Make sure strides have positive values before converting.
[libav.git] / libswscale / swscale.c
1 /*
2 * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 * the C code (not assembly, mmx, ...) of this file can be used
21 * under the LGPL license too
22 */
23
24 /*
25 supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09, PAL8
26 supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
27 {BGR,RGB}{1,4,8,15,16} support dithering
28
29 unscaled special converters (YV12=I420=IYUV, Y800=Y8)
30 YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
31 x -> x
32 YUV9 -> YV12
33 YUV9/YV12 -> Y800
34 Y800 -> YUV9/YV12
35 BGR24 -> BGR32 & RGB24 -> RGB32
36 BGR32 -> BGR24 & RGB32 -> RGB24
37 BGR15 -> BGR16
38 */
39
40 /*
41 tested special converters (most are tested actually but i didnt write it down ...)
42 YV12 -> BGR16
43 YV12 -> YV12
44 BGR15 -> BGR16
45 BGR16 -> BGR16
46 YVU9 -> YV12
47
48 untested special converters
49 YV12/I420 -> BGR15/BGR24/BGR32 (it is the yuv2rgb stuff, so it should be ok)
50 YV12/I420 -> YV12/I420
51 YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
52 BGR24 -> BGR32 & RGB24 -> RGB32
53 BGR32 -> BGR24 & RGB32 -> RGB24
54 BGR24 -> YV12
55 */
56
57 #include <inttypes.h>
58 #include <string.h>
59 #include <math.h>
60 #include <stdio.h>
61 #include <unistd.h>
62 #include "config.h"
63 #include <assert.h>
64 #ifdef HAVE_SYS_MMAN_H
65 #include <sys/mman.h>
66 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
67 #define MAP_ANONYMOUS MAP_ANON
68 #endif
69 #endif
70 #include "swscale.h"
71 #include "swscale_internal.h"
72 #include "x86_cpu.h"
73 #include "bswap.h"
74 #include "rgb2rgb.h"
75 #include "libavcodec/opt.h"
76
77 #undef MOVNTQ
78 #undef PAVGB
79
80 //#undef HAVE_MMX2
81 //#define HAVE_3DNOW
82 //#undef HAVE_MMX
83 //#undef ARCH_X86
84 //#define WORDS_BIGENDIAN
85 #define DITHER1XBPP
86
87 #define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
88
89 #define RET 0xC3 //near return opcode for X86
90
91 #ifdef MP_DEBUG
92 #define ASSERT(x) assert(x);
93 #else
94 #define ASSERT(x) ;
95 #endif
96
97 #ifdef M_PI
98 #define PI M_PI
99 #else
100 #define PI 3.14159265358979323846
101 #endif
102
103 #define isSupportedIn(x) ( \
104 (x)==PIX_FMT_YUV420P \
105 || (x)==PIX_FMT_YUVA420P \
106 || (x)==PIX_FMT_YUYV422 \
107 || (x)==PIX_FMT_UYVY422 \
108 || (x)==PIX_FMT_RGB32 \
109 || (x)==PIX_FMT_BGR24 \
110 || (x)==PIX_FMT_BGR565 \
111 || (x)==PIX_FMT_BGR555 \
112 || (x)==PIX_FMT_BGR32 \
113 || (x)==PIX_FMT_RGB24 \
114 || (x)==PIX_FMT_RGB565 \
115 || (x)==PIX_FMT_RGB555 \
116 || (x)==PIX_FMT_GRAY8 \
117 || (x)==PIX_FMT_YUV410P \
118 || (x)==PIX_FMT_GRAY16BE \
119 || (x)==PIX_FMT_GRAY16LE \
120 || (x)==PIX_FMT_YUV444P \
121 || (x)==PIX_FMT_YUV422P \
122 || (x)==PIX_FMT_YUV411P \
123 || (x)==PIX_FMT_PAL8 \
124 || (x)==PIX_FMT_BGR8 \
125 || (x)==PIX_FMT_RGB8 \
126 || (x)==PIX_FMT_BGR4_BYTE \
127 || (x)==PIX_FMT_RGB4_BYTE \
128 || (x)==PIX_FMT_YUV440P \
129 )
130 #define isSupportedOut(x) ( \
131 (x)==PIX_FMT_YUV420P \
132 || (x)==PIX_FMT_YUYV422 \
133 || (x)==PIX_FMT_UYVY422 \
134 || (x)==PIX_FMT_YUV444P \
135 || (x)==PIX_FMT_YUV422P \
136 || (x)==PIX_FMT_YUV411P \
137 || isRGB(x) \
138 || isBGR(x) \
139 || (x)==PIX_FMT_NV12 \
140 || (x)==PIX_FMT_NV21 \
141 || (x)==PIX_FMT_GRAY16BE \
142 || (x)==PIX_FMT_GRAY16LE \
143 || (x)==PIX_FMT_GRAY8 \
144 || (x)==PIX_FMT_YUV410P \
145 )
146 #define isPacked(x) ( \
147 (x)==PIX_FMT_PAL8 \
148 || (x)==PIX_FMT_YUYV422 \
149 || (x)==PIX_FMT_UYVY422 \
150 || isRGB(x) \
151 || isBGR(x) \
152 )
153
154 #define RGB2YUV_SHIFT 16
155 #define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
156 #define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
157 #define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
158 #define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
159 #define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
160 #define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
161 #define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
162 #define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
163 #define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))
164
165 extern const int32_t Inverse_Table_6_9[8][4];
166
167 /*
168 NOTES
169 Special versions: fast Y 1:1 scaling (no interpolation in y direction)
170
171 TODO
172 more intelligent misalignment avoidance for the horizontal scaler
173 write special vertical cubic upscale version
174 Optimize C code (yv12 / minmax)
175 add support for packed pixel yuv input & output
176 add support for Y8 output
177 optimize bgr24 & bgr32
178 add BGR4 output support
179 write special BGR->BGR scaler
180 */
181
182 #if defined(ARCH_X86) && defined (CONFIG_GPL)
183 static uint64_t attribute_used __attribute__((aligned(8))) bF8= 0xF8F8F8F8F8F8F8F8LL;
184 static uint64_t attribute_used __attribute__((aligned(8))) bFC= 0xFCFCFCFCFCFCFCFCLL;
185 static uint64_t __attribute__((aligned(8))) w10= 0x0010001000100010LL;
186 static uint64_t attribute_used __attribute__((aligned(8))) w02= 0x0002000200020002LL;
187 static uint64_t attribute_used __attribute__((aligned(8))) bm00001111=0x00000000FFFFFFFFLL;
188 static uint64_t attribute_used __attribute__((aligned(8))) bm00000111=0x0000000000FFFFFFLL;
189 static uint64_t attribute_used __attribute__((aligned(8))) bm11111000=0xFFFFFFFFFF000000LL;
190 static uint64_t attribute_used __attribute__((aligned(8))) bm01010101=0x00FF00FF00FF00FFLL;
191
192 static volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither;
193 static volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither;
194 static volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither;
195 static volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither;
196
197 static uint64_t __attribute__((aligned(8))) dither4[2]={
198 0x0103010301030103LL,
199 0x0200020002000200LL,};
200
201 static uint64_t __attribute__((aligned(8))) dither8[2]={
202 0x0602060206020602LL,
203 0x0004000400040004LL,};
204
205 static uint64_t __attribute__((aligned(8))) b16Mask= 0x001F001F001F001FLL;
206 static uint64_t attribute_used __attribute__((aligned(8))) g16Mask= 0x07E007E007E007E0LL;
207 static uint64_t attribute_used __attribute__((aligned(8))) r16Mask= 0xF800F800F800F800LL;
208 static uint64_t __attribute__((aligned(8))) b15Mask= 0x001F001F001F001FLL;
209 static uint64_t attribute_used __attribute__((aligned(8))) g15Mask= 0x03E003E003E003E0LL;
210 static uint64_t attribute_used __attribute__((aligned(8))) r15Mask= 0x7C007C007C007C00LL;
211
212 static uint64_t attribute_used __attribute__((aligned(8))) M24A= 0x00FF0000FF0000FFLL;
213 static uint64_t attribute_used __attribute__((aligned(8))) M24B= 0xFF0000FF0000FF00LL;
214 static uint64_t attribute_used __attribute__((aligned(8))) M24C= 0x0000FF0000FF0000LL;
215
216 #ifdef FAST_BGR2YV12
217 static const uint64_t bgr2YCoeff attribute_used __attribute__((aligned(8))) = 0x000000210041000DULL;
218 static const uint64_t bgr2UCoeff attribute_used __attribute__((aligned(8))) = 0x0000FFEEFFDC0038ULL;
219 static const uint64_t bgr2VCoeff attribute_used __attribute__((aligned(8))) = 0x00000038FFD2FFF8ULL;
220 #else
221 static const uint64_t bgr2YCoeff attribute_used __attribute__((aligned(8))) = 0x000020E540830C8BULL;
222 static const uint64_t bgr2UCoeff attribute_used __attribute__((aligned(8))) = 0x0000ED0FDAC23831ULL;
223 static const uint64_t bgr2VCoeff attribute_used __attribute__((aligned(8))) = 0x00003831D0E6F6EAULL;
224 #endif /* FAST_BGR2YV12 */
225 static const uint64_t bgr2YOffset attribute_used __attribute__((aligned(8))) = 0x1010101010101010ULL;
226 static const uint64_t bgr2UVOffset attribute_used __attribute__((aligned(8))) = 0x8080808080808080ULL;
227 static const uint64_t w1111 attribute_used __attribute__((aligned(8))) = 0x0001000100010001ULL;
228 #endif /* defined(ARCH_X86) */
229
230 // clipping helper table for C implementations:
231 static unsigned char clip_table[768];
232
233 static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
234
235 extern const uint8_t dither_2x2_4[2][8];
236 extern const uint8_t dither_2x2_8[2][8];
237 extern const uint8_t dither_8x8_32[8][8];
238 extern const uint8_t dither_8x8_73[8][8];
239 extern const uint8_t dither_8x8_220[8][8];
240
241 static const char * sws_context_to_name(void * ptr) {
242 return "swscaler";
243 }
244
245 #define OFFSET(x) offsetof(SwsContext, x)
246 #define DEFAULT 0
247 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
248
249 static const AVOption options[] = {
250 { "sws_flags", "scaler/cpu flags", OFFSET(flags), FF_OPT_TYPE_FLAGS, DEFAULT, INT_MIN, INT_MAX, VE, "sws_flags" },
251 { "fast_bilinear", "fast bilinear", 0, FF_OPT_TYPE_CONST, SWS_FAST_BILINEAR, INT_MIN, INT_MAX, VE, "sws_flags" },
252 { "bilinear", "bilinear", 0, FF_OPT_TYPE_CONST, SWS_BILINEAR, INT_MIN, INT_MAX, VE, "sws_flags" },
253 { "bicubic", "bicubic", 0, FF_OPT_TYPE_CONST, SWS_BICUBIC, INT_MIN, INT_MAX, VE, "sws_flags" },
254 { "experimental", "experimental", 0, FF_OPT_TYPE_CONST, SWS_X, INT_MIN, INT_MAX, VE, "sws_flags" },
255 { "neighbor", "nearest neighbor", 0, FF_OPT_TYPE_CONST, SWS_POINT, INT_MIN, INT_MAX, VE, "sws_flags" },
256 { "area", "averaging area", 0, FF_OPT_TYPE_CONST, SWS_AREA, INT_MIN, INT_MAX, VE, "sws_flags" },
257 { "bicublin", "luma bicubic, chroma bilinear", 0, FF_OPT_TYPE_CONST, SWS_BICUBLIN, INT_MIN, INT_MAX, VE, "sws_flags" },
258 { "gauss", "gaussian", 0, FF_OPT_TYPE_CONST, SWS_GAUSS, INT_MIN, INT_MAX, VE, "sws_flags" },
259 { "sinc", "sinc", 0, FF_OPT_TYPE_CONST, SWS_SINC, INT_MIN, INT_MAX, VE, "sws_flags" },
260 { "lanczos", "lanczos", 0, FF_OPT_TYPE_CONST, SWS_LANCZOS, INT_MIN, INT_MAX, VE, "sws_flags" },
261 { "spline", "natural bicubic spline", 0, FF_OPT_TYPE_CONST, SWS_SPLINE, INT_MIN, INT_MAX, VE, "sws_flags" },
262 { "print_info", "print info", 0, FF_OPT_TYPE_CONST, SWS_PRINT_INFO, INT_MIN, INT_MAX, VE, "sws_flags" },
263 { "accurate_rnd", "accurate rounding", 0, FF_OPT_TYPE_CONST, SWS_ACCURATE_RND, INT_MIN, INT_MAX, VE, "sws_flags" },
264 { "mmx", "MMX SIMD acceleration", 0, FF_OPT_TYPE_CONST, SWS_CPU_CAPS_MMX, INT_MIN, INT_MAX, VE, "sws_flags" },
265 { "mmx2", "MMX2 SIMD acceleration", 0, FF_OPT_TYPE_CONST, SWS_CPU_CAPS_MMX2, INT_MIN, INT_MAX, VE, "sws_flags" },
266 { "3dnow", "3DNOW SIMD acceleration", 0, FF_OPT_TYPE_CONST, SWS_CPU_CAPS_3DNOW, INT_MIN, INT_MAX, VE, "sws_flags" },
267 { "altivec", "AltiVec SIMD acceleration", 0, FF_OPT_TYPE_CONST, SWS_CPU_CAPS_ALTIVEC, INT_MIN, INT_MAX, VE, "sws_flags" },
268 { "bfin", "Blackfin SIMD acceleration", 0, FF_OPT_TYPE_CONST, SWS_CPU_CAPS_BFIN, INT_MIN, INT_MAX, VE, "sws_flags" },
269 { "full_chroma_int", "full chroma interpolation", 0 , FF_OPT_TYPE_CONST, SWS_FULL_CHR_H_INT, INT_MIN, INT_MAX, VE, "sws_flags" },
270 { "full_chroma_inp", "full chroma input", 0 , FF_OPT_TYPE_CONST, SWS_FULL_CHR_H_INP, INT_MIN, INT_MAX, VE, "sws_flags" },
271 { NULL }
272 };
273
274 #undef VE
275 #undef DEFAULT
276
277 static AVClass sws_context_class = { "SWScaler", sws_context_to_name, options };
278
279 char *sws_format_name(enum PixelFormat format)
280 {
281 switch (format) {
282 case PIX_FMT_YUV420P:
283 return "yuv420p";
284 case PIX_FMT_YUVA420P:
285 return "yuva420p";
286 case PIX_FMT_YUYV422:
287 return "yuyv422";
288 case PIX_FMT_RGB24:
289 return "rgb24";
290 case PIX_FMT_BGR24:
291 return "bgr24";
292 case PIX_FMT_YUV422P:
293 return "yuv422p";
294 case PIX_FMT_YUV444P:
295 return "yuv444p";
296 case PIX_FMT_RGB32:
297 return "rgb32";
298 case PIX_FMT_YUV410P:
299 return "yuv410p";
300 case PIX_FMT_YUV411P:
301 return "yuv411p";
302 case PIX_FMT_RGB565:
303 return "rgb565";
304 case PIX_FMT_RGB555:
305 return "rgb555";
306 case PIX_FMT_GRAY16BE:
307 return "gray16be";
308 case PIX_FMT_GRAY16LE:
309 return "gray16le";
310 case PIX_FMT_GRAY8:
311 return "gray8";
312 case PIX_FMT_MONOWHITE:
313 return "mono white";
314 case PIX_FMT_MONOBLACK:
315 return "mono black";
316 case PIX_FMT_PAL8:
317 return "Palette";
318 case PIX_FMT_YUVJ420P:
319 return "yuvj420p";
320 case PIX_FMT_YUVJ422P:
321 return "yuvj422p";
322 case PIX_FMT_YUVJ444P:
323 return "yuvj444p";
324 case PIX_FMT_XVMC_MPEG2_MC:
325 return "xvmc_mpeg2_mc";
326 case PIX_FMT_XVMC_MPEG2_IDCT:
327 return "xvmc_mpeg2_idct";
328 case PIX_FMT_UYVY422:
329 return "uyvy422";
330 case PIX_FMT_UYYVYY411:
331 return "uyyvyy411";
332 case PIX_FMT_RGB32_1:
333 return "rgb32x";
334 case PIX_FMT_BGR32_1:
335 return "bgr32x";
336 case PIX_FMT_BGR32:
337 return "bgr32";
338 case PIX_FMT_BGR565:
339 return "bgr565";
340 case PIX_FMT_BGR555:
341 return "bgr555";
342 case PIX_FMT_BGR8:
343 return "bgr8";
344 case PIX_FMT_BGR4:
345 return "bgr4";
346 case PIX_FMT_BGR4_BYTE:
347 return "bgr4 byte";
348 case PIX_FMT_RGB8:
349 return "rgb8";
350 case PIX_FMT_RGB4:
351 return "rgb4";
352 case PIX_FMT_RGB4_BYTE:
353 return "rgb4 byte";
354 case PIX_FMT_NV12:
355 return "nv12";
356 case PIX_FMT_NV21:
357 return "nv21";
358 case PIX_FMT_YUV440P:
359 return "yuv440p";
360 default:
361 return "Unknown format";
362 }
363 }
364
365 #if defined(ARCH_X86) && defined (CONFIG_GPL)
366 void in_asm_used_var_warning_killer()
367 {
368 volatile int i= bF8+bFC+w10+
369 bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+
370 M24A+M24B+M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0]+bm01010101;
371 if (i) i=0;
372 }
373 #endif
374
375 static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
376 int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
377 uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
378 {
379 //FIXME Optimize (just quickly writen not opti..)
380 int i;
381 for (i=0; i<dstW; i++)
382 {
383 int val=1<<18;
384 int j;
385 for (j=0; j<lumFilterSize; j++)
386 val += lumSrc[j][i] * lumFilter[j];
387
388 dest[i]= av_clip_uint8(val>>19);
389 }
390
391 if (uDest != NULL)
392 for (i=0; i<chrDstW; i++)
393 {
394 int u=1<<18;
395 int v=1<<18;
396 int j;
397 for (j=0; j<chrFilterSize; j++)
398 {
399 u += chrSrc[j][i] * chrFilter[j];
400 v += chrSrc[j][i + 2048] * chrFilter[j];
401 }
402
403 uDest[i]= av_clip_uint8(u>>19);
404 vDest[i]= av_clip_uint8(v>>19);
405 }
406 }
407
408 static inline void yuv2nv12XinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
409 int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
410 uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
411 {
412 //FIXME Optimize (just quickly writen not opti..)
413 int i;
414 for (i=0; i<dstW; i++)
415 {
416 int val=1<<18;
417 int j;
418 for (j=0; j<lumFilterSize; j++)
419 val += lumSrc[j][i] * lumFilter[j];
420
421 dest[i]= av_clip_uint8(val>>19);
422 }
423
424 if (uDest == NULL)
425 return;
426
427 if (dstFormat == PIX_FMT_NV12)
428 for (i=0; i<chrDstW; i++)
429 {
430 int u=1<<18;
431 int v=1<<18;
432 int j;
433 for (j=0; j<chrFilterSize; j++)
434 {
435 u += chrSrc[j][i] * chrFilter[j];
436 v += chrSrc[j][i + 2048] * chrFilter[j];
437 }
438
439 uDest[2*i]= av_clip_uint8(u>>19);
440 uDest[2*i+1]= av_clip_uint8(v>>19);
441 }
442 else
443 for (i=0; i<chrDstW; i++)
444 {
445 int u=1<<18;
446 int v=1<<18;
447 int j;
448 for (j=0; j<chrFilterSize; j++)
449 {
450 u += chrSrc[j][i] * chrFilter[j];
451 v += chrSrc[j][i + 2048] * chrFilter[j];
452 }
453
454 uDest[2*i]= av_clip_uint8(v>>19);
455 uDest[2*i+1]= av_clip_uint8(u>>19);
456 }
457 }
458
459 #define YSCALE_YUV_2_PACKEDX_C(type) \
460 for (i=0; i<(dstW>>1); i++){\
461 int j;\
462 int Y1 = 1<<18;\
463 int Y2 = 1<<18;\
464 int U = 1<<18;\
465 int V = 1<<18;\
466 type av_unused *r, *b, *g;\
467 const int i2= 2*i;\
468 \
469 for (j=0; j<lumFilterSize; j++)\
470 {\
471 Y1 += lumSrc[j][i2] * lumFilter[j];\
472 Y2 += lumSrc[j][i2+1] * lumFilter[j];\
473 }\
474 for (j=0; j<chrFilterSize; j++)\
475 {\
476 U += chrSrc[j][i] * chrFilter[j];\
477 V += chrSrc[j][i+2048] * chrFilter[j];\
478 }\
479 Y1>>=19;\
480 Y2>>=19;\
481 U >>=19;\
482 V >>=19;\
483 if ((Y1|Y2|U|V)&256)\
484 {\
485 if (Y1>255) Y1=255; \
486 else if (Y1<0)Y1=0; \
487 if (Y2>255) Y2=255; \
488 else if (Y2<0)Y2=0; \
489 if (U>255) U=255; \
490 else if (U<0) U=0; \
491 if (V>255) V=255; \
492 else if (V<0) V=0; \
493 }
494
495 #define YSCALE_YUV_2_RGBX_C(type) \
496 YSCALE_YUV_2_PACKEDX_C(type) \
497 r = (type *)c->table_rV[V]; \
498 g = (type *)(c->table_gU[U] + c->table_gV[V]); \
499 b = (type *)c->table_bU[U]; \
500
501 #define YSCALE_YUV_2_PACKED2_C \
502 for (i=0; i<(dstW>>1); i++){ \
503 const int i2= 2*i; \
504 int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19; \
505 int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19; \
506 int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19; \
507 int V= (uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19; \
508
509 #define YSCALE_YUV_2_RGB2_C(type) \
510 YSCALE_YUV_2_PACKED2_C\
511 type *r, *b, *g;\
512 r = (type *)c->table_rV[V];\
513 g = (type *)(c->table_gU[U] + c->table_gV[V]);\
514 b = (type *)c->table_bU[U];\
515
516 #define YSCALE_YUV_2_PACKED1_C \
517 for (i=0; i<(dstW>>1); i++){\
518 const int i2= 2*i;\
519 int Y1= buf0[i2 ]>>7;\
520 int Y2= buf0[i2+1]>>7;\
521 int U= (uvbuf1[i ])>>7;\
522 int V= (uvbuf1[i+2048])>>7;\
523
524 #define YSCALE_YUV_2_RGB1_C(type) \
525 YSCALE_YUV_2_PACKED1_C\
526 type *r, *b, *g;\
527 r = (type *)c->table_rV[V];\
528 g = (type *)(c->table_gU[U] + c->table_gV[V]);\
529 b = (type *)c->table_bU[U];\
530
531 #define YSCALE_YUV_2_PACKED1B_C \
532 for (i=0; i<(dstW>>1); i++){\
533 const int i2= 2*i;\
534 int Y1= buf0[i2 ]>>7;\
535 int Y2= buf0[i2+1]>>7;\
536 int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\
537 int V= (uvbuf0[i+2048] + uvbuf1[i+2048])>>8;\
538
539 #define YSCALE_YUV_2_RGB1B_C(type) \
540 YSCALE_YUV_2_PACKED1B_C\
541 type *r, *b, *g;\
542 r = (type *)c->table_rV[V];\
543 g = (type *)(c->table_gU[U] + c->table_gV[V]);\
544 b = (type *)c->table_bU[U];\
545
546 #define YSCALE_YUV_2_ANYRGB_C(func, func2)\
547 switch(c->dstFormat)\
548 {\
549 case PIX_FMT_RGB32:\
550 case PIX_FMT_BGR32:\
551 func(uint32_t)\
552 ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
553 ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
554 } \
555 break;\
556 case PIX_FMT_RGB24:\
557 func(uint8_t)\
558 ((uint8_t*)dest)[0]= r[Y1];\
559 ((uint8_t*)dest)[1]= g[Y1];\
560 ((uint8_t*)dest)[2]= b[Y1];\
561 ((uint8_t*)dest)[3]= r[Y2];\
562 ((uint8_t*)dest)[4]= g[Y2];\
563 ((uint8_t*)dest)[5]= b[Y2];\
564 dest+=6;\
565 }\
566 break;\
567 case PIX_FMT_BGR24:\
568 func(uint8_t)\
569 ((uint8_t*)dest)[0]= b[Y1];\
570 ((uint8_t*)dest)[1]= g[Y1];\
571 ((uint8_t*)dest)[2]= r[Y1];\
572 ((uint8_t*)dest)[3]= b[Y2];\
573 ((uint8_t*)dest)[4]= g[Y2];\
574 ((uint8_t*)dest)[5]= r[Y2];\
575 dest+=6;\
576 }\
577 break;\
578 case PIX_FMT_RGB565:\
579 case PIX_FMT_BGR565:\
580 {\
581 const int dr1= dither_2x2_8[y&1 ][0];\
582 const int dg1= dither_2x2_4[y&1 ][0];\
583 const int db1= dither_2x2_8[(y&1)^1][0];\
584 const int dr2= dither_2x2_8[y&1 ][1];\
585 const int dg2= dither_2x2_4[y&1 ][1];\
586 const int db2= dither_2x2_8[(y&1)^1][1];\
587 func(uint16_t)\
588 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
589 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
590 }\
591 }\
592 break;\
593 case PIX_FMT_RGB555:\
594 case PIX_FMT_BGR555:\
595 {\
596 const int dr1= dither_2x2_8[y&1 ][0];\
597 const int dg1= dither_2x2_8[y&1 ][1];\
598 const int db1= dither_2x2_8[(y&1)^1][0];\
599 const int dr2= dither_2x2_8[y&1 ][1];\
600 const int dg2= dither_2x2_8[y&1 ][0];\
601 const int db2= dither_2x2_8[(y&1)^1][1];\
602 func(uint16_t)\
603 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
604 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
605 }\
606 }\
607 break;\
608 case PIX_FMT_RGB8:\
609 case PIX_FMT_BGR8:\
610 {\
611 const uint8_t * const d64= dither_8x8_73[y&7];\
612 const uint8_t * const d32= dither_8x8_32[y&7];\
613 func(uint8_t)\
614 ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
615 ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
616 }\
617 }\
618 break;\
619 case PIX_FMT_RGB4:\
620 case PIX_FMT_BGR4:\
621 {\
622 const uint8_t * const d64= dither_8x8_73 [y&7];\
623 const uint8_t * const d128=dither_8x8_220[y&7];\
624 func(uint8_t)\
625 ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
626 + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
627 }\
628 }\
629 break;\
630 case PIX_FMT_RGB4_BYTE:\
631 case PIX_FMT_BGR4_BYTE:\
632 {\
633 const uint8_t * const d64= dither_8x8_73 [y&7];\
634 const uint8_t * const d128=dither_8x8_220[y&7];\
635 func(uint8_t)\
636 ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
637 ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
638 }\
639 }\
640 break;\
641 case PIX_FMT_MONOBLACK:\
642 {\
643 const uint8_t * const d128=dither_8x8_220[y&7];\
644 uint8_t *g= c->table_gU[128] + c->table_gV[128];\
645 for (i=0; i<dstW-7; i+=8){\
646 int acc;\
647 acc = g[((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19) + d128[0]];\
648 acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
649 acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
650 acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
651 acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
652 acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
653 acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
654 acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
655 ((uint8_t*)dest)[0]= acc;\
656 dest++;\
657 }\
658 \
659 /*\
660 ((uint8_t*)dest)-= dstW>>4;\
661 {\
662 int acc=0;\
663 int left=0;\
664 static int top[1024];\
665 static int last_new[1024][1024];\
666 static int last_in3[1024][1024];\
667 static int drift[1024][1024];\
668 int topLeft=0;\
669 int shift=0;\
670 int count=0;\
671 const uint8_t * const d128=dither_8x8_220[y&7];\
672 int error_new=0;\
673 int error_in3=0;\
674 int f=0;\
675 \
676 for (i=dstW>>1; i<dstW; i++){\
677 int in= ((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19);\
678 int in2 = (76309 * (in - 16) + 32768) >> 16;\
679 int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
680 int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
681 + (last_new[y][i] - in3)*f/256;\
682 int new= old> 128 ? 255 : 0;\
683 \
684 error_new+= FFABS(last_new[y][i] - new);\
685 error_in3+= FFABS(last_in3[y][i] - in3);\
686 f= error_new - error_in3*4;\
687 if (f<0) f=0;\
688 if (f>256) f=256;\
689 \
690 topLeft= top[i];\
691 left= top[i]= old - new;\
692 last_new[y][i]= new;\
693 last_in3[y][i]= in3;\
694 \
695 acc+= acc + (new&1);\
696 if ((i&7)==6){\
697 ((uint8_t*)dest)[0]= acc;\
698 ((uint8_t*)dest)++;\
699 }\
700 }\
701 }\
702 */\
703 }\
704 break;\
705 case PIX_FMT_YUYV422:\
706 func2\
707 ((uint8_t*)dest)[2*i2+0]= Y1;\
708 ((uint8_t*)dest)[2*i2+1]= U;\
709 ((uint8_t*)dest)[2*i2+2]= Y2;\
710 ((uint8_t*)dest)[2*i2+3]= V;\
711 } \
712 break;\
713 case PIX_FMT_UYVY422:\
714 func2\
715 ((uint8_t*)dest)[2*i2+0]= U;\
716 ((uint8_t*)dest)[2*i2+1]= Y1;\
717 ((uint8_t*)dest)[2*i2+2]= V;\
718 ((uint8_t*)dest)[2*i2+3]= Y2;\
719 } \
720 break;\
721 }\
722
723
724 static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
725 int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
726 uint8_t *dest, int dstW, int y)
727 {
728 int i;
729 switch(c->dstFormat)
730 {
731 case PIX_FMT_BGR32:
732 case PIX_FMT_RGB32:
733 YSCALE_YUV_2_RGBX_C(uint32_t)
734 ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];
735 ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];
736 }
737 break;
738 case PIX_FMT_RGB24:
739 YSCALE_YUV_2_RGBX_C(uint8_t)
740 ((uint8_t*)dest)[0]= r[Y1];
741 ((uint8_t*)dest)[1]= g[Y1];
742 ((uint8_t*)dest)[2]= b[Y1];
743 ((uint8_t*)dest)[3]= r[Y2];
744 ((uint8_t*)dest)[4]= g[Y2];
745 ((uint8_t*)dest)[5]= b[Y2];
746 dest+=6;
747 }
748 break;
749 case PIX_FMT_BGR24:
750 YSCALE_YUV_2_RGBX_C(uint8_t)
751 ((uint8_t*)dest)[0]= b[Y1];
752 ((uint8_t*)dest)[1]= g[Y1];
753 ((uint8_t*)dest)[2]= r[Y1];
754 ((uint8_t*)dest)[3]= b[Y2];
755 ((uint8_t*)dest)[4]= g[Y2];
756 ((uint8_t*)dest)[5]= r[Y2];
757 dest+=6;
758 }
759 break;
760 case PIX_FMT_RGB565:
761 case PIX_FMT_BGR565:
762 {
763 const int dr1= dither_2x2_8[y&1 ][0];
764 const int dg1= dither_2x2_4[y&1 ][0];
765 const int db1= dither_2x2_8[(y&1)^1][0];
766 const int dr2= dither_2x2_8[y&1 ][1];
767 const int dg2= dither_2x2_4[y&1 ][1];
768 const int db2= dither_2x2_8[(y&1)^1][1];
769 YSCALE_YUV_2_RGBX_C(uint16_t)
770 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
771 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
772 }
773 }
774 break;
775 case PIX_FMT_RGB555:
776 case PIX_FMT_BGR555:
777 {
778 const int dr1= dither_2x2_8[y&1 ][0];
779 const int dg1= dither_2x2_8[y&1 ][1];
780 const int db1= dither_2x2_8[(y&1)^1][0];
781 const int dr2= dither_2x2_8[y&1 ][1];
782 const int dg2= dither_2x2_8[y&1 ][0];
783 const int db2= dither_2x2_8[(y&1)^1][1];
784 YSCALE_YUV_2_RGBX_C(uint16_t)
785 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
786 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
787 }
788 }
789 break;
790 case PIX_FMT_RGB8:
791 case PIX_FMT_BGR8:
792 {
793 const uint8_t * const d64= dither_8x8_73[y&7];
794 const uint8_t * const d32= dither_8x8_32[y&7];
795 YSCALE_YUV_2_RGBX_C(uint8_t)
796 ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];
797 ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];
798 }
799 }
800 break;
801 case PIX_FMT_RGB4:
802 case PIX_FMT_BGR4:
803 {
804 const uint8_t * const d64= dither_8x8_73 [y&7];
805 const uint8_t * const d128=dither_8x8_220[y&7];
806 YSCALE_YUV_2_RGBX_C(uint8_t)
807 ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]
808 +((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);
809 }
810 }
811 break;
812 case PIX_FMT_RGB4_BYTE:
813 case PIX_FMT_BGR4_BYTE:
814 {
815 const uint8_t * const d64= dither_8x8_73 [y&7];
816 const uint8_t * const d128=dither_8x8_220[y&7];
817 YSCALE_YUV_2_RGBX_C(uint8_t)
818 ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];
819 ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];
820 }
821 }
822 break;
823 case PIX_FMT_MONOBLACK:
824 {
825 const uint8_t * const d128=dither_8x8_220[y&7];
826 uint8_t *g= c->table_gU[128] + c->table_gV[128];
827 int acc=0;
828 for (i=0; i<dstW-1; i+=2){
829 int j;
830 int Y1=1<<18;
831 int Y2=1<<18;
832
833 for (j=0; j<lumFilterSize; j++)
834 {
835 Y1 += lumSrc[j][i] * lumFilter[j];
836 Y2 += lumSrc[j][i+1] * lumFilter[j];
837 }
838 Y1>>=19;
839 Y2>>=19;
840 if ((Y1|Y2)&256)
841 {
842 if (Y1>255) Y1=255;
843 else if (Y1<0)Y1=0;
844 if (Y2>255) Y2=255;
845 else if (Y2<0)Y2=0;
846 }
847 acc+= acc + g[Y1+d128[(i+0)&7]];
848 acc+= acc + g[Y2+d128[(i+1)&7]];
849 if ((i&7)==6){
850 ((uint8_t*)dest)[0]= acc;
851 dest++;
852 }
853 }
854 }
855 break;
856 case PIX_FMT_YUYV422:
857 YSCALE_YUV_2_PACKEDX_C(void)
858 ((uint8_t*)dest)[2*i2+0]= Y1;
859 ((uint8_t*)dest)[2*i2+1]= U;
860 ((uint8_t*)dest)[2*i2+2]= Y2;
861 ((uint8_t*)dest)[2*i2+3]= V;
862 }
863 break;
864 case PIX_FMT_UYVY422:
865 YSCALE_YUV_2_PACKEDX_C(void)
866 ((uint8_t*)dest)[2*i2+0]= U;
867 ((uint8_t*)dest)[2*i2+1]= Y1;
868 ((uint8_t*)dest)[2*i2+2]= V;
869 ((uint8_t*)dest)[2*i2+3]= Y2;
870 }
871 break;
872 }
873 }
874
875
876 //Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
877 //Plain C versions
878 #if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT) || !defined(CONFIG_GPL)
879 #define COMPILE_C
880 #endif
881
882 #ifdef ARCH_POWERPC
883 #if (defined (HAVE_ALTIVEC) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
884 #define COMPILE_ALTIVEC
885 #endif //HAVE_ALTIVEC
886 #endif //ARCH_POWERPC
887
888 #if defined(ARCH_X86)
889
890 #if ((defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
891 #define COMPILE_MMX
892 #endif
893
894 #if (defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
895 #define COMPILE_MMX2
896 #endif
897
898 #if ((defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
899 #define COMPILE_3DNOW
900 #endif
901 #endif //ARCH_X86 || ARCH_X86_64
902
903 #undef HAVE_MMX
904 #undef HAVE_MMX2
905 #undef HAVE_3DNOW
906
907 #ifdef COMPILE_C
908 #undef HAVE_MMX
909 #undef HAVE_MMX2
910 #undef HAVE_3DNOW
911 #undef HAVE_ALTIVEC
912 #define RENAME(a) a ## _C
913 #include "swscale_template.c"
914 #endif
915
916 #ifdef ARCH_POWERPC
917 #ifdef COMPILE_ALTIVEC
918 #undef RENAME
919 #define HAVE_ALTIVEC
920 #define RENAME(a) a ## _altivec
921 #include "swscale_template.c"
922 #endif
923 #endif //ARCH_POWERPC
924
925 #if defined(ARCH_X86)
926
927 //X86 versions
928 /*
929 #undef RENAME
930 #undef HAVE_MMX
931 #undef HAVE_MMX2
932 #undef HAVE_3DNOW
933 #define ARCH_X86
934 #define RENAME(a) a ## _X86
935 #include "swscale_template.c"
936 */
937 //MMX versions
938 #ifdef COMPILE_MMX
939 #undef RENAME
940 #define HAVE_MMX
941 #undef HAVE_MMX2
942 #undef HAVE_3DNOW
943 #define RENAME(a) a ## _MMX
944 #include "swscale_template.c"
945 #endif
946
947 //MMX2 versions
948 #ifdef COMPILE_MMX2
949 #undef RENAME
950 #define HAVE_MMX
951 #define HAVE_MMX2
952 #undef HAVE_3DNOW
953 #define RENAME(a) a ## _MMX2
954 #include "swscale_template.c"
955 #endif
956
957 //3DNOW versions
958 #ifdef COMPILE_3DNOW
959 #undef RENAME
960 #define HAVE_MMX
961 #undef HAVE_MMX2
962 #define HAVE_3DNOW
963 #define RENAME(a) a ## _3DNow
964 #include "swscale_template.c"
965 #endif
966
967 #endif //ARCH_X86 || ARCH_X86_64
968
969 // minor note: the HAVE_xyz is messed up after that line so don't use it
970
971 static double getSplineCoeff(double a, double b, double c, double d, double dist)
972 {
973 // printf("%f %f %f %f %f\n", a,b,c,d,dist);
974 if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
975 else return getSplineCoeff( 0.0,
976 b+ 2.0*c + 3.0*d,
977 c + 3.0*d,
978 -b- 3.0*c - 6.0*d,
979 dist-1.0);
980 }
981
982 static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
983 int srcW, int dstW, int filterAlign, int one, int flags,
984 SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
985 {
986 int i;
987 int filterSize;
988 int filter2Size;
989 int minFilterSize;
990 double *filter=NULL;
991 double *filter2=NULL;
992 #if defined(ARCH_X86)
993 if (flags & SWS_CPU_CAPS_MMX)
994 asm volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
995 #endif
996
997 // Note the +1 is for the MMXscaler which reads over the end
998 *filterPos = av_malloc((dstW+1)*sizeof(int16_t));
999
1000 if (FFABS(xInc - 0x10000) <10) // unscaled
1001 {
1002 int i;
1003 filterSize= 1;
1004 filter= av_malloc(dstW*sizeof(double)*filterSize);
1005 for (i=0; i<dstW*filterSize; i++) filter[i]=0;
1006
1007 for (i=0; i<dstW; i++)
1008 {
1009 filter[i*filterSize]=1;
1010 (*filterPos)[i]=i;
1011 }
1012
1013 }
1014 else if (flags&SWS_POINT) // lame looking point sampling mode
1015 {
1016 int i;
1017 int xDstInSrc;
1018 filterSize= 1;
1019 filter= av_malloc(dstW*sizeof(double)*filterSize);
1020
1021 xDstInSrc= xInc/2 - 0x8000;
1022 for (i=0; i<dstW; i++)
1023 {
1024 int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
1025
1026 (*filterPos)[i]= xx;
1027 filter[i]= 1.0;
1028 xDstInSrc+= xInc;
1029 }
1030 }
1031 else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
1032 {
1033 int i;
1034 int xDstInSrc;
1035 if (flags&SWS_BICUBIC) filterSize= 4;
1036 else if (flags&SWS_X ) filterSize= 4;
1037 else filterSize= 2; // SWS_BILINEAR / SWS_AREA
1038 filter= av_malloc(dstW*sizeof(double)*filterSize);
1039
1040 xDstInSrc= xInc/2 - 0x8000;
1041 for (i=0; i<dstW; i++)
1042 {
1043 int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
1044 int j;
1045
1046 (*filterPos)[i]= xx;
1047 //Bilinear upscale / linear interpolate / Area averaging
1048 for (j=0; j<filterSize; j++)
1049 {
1050 double d= FFABS((xx<<16) - xDstInSrc)/(double)(1<<16);
1051 double coeff= 1.0 - d;
1052 if (coeff<0) coeff=0;
1053 filter[i*filterSize + j]= coeff;
1054 xx++;
1055 }
1056 xDstInSrc+= xInc;
1057 }
1058 }
1059 else
1060 {
1061 double xDstInSrc;
1062 double sizeFactor, filterSizeInSrc;
1063 const double xInc1= (double)xInc / (double)(1<<16);
1064
1065 if (flags&SWS_BICUBIC) sizeFactor= 4.0;
1066 else if (flags&SWS_X) sizeFactor= 8.0;
1067 else if (flags&SWS_AREA) sizeFactor= 1.0; //downscale only, for upscale it is bilinear
1068 else if (flags&SWS_GAUSS) sizeFactor= 8.0; // infinite ;)
1069 else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? 2.0*param[0] : 6.0;
1070 else if (flags&SWS_SINC) sizeFactor= 20.0; // infinite ;)
1071 else if (flags&SWS_SPLINE) sizeFactor= 20.0; // infinite ;)
1072 else if (flags&SWS_BILINEAR) sizeFactor= 2.0;
1073 else {
1074 sizeFactor= 0.0; //GCC warning killer
1075 ASSERT(0)
1076 }
1077
1078 if (xInc1 <= 1.0) filterSizeInSrc= sizeFactor; // upscale
1079 else filterSizeInSrc= sizeFactor*srcW / (double)dstW;
1080
1081 filterSize= (int)ceil(1 + filterSizeInSrc); // will be reduced later if possible
1082 if (filterSize > srcW-2) filterSize=srcW-2;
1083
1084 filter= av_malloc(dstW*sizeof(double)*filterSize);
1085
1086 xDstInSrc= xInc1 / 2.0 - 0.5;
1087 for (i=0; i<dstW; i++)
1088 {
1089 int xx= (int)(xDstInSrc - (filterSize-1)*0.5 + 0.5);
1090 int j;
1091 (*filterPos)[i]= xx;
1092 for (j=0; j<filterSize; j++)
1093 {
1094 double d= FFABS(xx - xDstInSrc)/filterSizeInSrc*sizeFactor;
1095 double coeff;
1096 if (flags & SWS_BICUBIC)
1097 {
1098 double B= param[0] != SWS_PARAM_DEFAULT ? param[0] : 0.0;
1099 double C= param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6;
1100
1101 if (d<1.0)
1102 coeff = (12-9*B-6*C)*d*d*d + (-18+12*B+6*C)*d*d + 6-2*B;
1103 else if (d<2.0)
1104 coeff = (-B-6*C)*d*d*d + (6*B+30*C)*d*d + (-12*B-48*C)*d +8*B+24*C;
1105 else
1106 coeff=0.0;
1107 }
1108 /* else if (flags & SWS_X)
1109 {
1110 double p= param ? param*0.01 : 0.3;
1111 coeff = d ? sin(d*PI)/(d*PI) : 1.0;
1112 coeff*= pow(2.0, - p*d*d);
1113 }*/
1114 else if (flags & SWS_X)
1115 {
1116 double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
1117
1118 if (d<1.0)
1119 coeff = cos(d*PI);
1120 else
1121 coeff=-1.0;
1122 if (coeff<0.0) coeff= -pow(-coeff, A);
1123 else coeff= pow( coeff, A);
1124 coeff= coeff*0.5 + 0.5;
1125 }
1126 else if (flags & SWS_AREA)
1127 {
1128 double srcPixelSize= 1.0/xInc1;
1129 if (d + srcPixelSize/2 < 0.5) coeff= 1.0;
1130 else if (d - srcPixelSize/2 < 0.5) coeff= (0.5-d)/srcPixelSize + 0.5;
1131 else coeff=0.0;
1132 }
1133 else if (flags & SWS_GAUSS)
1134 {
1135 double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
1136 coeff = pow(2.0, - p*d*d);
1137 }
1138 else if (flags & SWS_SINC)
1139 {
1140 coeff = d ? sin(d*PI)/(d*PI) : 1.0;
1141 }
1142 else if (flags & SWS_LANCZOS)
1143 {
1144 double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
1145 coeff = d ? sin(d*PI)*sin(d*PI/p)/(d*d*PI*PI/p) : 1.0;
1146 if (d>p) coeff=0;
1147 }
1148 else if (flags & SWS_BILINEAR)
1149 {
1150 coeff= 1.0 - d;
1151 if (coeff<0) coeff=0;
1152 }
1153 else if (flags & SWS_SPLINE)
1154 {
1155 double p=-2.196152422706632;
1156 coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, d);
1157 }
1158 else {
1159 coeff= 0.0; //GCC warning killer
1160 ASSERT(0)
1161 }
1162
1163 filter[i*filterSize + j]= coeff;
1164 xx++;
1165 }
1166 xDstInSrc+= xInc1;
1167 }
1168 }
1169
1170 /* apply src & dst Filter to filter -> filter2
1171 av_free(filter);
1172 */
1173 ASSERT(filterSize>0)
1174 filter2Size= filterSize;
1175 if (srcFilter) filter2Size+= srcFilter->length - 1;
1176 if (dstFilter) filter2Size+= dstFilter->length - 1;
1177 ASSERT(filter2Size>0)
1178 filter2= av_malloc(filter2Size*dstW*sizeof(double));
1179
1180 for (i=0; i<dstW; i++)
1181 {
1182 int j;
1183 SwsVector scaleFilter;
1184 SwsVector *outVec;
1185
1186 scaleFilter.coeff= filter + i*filterSize;
1187 scaleFilter.length= filterSize;
1188
1189 if (srcFilter) outVec= sws_getConvVec(srcFilter, &scaleFilter);
1190 else outVec= &scaleFilter;
1191
1192 ASSERT(outVec->length == filter2Size)
1193 //FIXME dstFilter
1194
1195 for (j=0; j<outVec->length; j++)
1196 {
1197 filter2[i*filter2Size + j]= outVec->coeff[j];
1198 }
1199
1200 (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
1201
1202 if (outVec != &scaleFilter) sws_freeVec(outVec);
1203 }
1204 av_free(filter); filter=NULL;
1205
1206 /* try to reduce the filter-size (step1 find size and shift left) */
1207 // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
1208 minFilterSize= 0;
1209 for (i=dstW-1; i>=0; i--)
1210 {
1211 int min= filter2Size;
1212 int j;
1213 double cutOff=0.0;
1214
1215 /* get rid off near zero elements on the left by shifting left */
1216 for (j=0; j<filter2Size; j++)
1217 {
1218 int k;
1219 cutOff += FFABS(filter2[i*filter2Size]);
1220
1221 if (cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1222
1223 /* preserve monotonicity because the core can't handle the filter otherwise */
1224 if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
1225
1226 // Move filter coeffs left
1227 for (k=1; k<filter2Size; k++)
1228 filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
1229 filter2[i*filter2Size + k - 1]= 0.0;
1230 (*filterPos)[i]++;
1231 }
1232
1233 cutOff=0.0;
1234 /* count near zeros on the right */
1235 for (j=filter2Size-1; j>0; j--)
1236 {
1237 cutOff += FFABS(filter2[i*filter2Size + j]);
1238
1239 if (cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1240 min--;
1241 }
1242
1243 if (min>minFilterSize) minFilterSize= min;
1244 }
1245
1246 if (flags & SWS_CPU_CAPS_ALTIVEC) {
1247 // we can handle the special case 4,
1248 // so we don't want to go to the full 8
1249 if (minFilterSize < 5)
1250 filterAlign = 4;
1251
1252 // we really don't want to waste our time
1253 // doing useless computation, so fall-back on
1254 // the scalar C code for very small filter.
1255 // vectorizing is worth it only if you have
1256 // decent-sized vector.
1257 if (minFilterSize < 3)
1258 filterAlign = 1;
1259 }
1260
1261 if (flags & SWS_CPU_CAPS_MMX) {
1262 // special case for unscaled vertical filtering
1263 if (minFilterSize == 1 && filterAlign == 2)
1264 filterAlign= 1;
1265 }
1266
1267 ASSERT(minFilterSize > 0)
1268 filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
1269 ASSERT(filterSize > 0)
1270 filter= av_malloc(filterSize*dstW*sizeof(double));
1271 if (filterSize >= MAX_FILTER_SIZE)
1272 return -1;
1273 *outFilterSize= filterSize;
1274
1275 if (flags&SWS_PRINT_INFO)
1276 av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
1277 /* try to reduce the filter-size (step2 reduce it) */
1278 for (i=0; i<dstW; i++)
1279 {
1280 int j;
1281
1282 for (j=0; j<filterSize; j++)
1283 {
1284 if (j>=filter2Size) filter[i*filterSize + j]= 0.0;
1285 else filter[i*filterSize + j]= filter2[i*filter2Size + j];
1286 }
1287 }
1288 av_free(filter2); filter2=NULL;
1289
1290
1291 //FIXME try to align filterpos if possible
1292
1293 //fix borders
1294 for (i=0; i<dstW; i++)
1295 {
1296 int j;
1297 if ((*filterPos)[i] < 0)
1298 {
1299 // Move filter coeffs left to compensate for filterPos
1300 for (j=1; j<filterSize; j++)
1301 {
1302 int left= FFMAX(j + (*filterPos)[i], 0);
1303 filter[i*filterSize + left] += filter[i*filterSize + j];
1304 filter[i*filterSize + j]=0;
1305 }
1306 (*filterPos)[i]= 0;
1307 }
1308
1309 if ((*filterPos)[i] + filterSize > srcW)
1310 {
1311 int shift= (*filterPos)[i] + filterSize - srcW;
1312 // Move filter coeffs right to compensate for filterPos
1313 for (j=filterSize-2; j>=0; j--)
1314 {
1315 int right= FFMIN(j + shift, filterSize-1);
1316 filter[i*filterSize +right] += filter[i*filterSize +j];
1317 filter[i*filterSize +j]=0;
1318 }
1319 (*filterPos)[i]= srcW - filterSize;
1320 }
1321 }
1322
1323 // Note the +1 is for the MMXscaler which reads over the end
1324 /* align at 16 for AltiVec (needed by hScale_altivec_real) */
1325 *outFilter= av_mallocz(*outFilterSize*(dstW+1)*sizeof(int16_t));
1326
1327 /* Normalize & Store in outFilter */
1328 for (i=0; i<dstW; i++)
1329 {
1330 int j;
1331 double error=0;
1332 double sum=0;
1333 double scale= one;
1334
1335 for (j=0; j<filterSize; j++)
1336 {
1337 sum+= filter[i*filterSize + j];
1338 }
1339 scale/= sum;
1340 for (j=0; j<*outFilterSize; j++)
1341 {
1342 double v= filter[i*filterSize + j]*scale + error;
1343 int intV= floor(v + 0.5);
1344 (*outFilter)[i*(*outFilterSize) + j]= intV;
1345 error = v - intV;
1346 }
1347 }
1348
1349 (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
1350 for (i=0; i<*outFilterSize; i++)
1351 {
1352 int j= dstW*(*outFilterSize);
1353 (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
1354 }
1355
1356 av_free(filter);
1357 return 0;
1358 }
1359
1360 #ifdef COMPILE_MMX2
1361 static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
1362 {
1363 uint8_t *fragmentA;
1364 long imm8OfPShufW1A;
1365 long imm8OfPShufW2A;
1366 long fragmentLengthA;
1367 uint8_t *fragmentB;
1368 long imm8OfPShufW1B;
1369 long imm8OfPShufW2B;
1370 long fragmentLengthB;
1371 int fragmentPos;
1372
1373 int xpos, i;
1374
1375 // create an optimized horizontal scaling routine
1376
1377 //code fragment
1378
1379 asm volatile(
1380 "jmp 9f \n\t"
1381 // Begin
1382 "0: \n\t"
1383 "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
1384 "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
1385 "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
1386 "punpcklbw %%mm7, %%mm1 \n\t"
1387 "punpcklbw %%mm7, %%mm0 \n\t"
1388 "pshufw $0xFF, %%mm1, %%mm1 \n\t"
1389 "1: \n\t"
1390 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
1391 "2: \n\t"
1392 "psubw %%mm1, %%mm0 \n\t"
1393 "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
1394 "pmullw %%mm3, %%mm0 \n\t"
1395 "psllw $7, %%mm1 \n\t"
1396 "paddw %%mm1, %%mm0 \n\t"
1397
1398 "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
1399
1400 "add $8, %%"REG_a" \n\t"
1401 // End
1402 "9: \n\t"
1403 // "int $3 \n\t"
1404 "lea 0b, %0 \n\t"
1405 "lea 1b, %1 \n\t"
1406 "lea 2b, %2 \n\t"
1407 "dec %1 \n\t"
1408 "dec %2 \n\t"
1409 "sub %0, %1 \n\t"
1410 "sub %0, %2 \n\t"
1411 "lea 9b, %3 \n\t"
1412 "sub %0, %3 \n\t"
1413
1414
1415 :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
1416 "=r" (fragmentLengthA)
1417 );
1418
1419 asm volatile(
1420 "jmp 9f \n\t"
1421 // Begin
1422 "0: \n\t"
1423 "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
1424 "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
1425 "punpcklbw %%mm7, %%mm0 \n\t"
1426 "pshufw $0xFF, %%mm0, %%mm1 \n\t"
1427 "1: \n\t"
1428 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
1429 "2: \n\t"
1430 "psubw %%mm1, %%mm0 \n\t"
1431 "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
1432 "pmullw %%mm3, %%mm0 \n\t"
1433 "psllw $7, %%mm1 \n\t"
1434 "paddw %%mm1, %%mm0 \n\t"
1435
1436 "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
1437
1438 "add $8, %%"REG_a" \n\t"
1439 // End
1440 "9: \n\t"
1441 // "int $3 \n\t"
1442 "lea 0b, %0 \n\t"
1443 "lea 1b, %1 \n\t"
1444 "lea 2b, %2 \n\t"
1445 "dec %1 \n\t"
1446 "dec %2 \n\t"
1447 "sub %0, %1 \n\t"
1448 "sub %0, %2 \n\t"
1449 "lea 9b, %3 \n\t"
1450 "sub %0, %3 \n\t"
1451
1452
1453 :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
1454 "=r" (fragmentLengthB)
1455 );
1456
1457 xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
1458 fragmentPos=0;
1459
1460 for (i=0; i<dstW/numSplits; i++)
1461 {
1462 int xx=xpos>>16;
1463
1464 if ((i&3) == 0)
1465 {
1466 int a=0;
1467 int b=((xpos+xInc)>>16) - xx;
1468 int c=((xpos+xInc*2)>>16) - xx;
1469 int d=((xpos+xInc*3)>>16) - xx;
1470
1471 filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
1472 filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
1473 filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
1474 filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
1475 filterPos[i/2]= xx;
1476
1477 if (d+1<4)
1478 {
1479 int maxShift= 3-(d+1);
1480 int shift=0;
1481
1482 memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
1483
1484 funnyCode[fragmentPos + imm8OfPShufW1B]=
1485 (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
1486 funnyCode[fragmentPos + imm8OfPShufW2B]=
1487 a | (b<<2) | (c<<4) | (d<<6);
1488
1489 if (i+3>=dstW) shift=maxShift; //avoid overread
1490 else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
1491
1492 if (shift && i>=shift)
1493 {
1494 funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
1495 funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
1496 filterPos[i/2]-=shift;
1497 }
1498
1499 fragmentPos+= fragmentLengthB;
1500 }
1501 else
1502 {
1503 int maxShift= 3-d;
1504 int shift=0;
1505
1506 memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
1507
1508 funnyCode[fragmentPos + imm8OfPShufW1A]=
1509 funnyCode[fragmentPos + imm8OfPShufW2A]=
1510 a | (b<<2) | (c<<4) | (d<<6);
1511
1512 if (i+4>=dstW) shift=maxShift; //avoid overread
1513 else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
1514
1515 if (shift && i>=shift)
1516 {
1517 funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
1518 funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
1519 filterPos[i/2]-=shift;
1520 }
1521
1522 fragmentPos+= fragmentLengthA;
1523 }
1524
1525 funnyCode[fragmentPos]= RET;
1526 }
1527 xpos+=xInc;
1528 }
1529 filterPos[i/2]= xpos>>16; // needed to jump to the next part
1530 }
1531 #endif /* COMPILE_MMX2 */
1532
1533 static void globalInit(void){
1534 // generating tables:
1535 int i;
1536 for (i=0; i<768; i++){
1537 int c= av_clip_uint8(i-256);
1538 clip_table[i]=c;
1539 }
1540 }
1541
1542 static SwsFunc getSwsFunc(int flags){
1543
1544 #if defined(RUNTIME_CPUDETECT) && defined (CONFIG_GPL)
1545 #if defined(ARCH_X86)
1546 // ordered per speed fasterst first
1547 if (flags & SWS_CPU_CAPS_MMX2)
1548 return swScale_MMX2;
1549 else if (flags & SWS_CPU_CAPS_3DNOW)
1550 return swScale_3DNow;
1551 else if (flags & SWS_CPU_CAPS_MMX)
1552 return swScale_MMX;
1553 else
1554 return swScale_C;
1555
1556 #else
1557 #ifdef ARCH_POWERPC
1558 if (flags & SWS_CPU_CAPS_ALTIVEC)
1559 return swScale_altivec;
1560 else
1561 return swScale_C;
1562 #endif
1563 return swScale_C;
1564 #endif /* defined(ARCH_X86) */
1565 #else //RUNTIME_CPUDETECT
1566 #ifdef HAVE_MMX2
1567 return swScale_MMX2;
1568 #elif defined (HAVE_3DNOW)
1569 return swScale_3DNow;
1570 #elif defined (HAVE_MMX)
1571 return swScale_MMX;
1572 #elif defined (HAVE_ALTIVEC)
1573 return swScale_altivec;
1574 #else
1575 return swScale_C;
1576 #endif
1577 #endif //!RUNTIME_CPUDETECT
1578 }
1579
1580 static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1581 int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1582 uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1583 /* Copy Y plane */
1584 if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
1585 memcpy(dst, src[0], srcSliceH*dstStride[0]);
1586 else
1587 {
1588 int i;
1589 uint8_t *srcPtr= src[0];
1590 uint8_t *dstPtr= dst;
1591 for (i=0; i<srcSliceH; i++)
1592 {
1593 memcpy(dstPtr, srcPtr, c->srcW);
1594 srcPtr+= srcStride[0];
1595 dstPtr+= dstStride[0];
1596 }
1597 }
1598 dst = dstParam[1] + dstStride[1]*srcSliceY/2;
1599 if (c->dstFormat == PIX_FMT_NV12)
1600 interleaveBytes( src[1],src[2],dst,c->srcW/2,srcSliceH/2,srcStride[1],srcStride[2],dstStride[0] );
1601 else
1602 interleaveBytes( src[2],src[1],dst,c->srcW/2,srcSliceH/2,srcStride[2],srcStride[1],dstStride[0] );
1603
1604 return srcSliceH;
1605 }
1606
1607 static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1608 int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1609 uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1610
1611 yv12toyuy2( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1612
1613 return srcSliceH;
1614 }
1615
1616 static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1617 int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1618 uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1619
1620 yv12touyvy( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1621
1622 return srcSliceH;
1623 }
1624
1625 /* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
1626 static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1627 int srcSliceH, uint8_t* dst[], int dstStride[]){
1628 const int srcFormat= c->srcFormat;
1629 const int dstFormat= c->dstFormat;
1630 const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
1631 const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
1632 const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
1633 const int dstId= fmt_depth(dstFormat) >> 2;
1634 void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
1635
1636 /* BGR -> BGR */
1637 if ( (isBGR(srcFormat) && isBGR(dstFormat))
1638 || (isRGB(srcFormat) && isRGB(dstFormat))){
1639 switch(srcId | (dstId<<4)){
1640 case 0x34: conv= rgb16to15; break;
1641 case 0x36: conv= rgb24to15; break;
1642 case 0x38: conv= rgb32to15; break;
1643 case 0x43: conv= rgb15to16; break;
1644 case 0x46: conv= rgb24to16; break;
1645 case 0x48: conv= rgb32to16; break;
1646 case 0x63: conv= rgb15to24; break;
1647 case 0x64: conv= rgb16to24; break;
1648 case 0x68: conv= rgb32to24; break;
1649 case 0x83: conv= rgb15to32; break;
1650 case 0x84: conv= rgb16to32; break;
1651 case 0x86: conv= rgb24to32; break;
1652 default: av_log(c, AV_LOG_ERROR, "swScaler: internal error %s -> %s converter\n",
1653 sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
1654 }
1655 }else if ( (isBGR(srcFormat) && isRGB(dstFormat))
1656 || (isRGB(srcFormat) && isBGR(dstFormat))){
1657 switch(srcId | (dstId<<4)){
1658 case 0x33: conv= rgb15tobgr15; break;
1659 case 0x34: conv= rgb16tobgr15; break;
1660 case 0x36: conv= rgb24tobgr15; break;
1661 case 0x38: conv= rgb32tobgr15; break;
1662 case 0x43: conv= rgb15tobgr16; break;
1663 case 0x44: conv= rgb16tobgr16; break;
1664 case 0x46: conv= rgb24tobgr16; break;
1665 case 0x48: conv= rgb32tobgr16; break;
1666 case 0x63: conv= rgb15tobgr24; break;
1667 case 0x64: conv= rgb16tobgr24; break;
1668 case 0x66: conv= rgb24tobgr24; break;
1669 case 0x68: conv= rgb32tobgr24; break;
1670 case 0x83: conv= rgb15tobgr32; break;
1671 case 0x84: conv= rgb16tobgr32; break;
1672 case 0x86: conv= rgb24tobgr32; break;
1673 case 0x88: conv= rgb32tobgr32; break;
1674 default: av_log(c, AV_LOG_ERROR, "swScaler: internal error %s -> %s converter\n",
1675 sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
1676 }
1677 }else{
1678 av_log(c, AV_LOG_ERROR, "swScaler: internal error %s -> %s converter\n",
1679 sws_format_name(srcFormat), sws_format_name(dstFormat));
1680 }
1681
1682 if(conv)
1683 {
1684 if (dstStride[0]*srcBpp == srcStride[0]*dstBpp && srcStride[0] > 0)
1685 conv(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
1686 else
1687 {
1688 int i;
1689 uint8_t *srcPtr= src[0];
1690 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1691
1692 for (i=0; i<srcSliceH; i++)
1693 {
1694 conv(srcPtr, dstPtr, c->srcW*srcBpp);
1695 srcPtr+= srcStride[0];
1696 dstPtr+= dstStride[0];
1697 }
1698 }
1699 }
1700 return srcSliceH;
1701 }
1702
1703 static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1704 int srcSliceH, uint8_t* dst[], int dstStride[]){
1705
1706 rgb24toyv12(
1707 src[0],
1708 dst[0]+ srcSliceY *dstStride[0],
1709 dst[1]+(srcSliceY>>1)*dstStride[1],
1710 dst[2]+(srcSliceY>>1)*dstStride[2],
1711 c->srcW, srcSliceH,
1712 dstStride[0], dstStride[1], srcStride[0]);
1713 return srcSliceH;
1714 }
1715
1716 static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1717 int srcSliceH, uint8_t* dst[], int dstStride[]){
1718 int i;
1719
1720 /* copy Y */
1721 if (srcStride[0]==dstStride[0] && srcStride[0] > 0)
1722 memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
1723 else{
1724 uint8_t *srcPtr= src[0];
1725 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1726
1727 for (i=0; i<srcSliceH; i++)
1728 {
1729 memcpy(dstPtr, srcPtr, c->srcW);
1730 srcPtr+= srcStride[0];
1731 dstPtr+= dstStride[0];
1732 }
1733 }
1734
1735 if (c->dstFormat==PIX_FMT_YUV420P){
1736 planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
1737 planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
1738 }else{
1739 planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
1740 planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
1741 }
1742 return srcSliceH;
1743 }
1744
1745 /* unscaled copy like stuff (assumes nearly identical formats) */
1746 static int simpleCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1747 int srcSliceH, uint8_t* dst[], int dstStride[]){
1748
1749 if (isPacked(c->srcFormat))
1750 {
1751 if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
1752 memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
1753 else
1754 {
1755 int i;
1756 uint8_t *srcPtr= src[0];
1757 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1758 int length=0;
1759
1760 /* universal length finder */
1761 while(length+c->srcW <= FFABS(dstStride[0])
1762 && length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW;
1763 ASSERT(length!=0);
1764
1765 for (i=0; i<srcSliceH; i++)
1766 {
1767 memcpy(dstPtr, srcPtr, length);
1768 srcPtr+= srcStride[0];
1769 dstPtr+= dstStride[0];
1770 }
1771 }
1772 }
1773 else
1774 { /* Planar YUV or gray */
1775 int plane;
1776 for (plane=0; plane<3; plane++)
1777 {
1778 int length= plane==0 ? c->srcW : -((-c->srcW )>>c->chrDstHSubSample);
1779 int y= plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
1780 int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
1781
1782 if ((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
1783 {
1784 if (!isGray(c->dstFormat))
1785 memset(dst[plane], 128, dstStride[plane]*height);
1786 }
1787 else
1788 {
1789 if (dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
1790 memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
1791 else
1792 {
1793 int i;
1794 uint8_t *srcPtr= src[plane];
1795 uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
1796 for (i=0; i<height; i++)
1797 {
1798 memcpy(dstPtr, srcPtr, length);
1799 srcPtr+= srcStride[plane];
1800 dstPtr+= dstStride[plane];
1801 }
1802 }
1803 }
1804 }
1805 }
1806 return srcSliceH;
1807 }
1808
1809 static int gray16togray(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1810 int srcSliceH, uint8_t* dst[], int dstStride[]){
1811
1812 int length= c->srcW;
1813 int y= srcSliceY;
1814 int height= srcSliceH;
1815 int i, j;
1816 uint8_t *srcPtr= src[0];
1817 uint8_t *dstPtr= dst[0] + dstStride[0]*y;
1818
1819 if (!isGray(c->dstFormat)){
1820 int height= -((-srcSliceH)>>c->chrDstVSubSample);
1821 memset(dst[1], 128, dstStride[1]*height);
1822 memset(dst[2], 128, dstStride[2]*height);
1823 }
1824 if (c->srcFormat == PIX_FMT_GRAY16LE) srcPtr++;
1825 for (i=0; i<height; i++)
1826 {
1827 for (j=0; j<length; j++) dstPtr[j] = srcPtr[j<<1];
1828 srcPtr+= srcStride[0];
1829 dstPtr+= dstStride[0];
1830 }
1831 return srcSliceH;
1832 }
1833
1834 static int graytogray16(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1835 int srcSliceH, uint8_t* dst[], int dstStride[]){
1836
1837 int length= c->srcW;
1838 int y= srcSliceY;
1839 int height= srcSliceH;
1840 int i, j;
1841 uint8_t *srcPtr= src[0];
1842 uint8_t *dstPtr= dst[0] + dstStride[0]*y;
1843 for (i=0; i<height; i++)
1844 {
1845 for (j=0; j<length; j++)
1846 {
1847 dstPtr[j<<1] = srcPtr[j];
1848 dstPtr[(j<<1)+1] = srcPtr[j];
1849 }
1850 srcPtr+= srcStride[0];
1851 dstPtr+= dstStride[0];
1852 }
1853 return srcSliceH;
1854 }
1855
1856 static int gray16swap(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1857 int srcSliceH, uint8_t* dst[], int dstStride[]){
1858
1859 int length= c->srcW;
1860 int y= srcSliceY;
1861 int height= srcSliceH;
1862 int i, j;
1863 uint16_t *srcPtr= src[0];
1864 uint16_t *dstPtr= dst[0] + dstStride[0]*y/2;
1865 for (i=0; i<height; i++)
1866 {
1867 for (j=0; j<length; j++) dstPtr[j] = bswap_16(srcPtr[j]);
1868 srcPtr+= srcStride[0]/2;
1869 dstPtr+= dstStride[0]/2;
1870 }
1871 return srcSliceH;
1872 }
1873
1874
1875 static void getSubSampleFactors(int *h, int *v, int format){
1876 switch(format){
1877 case PIX_FMT_UYVY422:
1878 case PIX_FMT_YUYV422:
1879 *h=1;
1880 *v=0;
1881 break;
1882 case PIX_FMT_YUV420P:
1883 case PIX_FMT_YUVA420P:
1884 case PIX_FMT_GRAY16BE:
1885 case PIX_FMT_GRAY16LE:
1886 case PIX_FMT_GRAY8: //FIXME remove after different subsamplings are fully implemented
1887 case PIX_FMT_NV12:
1888 case PIX_FMT_NV21:
1889 *h=1;
1890 *v=1;
1891 break;
1892 case PIX_FMT_YUV440P:
1893 *h=0;
1894 *v=1;
1895 break;
1896 case PIX_FMT_YUV410P:
1897 *h=2;
1898 *v=2;
1899 break;
1900 case PIX_FMT_YUV444P:
1901 *h=0;
1902 *v=0;
1903 break;
1904 case PIX_FMT_YUV422P:
1905 *h=1;
1906 *v=0;
1907 break;
1908 case PIX_FMT_YUV411P:
1909 *h=2;
1910 *v=0;
1911 break;
1912 default:
1913 *h=0;
1914 *v=0;
1915 break;
1916 }
1917 }
1918
1919 static uint16_t roundToInt16(int64_t f){
1920 int r= (f + (1<<15))>>16;
1921 if (r<-0x7FFF) return 0x8000;
1922 else if (r> 0x7FFF) return 0x7FFF;
1923 else return r;
1924 }
1925
1926 /**
1927 * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
1928 * @param fullRange if 1 then the luma range is 0..255 if 0 it is 16..235
1929 * @return -1 if not supported
1930 */
1931 int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
1932 int64_t crv = inv_table[0];
1933 int64_t cbu = inv_table[1];
1934 int64_t cgu = -inv_table[2];
1935 int64_t cgv = -inv_table[3];
1936 int64_t cy = 1<<16;
1937 int64_t oy = 0;
1938
1939 if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1940 memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
1941 memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
1942
1943 c->brightness= brightness;
1944 c->contrast = contrast;
1945 c->saturation= saturation;
1946 c->srcRange = srcRange;
1947 c->dstRange = dstRange;
1948
1949 c->uOffset= 0x0400040004000400LL;
1950 c->vOffset= 0x0400040004000400LL;
1951
1952 if (!srcRange){
1953 cy= (cy*255) / 219;
1954 oy= 16<<16;
1955 }else{
1956 crv= (crv*224) / 255;
1957 cbu= (cbu*224) / 255;
1958 cgu= (cgu*224) / 255;
1959 cgv= (cgv*224) / 255;
1960 }
1961
1962 cy = (cy *contrast )>>16;
1963 crv= (crv*contrast * saturation)>>32;
1964 cbu= (cbu*contrast * saturation)>>32;
1965 cgu= (cgu*contrast * saturation)>>32;
1966 cgv= (cgv*contrast * saturation)>>32;
1967
1968 oy -= 256*brightness;
1969
1970 c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
1971 c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
1972 c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
1973 c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
1974 c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
1975 c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
1976
1977 yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
1978 //FIXME factorize
1979
1980 #ifdef COMPILE_ALTIVEC
1981 if (c->flags & SWS_CPU_CAPS_ALTIVEC)
1982 yuv2rgb_altivec_init_tables (c, inv_table, brightness, contrast, saturation);
1983 #endif
1984 return 0;
1985 }
1986
1987 /**
1988 * @return -1 if not supported
1989 */
1990 int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
1991 if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1992
1993 *inv_table = c->srcColorspaceTable;
1994 *table = c->dstColorspaceTable;
1995 *srcRange = c->srcRange;
1996 *dstRange = c->dstRange;
1997 *brightness= c->brightness;
1998 *contrast = c->contrast;
1999 *saturation= c->saturation;
2000
2001 return 0;
2002 }
2003
2004 static int handle_jpeg(int *format)
2005 {
2006 switch (*format) {
2007 case PIX_FMT_YUVJ420P:
2008 *format = PIX_FMT_YUV420P;
2009 return 1;
2010 case PIX_FMT_YUVJ422P:
2011 *format = PIX_FMT_YUV422P;
2012 return 1;
2013 case PIX_FMT_YUVJ444P:
2014 *format = PIX_FMT_YUV444P;
2015 return 1;
2016 case PIX_FMT_YUVJ440P:
2017 *format = PIX_FMT_YUV440P;
2018 return 1;
2019 default:
2020 return 0;
2021 }
2022 }
2023
2024 SwsContext *sws_getContext(int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat, int flags,
2025 SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){
2026
2027 SwsContext *c;
2028 int i;
2029 int usesVFilter, usesHFilter;
2030 int unscaled, needsDither;
2031 int srcRange, dstRange;
2032 SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
2033 #if defined(ARCH_X86)
2034 if (flags & SWS_CPU_CAPS_MMX)
2035 asm volatile("emms\n\t"::: "memory");
2036 #endif
2037
2038 #if !defined(RUNTIME_CPUDETECT) || !defined (CONFIG_GPL) //ensure that the flags match the compiled variant if cpudetect is off
2039 flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC|SWS_CPU_CAPS_BFIN);
2040 #ifdef HAVE_MMX2
2041 flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
2042 #elif defined (HAVE_3DNOW)
2043 flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
2044 #elif defined (HAVE_MMX)
2045 flags |= SWS_CPU_CAPS_MMX;
2046 #elif defined (HAVE_ALTIVEC)
2047 flags |= SWS_CPU_CAPS_ALTIVEC;
2048 #elif defined (ARCH_BFIN)
2049 flags |= SWS_CPU_CAPS_BFIN;
2050 #endif
2051 #endif /* RUNTIME_CPUDETECT */
2052 if (clip_table[512] != 255) globalInit();
2053 if (rgb15to16 == NULL) sws_rgb2rgb_init(flags);
2054
2055 unscaled = (srcW == dstW && srcH == dstH);
2056 needsDither= (isBGR(dstFormat) || isRGB(dstFormat))
2057 && (fmt_depth(dstFormat))<24
2058 && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
2059
2060 srcRange = handle_jpeg(&srcFormat);
2061 dstRange = handle_jpeg(&dstFormat);
2062
2063 if (!isSupportedIn(srcFormat))
2064 {
2065 av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input format\n", sws_format_name(srcFormat));
2066 return NULL;
2067 }
2068 if (!isSupportedOut(dstFormat))
2069 {
2070 av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output format\n", sws_format_name(dstFormat));
2071 return NULL;
2072 }
2073
2074 /* sanity check */
2075 if (srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
2076 {
2077 av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
2078 srcW, srcH, dstW, dstH);
2079 return NULL;
2080 }
2081
2082 if (!dstFilter) dstFilter= &dummyFilter;
2083 if (!srcFilter) srcFilter= &dummyFilter;
2084
2085 c= av_mallocz(sizeof(SwsContext));
2086
2087 c->av_class = &sws_context_class;
2088 c->srcW= srcW;
2089 c->srcH= srcH;
2090 c->dstW= dstW;
2091 c->dstH= dstH;
2092 c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
2093 c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
2094 c->flags= flags;
2095 c->dstFormat= dstFormat;
2096 c->srcFormat= srcFormat;
2097 c->vRounder= 4* 0x0001000100010001ULL;
2098
2099 usesHFilter= usesVFilter= 0;
2100 if (dstFilter->lumV!=NULL && dstFilter->lumV->length>1) usesVFilter=1;
2101 if (dstFilter->lumH!=NULL && dstFilter->lumH->length>1) usesHFilter=1;
2102 if (dstFilter->chrV!=NULL && dstFilter->chrV->length>1) usesVFilter=1;
2103 if (dstFilter->chrH!=NULL && dstFilter->chrH->length>1) usesHFilter=1;
2104 if (srcFilter->lumV!=NULL && srcFilter->lumV->length>1) usesVFilter=1;
2105 if (srcFilter->lumH!=NULL && srcFilter->lumH->length>1) usesHFilter=1;
2106 if (srcFilter->chrV!=NULL && srcFilter->chrV->length>1) usesVFilter=1;
2107 if (srcFilter->chrH!=NULL && srcFilter->chrH->length>1) usesHFilter=1;
2108
2109 getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
2110 getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
2111
2112 // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
2113 if ((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
2114
2115 // drop some chroma lines if the user wants it
2116 c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
2117 c->chrSrcVSubSample+= c->vChrDrop;
2118
2119 // drop every 2. pixel for chroma calculation unless user wants full chroma
2120 if ((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)
2121 && srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
2122 && srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
2123 && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE)
2124 c->chrSrcHSubSample=1;
2125
2126 if (param){
2127 c->param[0] = param[0];
2128 c->param[1] = param[1];
2129 }else{
2130 c->param[0] =
2131 c->param[1] = SWS_PARAM_DEFAULT;
2132 }
2133
2134 c->chrIntHSubSample= c->chrDstHSubSample;
2135 c->chrIntVSubSample= c->chrSrcVSubSample;
2136
2137 // Note the -((-x)>>y) is so that we always round toward +inf.
2138 c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
2139 c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
2140 c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
2141 c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
2142
2143 sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], srcRange, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
2144
2145 /* unscaled special Cases */
2146 if (unscaled && !usesHFilter && !usesVFilter)
2147 {
2148 /* yv12_to_nv12 */
2149 if (srcFormat == PIX_FMT_YUV420P && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21))
2150 {
2151 c->swScale= PlanarToNV12Wrapper;
2152 }
2153 #ifdef CONFIG_GPL
2154 /* yuv2bgr */
2155 if ((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P) && (isBGR(dstFormat) || isRGB(dstFormat)))
2156 {
2157 c->swScale= yuv2rgb_get_func_ptr(c);
2158 }
2159 #endif
2160
2161 if ( srcFormat==PIX_FMT_YUV410P && dstFormat==PIX_FMT_YUV420P )
2162 {
2163 c->swScale= yvu9toyv12Wrapper;
2164 }
2165
2166 /* bgr24toYV12 */
2167 if (srcFormat==PIX_FMT_BGR24 && dstFormat==PIX_FMT_YUV420P)
2168 c->swScale= bgr24toyv12Wrapper;
2169
2170 /* rgb/bgr -> rgb/bgr (no dither needed forms) */
2171 if ( (isBGR(srcFormat) || isRGB(srcFormat))
2172 && (isBGR(dstFormat) || isRGB(dstFormat))
2173 && srcFormat != PIX_FMT_BGR8 && dstFormat != PIX_FMT_BGR8
2174 && srcFormat != PIX_FMT_RGB8 && dstFormat != PIX_FMT_RGB8
2175 && srcFormat != PIX_FMT_BGR4 && dstFormat != PIX_FMT_BGR4
2176 && srcFormat != PIX_FMT_RGB4 && dstFormat != PIX_FMT_RGB4
2177 && srcFormat != PIX_FMT_BGR4_BYTE && dstFormat != PIX_FMT_BGR4_BYTE
2178 && srcFormat != PIX_FMT_RGB4_BYTE && dstFormat != PIX_FMT_RGB4_BYTE
2179 && srcFormat != PIX_FMT_MONOBLACK && dstFormat != PIX_FMT_MONOBLACK
2180 && !needsDither)
2181 c->swScale= rgb2rgbWrapper;
2182
2183 /* LQ converters if -sws 0 or -sws 4*/
2184 if (c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
2185 /* rgb/bgr -> rgb/bgr (dither needed forms) */
2186 if ( (isBGR(srcFormat) || isRGB(srcFormat))
2187 && (isBGR(dstFormat) || isRGB(dstFormat))
2188 && needsDither)
2189 c->swScale= rgb2rgbWrapper;
2190
2191 /* yv12_to_yuy2 */
2192 if (srcFormat == PIX_FMT_YUV420P &&
2193 (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422))
2194 {
2195 if (dstFormat == PIX_FMT_YUYV422)
2196 c->swScale= PlanarToYuy2Wrapper;
2197 else
2198 c->swScale= PlanarToUyvyWrapper;
2199 }
2200 }
2201
2202 #ifdef COMPILE_ALTIVEC
2203 if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
2204 ((srcFormat == PIX_FMT_YUV420P &&
2205 (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422)))) {
2206 // unscaled YV12 -> packed YUV, we want speed
2207 if (dstFormat == PIX_FMT_YUYV422)
2208 c->swScale= yv12toyuy2_unscaled_altivec;
2209 else
2210 c->swScale= yv12touyvy_unscaled_altivec;
2211 }
2212 #endif
2213
2214 /* simple copy */
2215 if ( srcFormat == dstFormat
2216 || (isPlanarYUV(srcFormat) && isGray(dstFormat))
2217 || (isPlanarYUV(dstFormat) && isGray(srcFormat)) )
2218 {
2219 c->swScale= simpleCopy;
2220 }
2221
2222 /* gray16{le,be} conversions */
2223 if (isGray16(srcFormat) && (isPlanarYUV(dstFormat) || (dstFormat == PIX_FMT_GRAY8)))
2224 {
2225 c->swScale= gray16togray;
2226 }
2227 if ((isPlanarYUV(srcFormat) || (srcFormat == PIX_FMT_GRAY8)) && isGray16(dstFormat))
2228 {
2229 c->swScale= graytogray16;
2230 }
2231 if (srcFormat != dstFormat && isGray16(srcFormat) && isGray16(dstFormat))
2232 {
2233 c->swScale= gray16swap;
2234 }
2235
2236 #ifdef ARCH_BFIN
2237 if (flags & SWS_CPU_CAPS_BFIN)
2238 ff_bfin_get_unscaled_swscale (c);
2239 #endif
2240
2241 if (c->swScale){
2242 if (flags&SWS_PRINT_INFO)
2243 av_log(c, AV_LOG_INFO, "SwScaler: using unscaled %s -> %s special converter\n",
2244 sws_format_name(srcFormat), sws_format_name(dstFormat));
2245 return c;
2246 }
2247 }
2248
2249 if (flags & SWS_CPU_CAPS_MMX2)
2250 {
2251 c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
2252 if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
2253 {
2254 if (flags&SWS_PRINT_INFO)
2255 av_log(c, AV_LOG_INFO, "SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
2256 }
2257 if (usesHFilter) c->canMMX2BeUsed=0;
2258 }
2259 else
2260 c->canMMX2BeUsed=0;
2261
2262 c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
2263 c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
2264
2265 // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
2266 // but only for the FAST_BILINEAR mode otherwise do correct scaling
2267 // n-2 is the last chrominance sample available
2268 // this is not perfect, but no one should notice the difference, the more correct variant
2269 // would be like the vertical one, but that would require some special code for the
2270 // first and last pixel
2271 if (flags&SWS_FAST_BILINEAR)
2272 {
2273 if (c->canMMX2BeUsed)
2274 {
2275 c->lumXInc+= 20;
2276 c->chrXInc+= 20;
2277 }
2278 //we don't use the x86asm scaler if mmx is available
2279 else if (flags & SWS_CPU_CAPS_MMX)
2280 {
2281 c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
2282 c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
2283 }
2284 }
2285
2286 /* precalculate horizontal scaler filter coefficients */
2287 {
2288 const int filterAlign=
2289 (flags & SWS_CPU_CAPS_MMX) ? 4 :
2290 (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2291 1;
2292
2293 initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
2294 srcW , dstW, filterAlign, 1<<14,
2295 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
2296 srcFilter->lumH, dstFilter->lumH, c->param);
2297 initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
2298 c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
2299 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2300 srcFilter->chrH, dstFilter->chrH, c->param);
2301
2302 #define MAX_FUNNY_CODE_SIZE 10000
2303 #if defined(COMPILE_MMX2)
2304 // can't downscale !!!
2305 if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
2306 {
2307 #ifdef MAP_ANONYMOUS
2308 c->funnyYCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2309 c->funnyUVCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2310 #else
2311 c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
2312 c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
2313 #endif
2314
2315 c->lumMmx2Filter = av_malloc((dstW /8+8)*sizeof(int16_t));
2316 c->chrMmx2Filter = av_malloc((c->chrDstW /4+8)*sizeof(int16_t));
2317 c->lumMmx2FilterPos= av_malloc((dstW /2/8+8)*sizeof(int32_t));
2318 c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));
2319
2320 initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
2321 initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
2322 }
2323 #endif /* defined(COMPILE_MMX2) */
2324 } // Init Horizontal stuff
2325
2326
2327
2328 /* precalculate vertical scaler filter coefficients */
2329 {
2330 const int filterAlign=
2331 (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
2332 (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2333 1;
2334
2335 initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
2336 srcH , dstH, filterAlign, (1<<12)-4,
2337 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
2338 srcFilter->lumV, dstFilter->lumV, c->param);
2339 initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
2340 c->chrSrcH, c->chrDstH, filterAlign, (1<<12)-4,
2341 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2342 srcFilter->chrV, dstFilter->chrV, c->param);
2343
2344 #ifdef HAVE_ALTIVEC
2345 c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
2346 c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
2347
2348 for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
2349 int j;
2350 short *p = (short *)&c->vYCoeffsBank[i];
2351 for (j=0;j<8;j++)
2352 p[j] = c->vLumFilter[i];
2353 }
2354
2355 for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
2356 int j;
2357 short *p = (short *)&c->vCCoeffsBank[i];
2358 for (j=0;j<8;j++)
2359 p[j] = c->vChrFilter[i];
2360 }
2361 #endif
2362 }
2363
2364 // Calculate Buffer Sizes so that they won't run out while handling these damn slices
2365 c->vLumBufSize= c->vLumFilterSize;
2366 c->vChrBufSize= c->vChrFilterSize;
2367 for (i=0; i<dstH; i++)
2368 {
2369 int chrI= i*c->chrDstH / dstH;
2370 int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
2371 ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
2372
2373 nextSlice>>= c->chrSrcVSubSample;
2374 nextSlice<<= c->chrSrcVSubSample;
2375 if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
2376 c->vLumBufSize= nextSlice - c->vLumFilterPos[i ];
2377 if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
2378 c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
2379 }
2380
2381 // allocate pixbufs (we use dynamic allocation because otherwise we would need to
2382 c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
2383 c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
2384 //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
2385 /* align at 16 bytes for AltiVec */
2386 for (i=0; i<c->vLumBufSize; i++)
2387 c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_mallocz(4000);
2388 for (i=0; i<c->vChrBufSize; i++)
2389 c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc(8000);
2390
2391 //try to avoid drawing green stuff between the right end and the stride end
2392 for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000);
2393
2394 ASSERT(c->chrDstH <= dstH)
2395
2396 if (flags&SWS_PRINT_INFO)
2397 {
2398 #ifdef DITHER1XBPP
2399 char *dither= " dithered";
2400 #else
2401 char *dither= "";
2402 #endif
2403 if (flags&SWS_FAST_BILINEAR)
2404 av_log(c, AV_LOG_INFO, "SwScaler: FAST_BILINEAR scaler, ");
2405 else if (flags&SWS_BILINEAR)
2406 av_log(c, AV_LOG_INFO, "SwScaler: BILINEAR scaler, ");
2407 else if (flags&SWS_BICUBIC)
2408 av_log(c, AV_LOG_INFO, "SwScaler: BICUBIC scaler, ");
2409 else if (flags&SWS_X)
2410 av_log(c, AV_LOG_INFO, "SwScaler: Experimental scaler, ");
2411 else if (flags&SWS_POINT)
2412 av_log(c, AV_LOG_INFO, "SwScaler: Nearest Neighbor / POINT scaler, ");
2413 else if (flags&SWS_AREA)
2414 av_log(c, AV_LOG_INFO, "SwScaler: Area Averageing scaler, ");
2415 else if (flags&SWS_BICUBLIN)
2416 av_log(c, AV_LOG_INFO, "SwScaler: luma BICUBIC / chroma BILINEAR scaler, ");
2417 else if (flags&SWS_GAUSS)
2418 av_log(c, AV_LOG_INFO, "SwScaler: Gaussian scaler, ");
2419 else if (flags&SWS_SINC)
2420 av_log(c, AV_LOG_INFO, "SwScaler: Sinc scaler, ");
2421 else if (flags&SWS_LANCZOS)
2422 av_log(c, AV_LOG_INFO, "SwScaler: Lanczos scaler, ");
2423 else if (flags&SWS_SPLINE)
2424 av_log(c, AV_LOG_INFO, "SwScaler: Bicubic spline scaler, ");
2425 else
2426 av_log(c, AV_LOG_INFO, "SwScaler: ehh flags invalid?! ");
2427
2428 if (dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565)
2429 av_log(c, AV_LOG_INFO, "from %s to%s %s ",
2430 sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
2431 else
2432 av_log(c, AV_LOG_INFO, "from %s to %s ",
2433 sws_format_name(srcFormat), sws_format_name(dstFormat));
2434
2435 if (flags & SWS_CPU_CAPS_MMX2)
2436 av_log(c, AV_LOG_INFO, "using MMX2\n");
2437 else if (flags & SWS_CPU_CAPS_3DNOW)
2438 av_log(c, AV_LOG_INFO, "using 3DNOW\n");
2439 else if (flags & SWS_CPU_CAPS_MMX)
2440 av_log(c, AV_LOG_INFO, "using MMX\n");
2441 else if (flags & SWS_CPU_CAPS_ALTIVEC)
2442 av_log(c, AV_LOG_INFO, "using AltiVec\n");
2443 else
2444 av_log(c, AV_LOG_INFO, "using C\n");
2445 }
2446
2447 if (flags & SWS_PRINT_INFO)
2448 {
2449 if (flags & SWS_CPU_CAPS_MMX)
2450 {
2451 if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
2452 av_log(c, AV_LOG_VERBOSE, "SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
2453 else
2454 {
2455 if (c->hLumFilterSize==4)
2456 av_log(c, AV_LOG_VERBOSE, "SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
2457 else if (c->hLumFilterSize==8)
2458 av_log(c, AV_LOG_VERBOSE, "SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
2459 else
2460 av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");
2461
2462 if (c->hChrFilterSize==4)
2463 av_log(c, AV_LOG_VERBOSE, "SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
2464 else if (c->hChrFilterSize==8)
2465 av_log(c, AV_LOG_VERBOSE, "SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
2466 else
2467 av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
2468 }
2469 }
2470 else
2471 {
2472 #if defined(ARCH_X86)
2473 av_log(c, AV_LOG_VERBOSE, "SwScaler: using X86-Asm scaler for horizontal scaling\n");
2474 #else
2475 if (flags & SWS_FAST_BILINEAR)
2476 av_log(c, AV_LOG_VERBOSE, "SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
2477 else
2478 av_log(c, AV_LOG_VERBOSE, "SwScaler: using C scaler for horizontal scaling\n");
2479 #endif
2480 }
2481 if (isPlanarYUV(dstFormat))
2482 {
2483 if (c->vLumFilterSize==1)
2484 av_log(c, AV_LOG_VERBOSE, "SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2485 else
2486 av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2487 }
2488 else
2489 {
2490 if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
2491 av_log(c, AV_LOG_VERBOSE, "SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
2492 "SwScaler: 2-tap scaler for vertical chrominance scaling (BGR)\n",(flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2493 else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
2494 av_log(c, AV_LOG_VERBOSE, "SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2495 else
2496 av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2497 }
2498
2499 if (dstFormat==PIX_FMT_BGR24)
2500 av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR24 Converter\n",
2501 (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
2502 else if (dstFormat==PIX_FMT_RGB32)
2503 av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2504 else if (dstFormat==PIX_FMT_BGR565)
2505 av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2506 else if (dstFormat==PIX_FMT_BGR555)
2507 av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2508
2509 av_log(c, AV_LOG_VERBOSE, "SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
2510 }
2511 if (flags & SWS_PRINT_INFO)
2512 {
2513 av_log(c, AV_LOG_DEBUG, "SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2514 c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
2515 av_log(c, AV_LOG_DEBUG, "SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2516 c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
2517 }
2518
2519 c->swScale= getSwsFunc(flags);
2520 return c;
2521 }
2522
2523 /**
2524 * swscale warper, so we don't need to export the SwsContext.
2525 * assumes planar YUV to be in YUV order instead of YVU
2526 */
2527 int sws_scale(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
2528 int srcSliceH, uint8_t* dst[], int dstStride[]){
2529 int i;
2530 uint8_t* src2[4]= {src[0], src[1], src[2]};
2531 uint32_t pal[256];
2532 if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
2533 av_log(c, AV_LOG_ERROR, "swScaler: slices start in the middle!\n");
2534 return 0;
2535 }
2536 if (c->sliceDir == 0) {
2537 if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
2538 }
2539
2540 if (c->srcFormat == PIX_FMT_PAL8){
2541 for (i=0; i<256; i++){
2542 int p= ((uint32_t*)(src[1]))[i];
2543 int r= (p>>16)&0xFF;
2544 int g= (p>> 8)&0xFF;
2545 int b= p &0xFF;
2546 int y= av_clip_uint8(((RY*r + GY*g + BY*b)>>RGB2YUV_SHIFT) + 16 );
2547 int u= av_clip_uint8(((RU*r + GU*g + BU*b)>>RGB2YUV_SHIFT) + 128);
2548 int v= av_clip_uint8(((RV*r + GV*g + BV*b)>>RGB2YUV_SHIFT) + 128);
2549 pal[i]= y + (u<<8) + (v<<16);
2550 }
2551 src2[1]= pal;
2552 }
2553
2554 // copy strides, so they can safely be modified
2555 if (c->sliceDir == 1) {
2556 // slices go from top to bottom
2557 int srcStride2[4]= {srcStride[0], srcStride[1], srcStride[2]};
2558 int dstStride2[4]= {dstStride[0], dstStride[1], dstStride[2]};
2559 return c->swScale(c, src2, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
2560 } else {
2561 // slices go from bottom to top => we flip the image internally
2562 uint8_t* dst2[4]= {dst[0] + (c->dstH-1)*dstStride[0],
2563 dst[1] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1],
2564 dst[2] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2]};
2565 int srcStride2[4]= {-srcStride[0], -srcStride[1], -srcStride[2]};
2566 int dstStride2[4]= {-dstStride[0], -dstStride[1], -dstStride[2]};
2567
2568 src2[0] += (srcSliceH-1)*srcStride[0];
2569 if (c->srcFormat != PIX_FMT_PAL8)
2570 src2[1] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1];
2571 src2[2] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2];
2572
2573 return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
2574 }
2575 }
2576
2577 /**
2578 * swscale warper, so we don't need to export the SwsContext
2579 */
2580 int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
2581 int srcSliceH, uint8_t* dst[], int dstStride[]){
2582 return sws_scale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
2583 }
2584
2585 SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
2586 float lumaSharpen, float chromaSharpen,
2587 float chromaHShift, float chromaVShift,
2588 int verbose)
2589 {
2590 SwsFilter *filter= av_malloc(sizeof(SwsFilter));
2591
2592 if (lumaGBlur!=0.0){
2593 filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
2594 filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
2595 }else{
2596 filter->lumH= sws_getIdentityVec();
2597 filter->lumV= sws_getIdentityVec();
2598 }
2599
2600 if (chromaGBlur!=0.0){
2601 filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
2602 filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
2603 }else{
2604 filter->chrH= sws_getIdentityVec();
2605 filter->chrV= sws_getIdentityVec();
2606 }
2607
2608 if (chromaSharpen!=0.0){
2609 SwsVector *id= sws_getIdentityVec();
2610 sws_scaleVec(filter->chrH, -chromaSharpen);
2611 sws_scaleVec(filter->chrV, -chromaSharpen);
2612 sws_addVec(filter->chrH, id);
2613 sws_addVec(filter->chrV, id);
2614 sws_freeVec(id);
2615 }
2616
2617 if (lumaSharpen!=0.0){
2618 SwsVector *id= sws_getIdentityVec();
2619 sws_scaleVec(filter->lumH, -lumaSharpen);
2620 sws_scaleVec(filter->lumV, -lumaSharpen);
2621 sws_addVec(filter->lumH, id);
2622 sws_addVec(filter->lumV, id);
2623 sws_freeVec(id);
2624 }
2625
2626 if (chromaHShift != 0.0)
2627 sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
2628
2629 if (chromaVShift != 0.0)
2630 sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
2631
2632 sws_normalizeVec(filter->chrH, 1.0);
2633 sws_normalizeVec(filter->chrV, 1.0);
2634 sws_normalizeVec(filter->lumH, 1.0);
2635 sws_normalizeVec(filter->lumV, 1.0);
2636
2637 if (verbose) sws_printVec(filter->chrH);
2638 if (verbose) sws_printVec(filter->lumH);
2639
2640 return filter;
2641 }
2642
2643 /**
2644 * returns a normalized gaussian curve used to filter stuff
2645 * quality=3 is high quality, lowwer is lowwer quality
2646 */
2647 SwsVector *sws_getGaussianVec(double variance, double quality){
2648 const int length= (int)(variance*quality + 0.5) | 1;
2649 int i;
2650 double *coeff= av_malloc(length*sizeof(double));
2651 double middle= (length-1)*0.5;
2652 SwsVector *vec= av_malloc(sizeof(SwsVector));
2653
2654 vec->coeff= coeff;
2655 vec->length= length;
2656
2657 for (i=0; i<length; i++)
2658 {
2659 double dist= i-middle;
2660 coeff[i]= exp( -dist*dist/(2*variance*variance) ) / sqrt(2*variance*PI);
2661 }
2662
2663 sws_normalizeVec(vec, 1.0);
2664
2665 return vec;
2666 }
2667
2668 SwsVector *sws_getConstVec(double c, int length){
2669 int i;
2670 double *coeff= av_malloc(length*sizeof(double));
2671 SwsVector *vec= av_malloc(sizeof(SwsVector));
2672
2673 vec->coeff= coeff;
2674 vec->length= length;
2675
2676 for (i=0; i<length; i++)
2677 coeff[i]= c;
2678
2679 return vec;
2680 }
2681
2682
2683 SwsVector *sws_getIdentityVec(void){
2684 return sws_getConstVec(1.0, 1);
2685 }
2686
2687 double sws_dcVec(SwsVector *a){
2688 int i;
2689 double sum=0;
2690
2691 for (i=0; i<a->length; i++)
2692 sum+= a->coeff[i];
2693
2694 return sum;
2695 }
2696
2697 void sws_scaleVec(SwsVector *a, double scalar){
2698 int i;
2699
2700 for (i=0; i<a->length; i++)
2701 a->coeff[i]*= scalar;
2702 }
2703
2704 void sws_normalizeVec(SwsVector *a, double height){
2705 sws_scaleVec(a, height/sws_dcVec(a));
2706 }
2707
2708 static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
2709 int length= a->length + b->length - 1;
2710 double *coeff= av_malloc(length*sizeof(double));
2711 int i, j;
2712 SwsVector *vec= av_malloc(sizeof(SwsVector));
2713
2714 vec->coeff= coeff;
2715 vec->length= length;
2716
2717 for (i=0; i<length; i++) coeff[i]= 0.0;
2718
2719 for (i=0; i<a->length; i++)
2720 {
2721 for (j=0; j<b->length; j++)
2722 {
2723 coeff[i+j]+= a->coeff[i]*b->coeff[j];
2724 }
2725 }
2726
2727 return vec;
2728 }
2729
2730 static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
2731 int length= FFMAX(a->length, b->length);
2732 double *coeff= av_malloc(length*sizeof(double));
2733 int i;
2734 SwsVector *vec= av_malloc(sizeof(SwsVector));
2735
2736 vec->coeff= coeff;
2737 vec->length= length;
2738
2739 for (i=0; i<length; i++) coeff[i]= 0.0;
2740
2741 for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2742 for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
2743
2744 return vec;
2745 }
2746
2747 static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
2748 int length= FFMAX(a->length, b->length);
2749 double *coeff= av_malloc(length*sizeof(double));
2750 int i;
2751 SwsVector *vec= av_malloc(sizeof(SwsVector));
2752
2753 vec->coeff= coeff;
2754 vec->length= length;
2755
2756 for (i=0; i<length; i++) coeff[i]= 0.0;
2757
2758 for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2759 for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
2760
2761 return vec;
2762 }
2763
2764 /* shift left / or right if "shift" is negative */
2765 static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
2766 int length= a->length + FFABS(shift)*2;
2767 double *coeff= av_malloc(length*sizeof(double));
2768 int i;
2769 SwsVector *vec= av_malloc(sizeof(SwsVector));
2770
2771 vec->coeff= coeff;
2772 vec->length= length;
2773
2774 for (i=0; i<length; i++) coeff[i]= 0.0;
2775
2776 for (i=0; i<a->length; i++)
2777 {
2778 coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
2779 }
2780
2781 return vec;
2782 }
2783
2784 void sws_shiftVec(SwsVector *a, int shift){
2785 SwsVector *shifted= sws_getShiftedVec(a, shift);
2786 av_free(a->coeff);
2787 a->coeff= shifted->coeff;
2788 a->length= shifted->length;
2789 av_free(shifted);
2790 }
2791
2792 void sws_addVec(SwsVector *a, SwsVector *b){
2793 SwsVector *sum= sws_sumVec(a, b);
2794 av_free(a->coeff);
2795 a->coeff= sum->coeff;
2796 a->length= sum->length;
2797 av_free(sum);
2798 }
2799
2800 void sws_subVec(SwsVector *a, SwsVector *b){
2801 SwsVector *diff= sws_diffVec(a, b);
2802 av_free(a->coeff);
2803 a->coeff= diff->coeff;
2804 a->length= diff->length;
2805 av_free(diff);
2806 }
2807
2808 void sws_convVec(SwsVector *a, SwsVector *b){
2809 SwsVector *conv= sws_getConvVec(a, b);
2810 av_free(a->coeff);
2811 a->coeff= conv->coeff;
2812 a->length= conv->length;
2813 av_free(conv);
2814 }
2815
2816 SwsVector *sws_cloneVec(SwsVector *a){
2817 double *coeff= av_malloc(a->length*sizeof(double));
2818 int i;
2819 SwsVector *vec= av_malloc(sizeof(SwsVector));
2820
2821 vec->coeff= coeff;
2822 vec->length= a->length;
2823
2824 for (i=0; i<a->length; i++) coeff[i]= a->coeff[i];
2825
2826 return vec;
2827 }
2828
2829 void sws_printVec(SwsVector *a){
2830 int i;
2831 double max=0;
2832 double min=0;
2833 double range;
2834
2835 for (i=0; i<a->length; i++)
2836 if (a->coeff[i]>max) max= a->coeff[i];
2837
2838 for (i=0; i<a->length; i++)
2839 if (a->coeff[i]<min) min= a->coeff[i];
2840
2841 range= max - min;
2842
2843 for (i=0; i<a->length; i++)
2844 {
2845 int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
2846 av_log(NULL, AV_LOG_DEBUG, "%1.3f ", a->coeff[i]);
2847 for (;x>0; x--) av_log(NULL, AV_LOG_DEBUG, " ");
2848 av_log(NULL, AV_LOG_DEBUG, "|\n");
2849 }
2850 }
2851
2852 void sws_freeVec(SwsVector *a){
2853 if (!a) return;
2854 av_free(a->coeff);
2855 a->coeff=NULL;
2856 a->length=0;
2857 av_free(a);
2858 }
2859
2860 void sws_freeFilter(SwsFilter *filter){
2861 if (!filter) return;
2862
2863 if (filter->lumH) sws_freeVec(filter->lumH);
2864 if (filter->lumV) sws_freeVec(filter->lumV);
2865 if (filter->chrH) sws_freeVec(filter->chrH);
2866 if (filter->chrV) sws_freeVec(filter->chrV);
2867 av_free(filter);
2868 }
2869
2870
2871 void sws_freeContext(SwsContext *c){
2872 int i;
2873 if (!c) return;
2874
2875 if (c->lumPixBuf)
2876 {
2877 for (i=0; i<c->vLumBufSize; i++)
2878 {
2879 av_free(c->lumPixBuf[i]);
2880 c->lumPixBuf[i]=NULL;
2881 }
2882 av_free(c->lumPixBuf);
2883 c->lumPixBuf=NULL;
2884 }
2885
2886 if (c->chrPixBuf)
2887 {
2888 for (i=0; i<c->vChrBufSize; i++)
2889 {
2890 av_free(c->chrPixBuf[i]);
2891 c->chrPixBuf[i]=NULL;
2892 }
2893 av_free(c->chrPixBuf);
2894 c->chrPixBuf=NULL;
2895 }
2896
2897 av_free(c->vLumFilter);
2898 c->vLumFilter = NULL;
2899 av_free(c->vChrFilter);
2900 c->vChrFilter = NULL;
2901 av_free(c->hLumFilter);
2902 c->hLumFilter = NULL;
2903 av_free(c->hChrFilter);
2904 c->hChrFilter = NULL;
2905 #ifdef HAVE_ALTIVEC
2906 av_free(c->vYCoeffsBank);
2907 c->vYCoeffsBank = NULL;
2908 av_free(c->vCCoeffsBank);
2909 c->vCCoeffsBank = NULL;
2910 #endif
2911
2912 av_free(c->vLumFilterPos);
2913 c->vLumFilterPos = NULL;
2914 av_free(c->vChrFilterPos);
2915 c->vChrFilterPos = NULL;
2916 av_free(c->hLumFilterPos);
2917 c->hLumFilterPos = NULL;
2918 av_free(c->hChrFilterPos);
2919 c->hChrFilterPos = NULL;
2920
2921 #if defined(ARCH_X86) && defined(CONFIG_GPL)
2922 #ifdef MAP_ANONYMOUS
2923 if (c->funnyYCode) munmap(c->funnyYCode, MAX_FUNNY_CODE_SIZE);
2924 if (c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
2925 #else
2926 av_free(c->funnyYCode);
2927 av_free(c->funnyUVCode);
2928 #endif
2929 c->funnyYCode=NULL;
2930 c->funnyUVCode=NULL;
2931 #endif /* defined(ARCH_X86) */
2932
2933 av_free(c->lumMmx2Filter);
2934 c->lumMmx2Filter=NULL;
2935 av_free(c->chrMmx2Filter);
2936 c->chrMmx2Filter=NULL;
2937 av_free(c->lumMmx2FilterPos);
2938 c->lumMmx2FilterPos=NULL;
2939 av_free(c->chrMmx2FilterPos);
2940 c->chrMmx2FilterPos=NULL;
2941 av_free(c->yuvTable);
2942 c->yuvTable=NULL;
2943
2944 av_free(c);
2945 }
2946
2947 /**
2948 * Checks if context is valid or reallocs a new one instead.
2949 * If context is NULL, just calls sws_getContext() to get a new one.
2950 * Otherwise, checks if the parameters are the same already saved in context.
2951 * If that is the case, returns the current context.
2952 * Otherwise, frees context and gets a new one.
2953 *
2954 * Be warned that srcFilter, dstFilter are not checked, they are
2955 * asumed to remain valid.
2956 */
2957 struct SwsContext *sws_getCachedContext(struct SwsContext *context,
2958 int srcW, int srcH, int srcFormat,
2959 int dstW, int dstH, int dstFormat, int flags,
2960 SwsFilter *srcFilter, SwsFilter *dstFilter, double *param)
2961 {
2962 if (context != NULL) {
2963 if ((context->srcW != srcW) || (context->srcH != srcH) ||
2964 (context->srcFormat != srcFormat) ||
2965 (context->dstW != dstW) || (context->dstH != dstH) ||
2966 (context->dstFormat != dstFormat) || (context->flags != flags) ||
2967 (context->param != param))
2968 {
2969 sws_freeContext(context);
2970 context = NULL;
2971 }
2972 }
2973 if (context == NULL) {
2974 return sws_getContext(srcW, srcH, srcFormat,
2975 dstW, dstH, dstFormat, flags,
2976 srcFilter, dstFilter, param);
2977 }
2978 return context;
2979 }
2980