 return len + c->zstream.total_out;
240 }
241
242
243 /**
244 * Init zmbv encoder
245 */
246 static av_cold int encode_init(AVCodecContext *avctx)
247 {
248 ZmbvEncContext * const c = avctx->priv_data;
249 int zret; // Zlib return code
250 int i;
251 int lvl = 9;
252
253 for(i=1; i<256; i++)
254 score_tab[i]= -i * log(i/(double)(ZMBV_BLOCK*ZMBV_BLOCK)) * (256/M_LN2);
255
256 c->avctx = avctx;
257
258 c->curfrm = 0;
259 c->keyint = avctx->keyint_min;
260 c->range = 8;
261 if(avctx->me_range > 0)
262 c->range = FFMIN(avctx->me_range, 127);
263
264 if(avctx->compression_level >= 0)
265 lvl = avctx->compression_level;
266 if(lvl < 0 || lvl > 9){
267 av_log(avctx, AV_LOG_ERROR, "Compression level should be 0-9, not %i\n", lvl);
268 return -1;
269 }
270
271 // Needed if zlib unused or init aborted before deflateInit
272 memset(&(c->zstream), 0, sizeof(z_stream));
273 c->comp_size = avctx->width * avctx->height + 1024 +
274 ((avctx->width + ZMBV_BLOCK - 1) / ZMBV_BLOCK) * ((avctx->height + ZMBV_BLOCK - 1) / ZMBV_BLOCK) * 2 + 4;
275 if ((c->work_buf = av_malloc(c->comp_size)) == NULL) {
276 av_log(avctx, AV_LOG_ERROR, "Can't allocate work buffer.\n");
277 return -1;
278 }
279 /* Conservative upper bound taken from zlib v1.2.1 source via lcl.c */
280 c->comp_size = c->comp_size + ((c->comp_size + 7) >> 3) +
281 ((c->comp_size + 63) >> 6) + 11;
282
283 /* Allocate compression buffer */
284 if ((c->comp_buf = av_malloc(c->comp_size)) == NULL) {
285 av_log(avctx, AV_LOG_ERROR, "Can't allocate compression buffer.\n");
286 return -1;
287 }
288 c->pstride = FFALIGN(avctx->width, 16);
289 if ((c->prev = av_malloc(c->pstride * avctx->height)) == NULL) {
290 av_log(avctx, AV_LOG_ERROR, "Can't allocate picture.\n");
291 return -1;
292 }
293
294 c->zstream.zalloc = Z_NULL;
295 c->zstream.zfree = Z_NULL;
296 c->zstream.opaque = Z_NULL;
297 zret = deflateInit(&(c->zstream), lvl);
298 if (zret != Z_OK) {
299 av_log(avctx, AV_LOG_ERROR, "Inflate init error: %d\n", zret);
300 return -1;
301 }
302
303 avctx->coded_frame = (AVFrame*)&c->pic;
304
305 return 0;
306 }
307
308
309
310 /**
311 * Uninit zmbv encoder
312 */
313 static av_cold int encode_end(AVCodecContext *avctx)
314 {
315 ZmbvEncContext * const c = avctx->priv_data;
316
317 av_freep(&c->comp_buf);
318 av_freep(&c->work_buf);
319
320 deflateEnd(&(c->zstream));
321 av_freep(&c->prev);
322
323 return 0;
324 }
325
326 AVCodec ff_zmbv_encoder = {
327 "zmbv",
328 AVMEDIA_TYPE_VIDEO,
329 CODEC_ID_ZMBV,
330 sizeof(ZmbvEncContext),
331 encode_init,
332 encode_frame,
333 encode_end,
334 .pix_fmts = (const enum PixelFormat[]){PIX_FMT_PAL8, PIX_FMT_NONE},
335 .long_name = NULL_IF_CONFIG_SMALL("Zip Motion Blocks Video"),
336 };