1d26d125a15c0484852c4aec452b890822a5d2ed
[libav.git] / libswscale / swscale.c
1 /*
2 * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 * the C code (not assembly, mmx, ...) of this file can be used
21 * under the LGPL license too
22 */
23
24 /*
25 supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09, PAL8
26 supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
27 {BGR,RGB}{1,4,8,15,16} support dithering
28
29 unscaled special converters (YV12=I420=IYUV, Y800=Y8)
30 YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
31 x -> x
32 YUV9 -> YV12
33 YUV9/YV12 -> Y800
34 Y800 -> YUV9/YV12
35 BGR24 -> BGR32 & RGB24 -> RGB32
36 BGR32 -> BGR24 & RGB32 -> RGB24
37 BGR15 -> BGR16
38 */
39
40 /*
41 tested special converters (most are tested actually but i didnt write it down ...)
42 YV12 -> BGR16
43 YV12 -> YV12
44 BGR15 -> BGR16
45 BGR16 -> BGR16
46 YVU9 -> YV12
47
48 untested special converters
49 YV12/I420 -> BGR15/BGR24/BGR32 (its the yuv2rgb stuff, so it should be ok)
50 YV12/I420 -> YV12/I420
51 YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
52 BGR24 -> BGR32 & RGB24 -> RGB32
53 BGR32 -> BGR24 & RGB32 -> RGB24
54 BGR24 -> YV12
55 */
56
57 #include <inttypes.h>
58 #include <string.h>
59 #include <math.h>
60 #include <stdio.h>
61 #include <unistd.h>
62 #include "config.h"
63 #include <assert.h>
64 #ifdef HAVE_SYS_MMAN_H
65 #include <sys/mman.h>
66 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
67 #define MAP_ANONYMOUS MAP_ANON
68 #endif
69 #endif
70 #include "swscale.h"
71 #include "swscale_internal.h"
72 #include "x86_cpu.h"
73 #include "bswap.h"
74 #include "rgb2rgb.h"
75 #ifdef USE_FASTMEMCPY
76 #include "libvo/fastmemcpy.h"
77 #endif
78
79 #undef MOVNTQ
80 #undef PAVGB
81
82 //#undef HAVE_MMX2
83 //#define HAVE_3DNOW
84 //#undef HAVE_MMX
85 //#undef ARCH_X86
86 //#define WORDS_BIGENDIAN
87 #define DITHER1XBPP
88
89 #define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
90
91 #define RET 0xC3 //near return opcode for X86
92
93 #ifdef MP_DEBUG
94 #define ASSERT(x) assert(x);
95 #else
96 #define ASSERT(x) ;
97 #endif
98
99 #ifdef M_PI
100 #define PI M_PI
101 #else
102 #define PI 3.14159265358979323846
103 #endif
104
105 #define isSupportedIn(x) ((x)==PIX_FMT_YUV420P || (x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422 \
106 || (x)==PIX_FMT_RGB32 || (x)==PIX_FMT_BGR24 || (x)==PIX_FMT_BGR565 || (x)==PIX_FMT_BGR555 \
107 || (x)==PIX_FMT_BGR32 || (x)==PIX_FMT_RGB24 || (x)==PIX_FMT_RGB565 || (x)==PIX_FMT_RGB555 \
108 || (x)==PIX_FMT_GRAY8 || (x)==PIX_FMT_YUV410P \
109 || (x)==PIX_FMT_GRAY16BE || (x)==PIX_FMT_GRAY16LE \
110 || (x)==PIX_FMT_YUV444P || (x)==PIX_FMT_YUV422P || (x)==PIX_FMT_YUV411P \
111 || (x)==PIX_FMT_PAL8 || (x)==PIX_FMT_BGR8 || (x)==PIX_FMT_RGB8 \
112 || (x)==PIX_FMT_BGR4_BYTE || (x)==PIX_FMT_RGB4_BYTE)
113 #define isSupportedOut(x) ((x)==PIX_FMT_YUV420P || (x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422 \
114 || (x)==PIX_FMT_YUV444P || (x)==PIX_FMT_YUV422P || (x)==PIX_FMT_YUV411P \
115 || isRGB(x) || isBGR(x) \
116 || (x)==PIX_FMT_NV12 || (x)==PIX_FMT_NV21 \
117 || (x)==PIX_FMT_GRAY16BE || (x)==PIX_FMT_GRAY16LE \
118 || (x)==PIX_FMT_GRAY8 || (x)==PIX_FMT_YUV410P)
119 #define isPacked(x) ((x)==PIX_FMT_PAL8 || (x)==PIX_FMT_YUYV422 || \
120 (x)==PIX_FMT_UYVY422 || isRGB(x) || isBGR(x))
121
122 #define RGB2YUV_SHIFT 16
123 #define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
124 #define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
125 #define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
126 #define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
127 #define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
128 #define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
129 #define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
130 #define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
131 #define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))
132
133 extern const int32_t Inverse_Table_6_9[8][4];
134
135 /*
136 NOTES
137 Special versions: fast Y 1:1 scaling (no interpolation in y direction)
138
139 TODO
140 more intelligent missalignment avoidance for the horizontal scaler
141 write special vertical cubic upscale version
142 Optimize C code (yv12 / minmax)
143 add support for packed pixel yuv input & output
144 add support for Y8 output
145 optimize bgr24 & bgr32
146 add BGR4 output support
147 write special BGR->BGR scaler
148 */
149
150 #if defined(ARCH_X86) && defined (CONFIG_GPL)
151 static uint64_t attribute_used __attribute__((aligned(8))) bF8= 0xF8F8F8F8F8F8F8F8LL;
152 static uint64_t attribute_used __attribute__((aligned(8))) bFC= 0xFCFCFCFCFCFCFCFCLL;
153 static uint64_t __attribute__((aligned(8))) w10= 0x0010001000100010LL;
154 static uint64_t attribute_used __attribute__((aligned(8))) w02= 0x0002000200020002LL;
155 static uint64_t attribute_used __attribute__((aligned(8))) bm00001111=0x00000000FFFFFFFFLL;
156 static uint64_t attribute_used __attribute__((aligned(8))) bm00000111=0x0000000000FFFFFFLL;
157 static uint64_t attribute_used __attribute__((aligned(8))) bm11111000=0xFFFFFFFFFF000000LL;
158 static uint64_t attribute_used __attribute__((aligned(8))) bm01010101=0x00FF00FF00FF00FFLL;
159
160 static volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither;
161 static volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither;
162 static volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither;
163 static volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither;
164
165 static uint64_t __attribute__((aligned(8))) dither4[2]={
166 0x0103010301030103LL,
167 0x0200020002000200LL,};
168
169 static uint64_t __attribute__((aligned(8))) dither8[2]={
170 0x0602060206020602LL,
171 0x0004000400040004LL,};
172
173 static uint64_t __attribute__((aligned(8))) b16Mask= 0x001F001F001F001FLL;
174 static uint64_t attribute_used __attribute__((aligned(8))) g16Mask= 0x07E007E007E007E0LL;
175 static uint64_t attribute_used __attribute__((aligned(8))) r16Mask= 0xF800F800F800F800LL;
176 static uint64_t __attribute__((aligned(8))) b15Mask= 0x001F001F001F001FLL;
177 static uint64_t attribute_used __attribute__((aligned(8))) g15Mask= 0x03E003E003E003E0LL;
178 static uint64_t attribute_used __attribute__((aligned(8))) r15Mask= 0x7C007C007C007C00LL;
179
180 static uint64_t attribute_used __attribute__((aligned(8))) M24A= 0x00FF0000FF0000FFLL;
181 static uint64_t attribute_used __attribute__((aligned(8))) M24B= 0xFF0000FF0000FF00LL;
182 static uint64_t attribute_used __attribute__((aligned(8))) M24C= 0x0000FF0000FF0000LL;
183
184 #ifdef FAST_BGR2YV12
185 static const uint64_t bgr2YCoeff attribute_used __attribute__((aligned(8))) = 0x000000210041000DULL;
186 static const uint64_t bgr2UCoeff attribute_used __attribute__((aligned(8))) = 0x0000FFEEFFDC0038ULL;
187 static const uint64_t bgr2VCoeff attribute_used __attribute__((aligned(8))) = 0x00000038FFD2FFF8ULL;
188 #else
189 static const uint64_t bgr2YCoeff attribute_used __attribute__((aligned(8))) = 0x000020E540830C8BULL;
190 static const uint64_t bgr2UCoeff attribute_used __attribute__((aligned(8))) = 0x0000ED0FDAC23831ULL;
191 static const uint64_t bgr2VCoeff attribute_used __attribute__((aligned(8))) = 0x00003831D0E6F6EAULL;
192 #endif /* FAST_BGR2YV12 */
193 static const uint64_t bgr2YOffset attribute_used __attribute__((aligned(8))) = 0x1010101010101010ULL;
194 static const uint64_t bgr2UVOffset attribute_used __attribute__((aligned(8))) = 0x8080808080808080ULL;
195 static const uint64_t w1111 attribute_used __attribute__((aligned(8))) = 0x0001000100010001ULL;
196 #endif /* defined(ARCH_X86) */
197
198 // clipping helper table for C implementations:
199 static unsigned char clip_table[768];
200
201 static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
202
203 extern const uint8_t dither_2x2_4[2][8];
204 extern const uint8_t dither_2x2_8[2][8];
205 extern const uint8_t dither_8x8_32[8][8];
206 extern const uint8_t dither_8x8_73[8][8];
207 extern const uint8_t dither_8x8_220[8][8];
208
209 static const char * sws_context_to_name(void * ptr) {
210 return "swscaler";
211 }
212
213 static AVClass sws_context_class = { "SWScaler", sws_context_to_name, NULL };
214
215 char *sws_format_name(enum PixelFormat format)
216 {
217 switch (format) {
218 case PIX_FMT_YUV420P:
219 return "yuv420p";
220 case PIX_FMT_YUYV422:
221 return "yuyv422";
222 case PIX_FMT_RGB24:
223 return "rgb24";
224 case PIX_FMT_BGR24:
225 return "bgr24";
226 case PIX_FMT_YUV422P:
227 return "yuv422p";
228 case PIX_FMT_YUV444P:
229 return "yuv444p";
230 case PIX_FMT_RGB32:
231 return "rgb32";
232 case PIX_FMT_YUV410P:
233 return "yuv410p";
234 case PIX_FMT_YUV411P:
235 return "yuv411p";
236 case PIX_FMT_RGB565:
237 return "rgb565";
238 case PIX_FMT_RGB555:
239 return "rgb555";
240 case PIX_FMT_GRAY16BE:
241 return "gray16be";
242 case PIX_FMT_GRAY16LE:
243 return "gray16le";
244 case PIX_FMT_GRAY8:
245 return "gray8";
246 case PIX_FMT_MONOWHITE:
247 return "mono white";
248 case PIX_FMT_MONOBLACK:
249 return "mono black";
250 case PIX_FMT_PAL8:
251 return "Palette";
252 case PIX_FMT_YUVJ420P:
253 return "yuvj420p";
254 case PIX_FMT_YUVJ422P:
255 return "yuvj422p";
256 case PIX_FMT_YUVJ444P:
257 return "yuvj444p";
258 case PIX_FMT_XVMC_MPEG2_MC:
259 return "xvmc_mpeg2_mc";
260 case PIX_FMT_XVMC_MPEG2_IDCT:
261 return "xvmc_mpeg2_idct";
262 case PIX_FMT_UYVY422:
263 return "uyvy422";
264 case PIX_FMT_UYYVYY411:
265 return "uyyvyy411";
266 case PIX_FMT_RGB32_1:
267 return "rgb32x";
268 case PIX_FMT_BGR32_1:
269 return "bgr32x";
270 case PIX_FMT_BGR32:
271 return "bgr32";
272 case PIX_FMT_BGR565:
273 return "bgr565";
274 case PIX_FMT_BGR555:
275 return "bgr555";
276 case PIX_FMT_BGR8:
277 return "bgr8";
278 case PIX_FMT_BGR4:
279 return "bgr4";
280 case PIX_FMT_BGR4_BYTE:
281 return "bgr4 byte";
282 case PIX_FMT_RGB8:
283 return "rgb8";
284 case PIX_FMT_RGB4:
285 return "rgb4";
286 case PIX_FMT_RGB4_BYTE:
287 return "rgb4 byte";
288 case PIX_FMT_NV12:
289 return "nv12";
290 case PIX_FMT_NV21:
291 return "nv21";
292 default:
293 return "Unknown format";
294 }
295 }
296
297 #if defined(ARCH_X86) && defined (CONFIG_GPL)
298 void in_asm_used_var_warning_killer()
299 {
300 volatile int i= bF8+bFC+w10+
301 bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+
302 M24A+M24B+M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0]+bm01010101;
303 if (i) i=0;
304 }
305 #endif
306
307 static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
308 int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
309 uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
310 {
311 //FIXME Optimize (just quickly writen not opti..)
312 int i;
313 for (i=0; i<dstW; i++)
314 {
315 int val=1<<18;
316 int j;
317 for (j=0; j<lumFilterSize; j++)
318 val += lumSrc[j][i] * lumFilter[j];
319
320 dest[i]= av_clip_uint8(val>>19);
321 }
322
323 if (uDest != NULL)
324 for (i=0; i<chrDstW; i++)
325 {
326 int u=1<<18;
327 int v=1<<18;
328 int j;
329 for (j=0; j<chrFilterSize; j++)
330 {
331 u += chrSrc[j][i] * chrFilter[j];
332 v += chrSrc[j][i + 2048] * chrFilter[j];
333 }
334
335 uDest[i]= av_clip_uint8(u>>19);
336 vDest[i]= av_clip_uint8(v>>19);
337 }
338 }
339
340 static inline void yuv2nv12XinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
341 int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
342 uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
343 {
344 //FIXME Optimize (just quickly writen not opti..)
345 int i;
346 for (i=0; i<dstW; i++)
347 {
348 int val=1<<18;
349 int j;
350 for (j=0; j<lumFilterSize; j++)
351 val += lumSrc[j][i] * lumFilter[j];
352
353 dest[i]= av_clip_uint8(val>>19);
354 }
355
356 if (uDest == NULL)
357 return;
358
359 if (dstFormat == PIX_FMT_NV12)
360 for (i=0; i<chrDstW; i++)
361 {
362 int u=1<<18;
363 int v=1<<18;
364 int j;
365 for (j=0; j<chrFilterSize; j++)
366 {
367 u += chrSrc[j][i] * chrFilter[j];
368 v += chrSrc[j][i + 2048] * chrFilter[j];
369 }
370
371 uDest[2*i]= av_clip_uint8(u>>19);
372 uDest[2*i+1]= av_clip_uint8(v>>19);
373 }
374 else
375 for (i=0; i<chrDstW; i++)
376 {
377 int u=1<<18;
378 int v=1<<18;
379 int j;
380 for (j=0; j<chrFilterSize; j++)
381 {
382 u += chrSrc[j][i] * chrFilter[j];
383 v += chrSrc[j][i + 2048] * chrFilter[j];
384 }
385
386 uDest[2*i]= av_clip_uint8(v>>19);
387 uDest[2*i+1]= av_clip_uint8(u>>19);
388 }
389 }
390
391 #define YSCALE_YUV_2_PACKEDX_C(type) \
392 for (i=0; i<(dstW>>1); i++){\
393 int j;\
394 int Y1 = 1<<18;\
395 int Y2 = 1<<18;\
396 int U = 1<<18;\
397 int V = 1<<18;\
398 type attribute_unused *r, *b, *g;\
399 const int i2= 2*i;\
400 \
401 for (j=0; j<lumFilterSize; j++)\
402 {\
403 Y1 += lumSrc[j][i2] * lumFilter[j];\
404 Y2 += lumSrc[j][i2+1] * lumFilter[j];\
405 }\
406 for (j=0; j<chrFilterSize; j++)\
407 {\
408 U += chrSrc[j][i] * chrFilter[j];\
409 V += chrSrc[j][i+2048] * chrFilter[j];\
410 }\
411 Y1>>=19;\
412 Y2>>=19;\
413 U >>=19;\
414 V >>=19;\
415 if ((Y1|Y2|U|V)&256)\
416 {\
417 if (Y1>255) Y1=255; \
418 else if (Y1<0)Y1=0; \
419 if (Y2>255) Y2=255; \
420 else if (Y2<0)Y2=0; \
421 if (U>255) U=255; \
422 else if (U<0) U=0; \
423 if (V>255) V=255; \
424 else if (V<0) V=0; \
425 }
426
427 #define YSCALE_YUV_2_RGBX_C(type) \
428 YSCALE_YUV_2_PACKEDX_C(type) \
429 r = (type *)c->table_rV[V]; \
430 g = (type *)(c->table_gU[U] + c->table_gV[V]); \
431 b = (type *)c->table_bU[U]; \
432
433 #define YSCALE_YUV_2_PACKED2_C \
434 for (i=0; i<(dstW>>1); i++){ \
435 const int i2= 2*i; \
436 int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19; \
437 int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19; \
438 int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19; \
439 int V= (uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19; \
440
441 #define YSCALE_YUV_2_RGB2_C(type) \
442 YSCALE_YUV_2_PACKED2_C\
443 type *r, *b, *g;\
444 r = (type *)c->table_rV[V];\
445 g = (type *)(c->table_gU[U] + c->table_gV[V]);\
446 b = (type *)c->table_bU[U];\
447
448 #define YSCALE_YUV_2_PACKED1_C \
449 for (i=0; i<(dstW>>1); i++){\
450 const int i2= 2*i;\
451 int Y1= buf0[i2 ]>>7;\
452 int Y2= buf0[i2+1]>>7;\
453 int U= (uvbuf1[i ])>>7;\
454 int V= (uvbuf1[i+2048])>>7;\
455
456 #define YSCALE_YUV_2_RGB1_C(type) \
457 YSCALE_YUV_2_PACKED1_C\
458 type *r, *b, *g;\
459 r = (type *)c->table_rV[V];\
460 g = (type *)(c->table_gU[U] + c->table_gV[V]);\
461 b = (type *)c->table_bU[U];\
462
463 #define YSCALE_YUV_2_PACKED1B_C \
464 for (i=0; i<(dstW>>1); i++){\
465 const int i2= 2*i;\
466 int Y1= buf0[i2 ]>>7;\
467 int Y2= buf0[i2+1]>>7;\
468 int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\
469 int V= (uvbuf0[i+2048] + uvbuf1[i+2048])>>8;\
470
471 #define YSCALE_YUV_2_RGB1B_C(type) \
472 YSCALE_YUV_2_PACKED1B_C\
473 type *r, *b, *g;\
474 r = (type *)c->table_rV[V];\
475 g = (type *)(c->table_gU[U] + c->table_gV[V]);\
476 b = (type *)c->table_bU[U];\
477
478 #define YSCALE_YUV_2_ANYRGB_C(func, func2)\
479 switch(c->dstFormat)\
480 {\
481 case PIX_FMT_RGB32:\
482 case PIX_FMT_BGR32:\
483 func(uint32_t)\
484 ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
485 ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
486 } \
487 break;\
488 case PIX_FMT_RGB24:\
489 func(uint8_t)\
490 ((uint8_t*)dest)[0]= r[Y1];\
491 ((uint8_t*)dest)[1]= g[Y1];\
492 ((uint8_t*)dest)[2]= b[Y1];\
493 ((uint8_t*)dest)[3]= r[Y2];\
494 ((uint8_t*)dest)[4]= g[Y2];\
495 ((uint8_t*)dest)[5]= b[Y2];\
496 dest+=6;\
497 }\
498 break;\
499 case PIX_FMT_BGR24:\
500 func(uint8_t)\
501 ((uint8_t*)dest)[0]= b[Y1];\
502 ((uint8_t*)dest)[1]= g[Y1];\
503 ((uint8_t*)dest)[2]= r[Y1];\
504 ((uint8_t*)dest)[3]= b[Y2];\
505 ((uint8_t*)dest)[4]= g[Y2];\
506 ((uint8_t*)dest)[5]= r[Y2];\
507 dest+=6;\
508 }\
509 break;\
510 case PIX_FMT_RGB565:\
511 case PIX_FMT_BGR565:\
512 {\
513 const int dr1= dither_2x2_8[y&1 ][0];\
514 const int dg1= dither_2x2_4[y&1 ][0];\
515 const int db1= dither_2x2_8[(y&1)^1][0];\
516 const int dr2= dither_2x2_8[y&1 ][1];\
517 const int dg2= dither_2x2_4[y&1 ][1];\
518 const int db2= dither_2x2_8[(y&1)^1][1];\
519 func(uint16_t)\
520 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
521 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
522 }\
523 }\
524 break;\
525 case PIX_FMT_RGB555:\
526 case PIX_FMT_BGR555:\
527 {\
528 const int dr1= dither_2x2_8[y&1 ][0];\
529 const int dg1= dither_2x2_8[y&1 ][1];\
530 const int db1= dither_2x2_8[(y&1)^1][0];\
531 const int dr2= dither_2x2_8[y&1 ][1];\
532 const int dg2= dither_2x2_8[y&1 ][0];\
533 const int db2= dither_2x2_8[(y&1)^1][1];\
534 func(uint16_t)\
535 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
536 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
537 }\
538 }\
539 break;\
540 case PIX_FMT_RGB8:\
541 case PIX_FMT_BGR8:\
542 {\
543 const uint8_t * const d64= dither_8x8_73[y&7];\
544 const uint8_t * const d32= dither_8x8_32[y&7];\
545 func(uint8_t)\
546 ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
547 ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
548 }\
549 }\
550 break;\
551 case PIX_FMT_RGB4:\
552 case PIX_FMT_BGR4:\
553 {\
554 const uint8_t * const d64= dither_8x8_73 [y&7];\
555 const uint8_t * const d128=dither_8x8_220[y&7];\
556 func(uint8_t)\
557 ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
558 + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
559 }\
560 }\
561 break;\
562 case PIX_FMT_RGB4_BYTE:\
563 case PIX_FMT_BGR4_BYTE:\
564 {\
565 const uint8_t * const d64= dither_8x8_73 [y&7];\
566 const uint8_t * const d128=dither_8x8_220[y&7];\
567 func(uint8_t)\
568 ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
569 ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
570 }\
571 }\
572 break;\
573 case PIX_FMT_MONOBLACK:\
574 {\
575 const uint8_t * const d128=dither_8x8_220[y&7];\
576 uint8_t *g= c->table_gU[128] + c->table_gV[128];\
577 for (i=0; i<dstW-7; i+=8){\
578 int acc;\
579 acc = g[((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19) + d128[0]];\
580 acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
581 acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
582 acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
583 acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
584 acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
585 acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
586 acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
587 ((uint8_t*)dest)[0]= acc;\
588 dest++;\
589 }\
590 \
591 /*\
592 ((uint8_t*)dest)-= dstW>>4;\
593 {\
594 int acc=0;\
595 int left=0;\
596 static int top[1024];\
597 static int last_new[1024][1024];\
598 static int last_in3[1024][1024];\
599 static int drift[1024][1024];\
600 int topLeft=0;\
601 int shift=0;\
602 int count=0;\
603 const uint8_t * const d128=dither_8x8_220[y&7];\
604 int error_new=0;\
605 int error_in3=0;\
606 int f=0;\
607 \
608 for (i=dstW>>1; i<dstW; i++){\
609 int in= ((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19);\
610 int in2 = (76309 * (in - 16) + 32768) >> 16;\
611 int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
612 int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
613 + (last_new[y][i] - in3)*f/256;\
614 int new= old> 128 ? 255 : 0;\
615 \
616 error_new+= FFABS(last_new[y][i] - new);\
617 error_in3+= FFABS(last_in3[y][i] - in3);\
618 f= error_new - error_in3*4;\
619 if (f<0) f=0;\
620 if (f>256) f=256;\
621 \
622 topLeft= top[i];\
623 left= top[i]= old - new;\
624 last_new[y][i]= new;\
625 last_in3[y][i]= in3;\
626 \
627 acc+= acc + (new&1);\
628 if ((i&7)==6){\
629 ((uint8_t*)dest)[0]= acc;\
630 ((uint8_t*)dest)++;\
631 }\
632 }\
633 }\
634 */\
635 }\
636 break;\
637 case PIX_FMT_YUYV422:\
638 func2\
639 ((uint8_t*)dest)[2*i2+0]= Y1;\
640 ((uint8_t*)dest)[2*i2+1]= U;\
641 ((uint8_t*)dest)[2*i2+2]= Y2;\
642 ((uint8_t*)dest)[2*i2+3]= V;\
643 } \
644 break;\
645 case PIX_FMT_UYVY422:\
646 func2\
647 ((uint8_t*)dest)[2*i2+0]= U;\
648 ((uint8_t*)dest)[2*i2+1]= Y1;\
649 ((uint8_t*)dest)[2*i2+2]= V;\
650 ((uint8_t*)dest)[2*i2+3]= Y2;\
651 } \
652 break;\
653 }\
654
655
656 static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
657 int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
658 uint8_t *dest, int dstW, int y)
659 {
660 int i;
661 switch(c->dstFormat)
662 {
663 case PIX_FMT_BGR32:
664 case PIX_FMT_RGB32:
665 YSCALE_YUV_2_RGBX_C(uint32_t)
666 ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];
667 ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];
668 }
669 break;
670 case PIX_FMT_RGB24:
671 YSCALE_YUV_2_RGBX_C(uint8_t)
672 ((uint8_t*)dest)[0]= r[Y1];
673 ((uint8_t*)dest)[1]= g[Y1];
674 ((uint8_t*)dest)[2]= b[Y1];
675 ((uint8_t*)dest)[3]= r[Y2];
676 ((uint8_t*)dest)[4]= g[Y2];
677 ((uint8_t*)dest)[5]= b[Y2];
678 dest+=6;
679 }
680 break;
681 case PIX_FMT_BGR24:
682 YSCALE_YUV_2_RGBX_C(uint8_t)
683 ((uint8_t*)dest)[0]= b[Y1];
684 ((uint8_t*)dest)[1]= g[Y1];
685 ((uint8_t*)dest)[2]= r[Y1];
686 ((uint8_t*)dest)[3]= b[Y2];
687 ((uint8_t*)dest)[4]= g[Y2];
688 ((uint8_t*)dest)[5]= r[Y2];
689 dest+=6;
690 }
691 break;
692 case PIX_FMT_RGB565:
693 case PIX_FMT_BGR565:
694 {
695 const int dr1= dither_2x2_8[y&1 ][0];
696 const int dg1= dither_2x2_4[y&1 ][0];
697 const int db1= dither_2x2_8[(y&1)^1][0];
698 const int dr2= dither_2x2_8[y&1 ][1];
699 const int dg2= dither_2x2_4[y&1 ][1];
700 const int db2= dither_2x2_8[(y&1)^1][1];
701 YSCALE_YUV_2_RGBX_C(uint16_t)
702 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
703 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
704 }
705 }
706 break;
707 case PIX_FMT_RGB555:
708 case PIX_FMT_BGR555:
709 {
710 const int dr1= dither_2x2_8[y&1 ][0];
711 const int dg1= dither_2x2_8[y&1 ][1];
712 const int db1= dither_2x2_8[(y&1)^1][0];
713 const int dr2= dither_2x2_8[y&1 ][1];
714 const int dg2= dither_2x2_8[y&1 ][0];
715 const int db2= dither_2x2_8[(y&1)^1][1];
716 YSCALE_YUV_2_RGBX_C(uint16_t)
717 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
718 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
719 }
720 }
721 break;
722 case PIX_FMT_RGB8:
723 case PIX_FMT_BGR8:
724 {
725 const uint8_t * const d64= dither_8x8_73[y&7];
726 const uint8_t * const d32= dither_8x8_32[y&7];
727 YSCALE_YUV_2_RGBX_C(uint8_t)
728 ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];
729 ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];
730 }
731 }
732 break;
733 case PIX_FMT_RGB4:
734 case PIX_FMT_BGR4:
735 {
736 const uint8_t * const d64= dither_8x8_73 [y&7];
737 const uint8_t * const d128=dither_8x8_220[y&7];
738 YSCALE_YUV_2_RGBX_C(uint8_t)
739 ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]
740 +((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);
741 }
742 }
743 break;
744 case PIX_FMT_RGB4_BYTE:
745 case PIX_FMT_BGR4_BYTE:
746 {
747 const uint8_t * const d64= dither_8x8_73 [y&7];
748 const uint8_t * const d128=dither_8x8_220[y&7];
749 YSCALE_YUV_2_RGBX_C(uint8_t)
750 ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];
751 ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];
752 }
753 }
754 break;
755 case PIX_FMT_MONOBLACK:
756 {
757 const uint8_t * const d128=dither_8x8_220[y&7];
758 uint8_t *g= c->table_gU[128] + c->table_gV[128];
759 int acc=0;
760 for (i=0; i<dstW-1; i+=2){
761 int j;
762 int Y1=1<<18;
763 int Y2=1<<18;
764
765 for (j=0; j<lumFilterSize; j++)
766 {
767 Y1 += lumSrc[j][i] * lumFilter[j];
768 Y2 += lumSrc[j][i+1] * lumFilter[j];
769 }
770 Y1>>=19;
771 Y2>>=19;
772 if ((Y1|Y2)&256)
773 {
774 if (Y1>255) Y1=255;
775 else if (Y1<0)Y1=0;
776 if (Y2>255) Y2=255;
777 else if (Y2<0)Y2=0;
778 }
779 acc+= acc + g[Y1+d128[(i+0)&7]];
780 acc+= acc + g[Y2+d128[(i+1)&7]];
781 if ((i&7)==6){
782 ((uint8_t*)dest)[0]= acc;
783 dest++;
784 }
785 }
786 }
787 break;
788 case PIX_FMT_YUYV422:
789 YSCALE_YUV_2_PACKEDX_C(void)
790 ((uint8_t*)dest)[2*i2+0]= Y1;
791 ((uint8_t*)dest)[2*i2+1]= U;
792 ((uint8_t*)dest)[2*i2+2]= Y2;
793 ((uint8_t*)dest)[2*i2+3]= V;
794 }
795 break;
796 case PIX_FMT_UYVY422:
797 YSCALE_YUV_2_PACKEDX_C(void)
798 ((uint8_t*)dest)[2*i2+0]= U;
799 ((uint8_t*)dest)[2*i2+1]= Y1;
800 ((uint8_t*)dest)[2*i2+2]= V;
801 ((uint8_t*)dest)[2*i2+3]= Y2;
802 }
803 break;
804 }
805 }
806
807
808 //Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
809 //Plain C versions
810 #if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT) || !defined(CONFIG_GPL)
811 #define COMPILE_C
812 #endif
813
814 #ifdef ARCH_POWERPC
815 #if (defined (HAVE_ALTIVEC) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
816 #define COMPILE_ALTIVEC
817 #endif //HAVE_ALTIVEC
818 #endif //ARCH_POWERPC
819
820 #if defined(ARCH_X86)
821
822 #if ((defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
823 #define COMPILE_MMX
824 #endif
825
826 #if (defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
827 #define COMPILE_MMX2
828 #endif
829
830 #if ((defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
831 #define COMPILE_3DNOW
832 #endif
833 #endif //ARCH_X86 || ARCH_X86_64
834
835 #undef HAVE_MMX
836 #undef HAVE_MMX2
837 #undef HAVE_3DNOW
838
839 #ifdef COMPILE_C
840 #undef HAVE_MMX
841 #undef HAVE_MMX2
842 #undef HAVE_3DNOW
843 #undef HAVE_ALTIVEC
844 #define RENAME(a) a ## _C
845 #include "swscale_template.c"
846 #endif
847
848 #ifdef ARCH_POWERPC
849 #ifdef COMPILE_ALTIVEC
850 #undef RENAME
851 #define HAVE_ALTIVEC
852 #define RENAME(a) a ## _altivec
853 #include "swscale_template.c"
854 #endif
855 #endif //ARCH_POWERPC
856
857 #if defined(ARCH_X86)
858
859 //X86 versions
860 /*
861 #undef RENAME
862 #undef HAVE_MMX
863 #undef HAVE_MMX2
864 #undef HAVE_3DNOW
865 #define ARCH_X86
866 #define RENAME(a) a ## _X86
867 #include "swscale_template.c"
868 */
869 //MMX versions
870 #ifdef COMPILE_MMX
871 #undef RENAME
872 #define HAVE_MMX
873 #undef HAVE_MMX2
874 #undef HAVE_3DNOW
875 #define RENAME(a) a ## _MMX
876 #include "swscale_template.c"
877 #endif
878
879 //MMX2 versions
880 #ifdef COMPILE_MMX2
881 #undef RENAME
882 #define HAVE_MMX
883 #define HAVE_MMX2
884 #undef HAVE_3DNOW
885 #define RENAME(a) a ## _MMX2
886 #include "swscale_template.c"
887 #endif
888
889 //3DNOW versions
890 #ifdef COMPILE_3DNOW
891 #undef RENAME
892 #define HAVE_MMX
893 #undef HAVE_MMX2
894 #define HAVE_3DNOW
895 #define RENAME(a) a ## _3DNow
896 #include "swscale_template.c"
897 #endif
898
899 #endif //ARCH_X86 || ARCH_X86_64
900
901 // minor note: the HAVE_xyz is messed up after that line so don't use it
902
903 static double getSplineCoeff(double a, double b, double c, double d, double dist)
904 {
905 // printf("%f %f %f %f %f\n", a,b,c,d,dist);
906 if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
907 else return getSplineCoeff( 0.0,
908 b+ 2.0*c + 3.0*d,
909 c + 3.0*d,
910 -b- 3.0*c - 6.0*d,
911 dist-1.0);
912 }
913
914 static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
915 int srcW, int dstW, int filterAlign, int one, int flags,
916 SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
917 {
918 int i;
919 int filterSize;
920 int filter2Size;
921 int minFilterSize;
922 double *filter=NULL;
923 double *filter2=NULL;
924 #if defined(ARCH_X86)
925 if (flags & SWS_CPU_CAPS_MMX)
926 asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions)
927 #endif
928
929 // Note the +1 is for the MMXscaler which reads over the end
930 *filterPos = av_malloc((dstW+1)*sizeof(int16_t));
931
932 if (FFABS(xInc - 0x10000) <10) // unscaled
933 {
934 int i;
935 filterSize= 1;
936 filter= av_malloc(dstW*sizeof(double)*filterSize);
937 for (i=0; i<dstW*filterSize; i++) filter[i]=0;
938
939 for (i=0; i<dstW; i++)
940 {
941 filter[i*filterSize]=1;
942 (*filterPos)[i]=i;
943 }
944
945 }
946 else if (flags&SWS_POINT) // lame looking point sampling mode
947 {
948 int i;
949 int xDstInSrc;
950 filterSize= 1;
951 filter= av_malloc(dstW*sizeof(double)*filterSize);
952
953 xDstInSrc= xInc/2 - 0x8000;
954 for (i=0; i<dstW; i++)
955 {
956 int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
957
958 (*filterPos)[i]= xx;
959 filter[i]= 1.0;
960 xDstInSrc+= xInc;
961 }
962 }
963 else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
964 {
965 int i;
966 int xDstInSrc;
967 if (flags&SWS_BICUBIC) filterSize= 4;
968 else if (flags&SWS_X ) filterSize= 4;
969 else filterSize= 2; // SWS_BILINEAR / SWS_AREA
970 filter= av_malloc(dstW*sizeof(double)*filterSize);
971
972 xDstInSrc= xInc/2 - 0x8000;
973 for (i=0; i<dstW; i++)
974 {
975 int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
976 int j;
977
978 (*filterPos)[i]= xx;
979 //Bilinear upscale / linear interpolate / Area averaging
980 for (j=0; j<filterSize; j++)
981 {
982 double d= FFABS((xx<<16) - xDstInSrc)/(double)(1<<16);
983 double coeff= 1.0 - d;
984 if (coeff<0) coeff=0;
985 filter[i*filterSize + j]= coeff;
986 xx++;
987 }
988 xDstInSrc+= xInc;
989 }
990 }
991 else
992 {
993 double xDstInSrc;
994 double sizeFactor, filterSizeInSrc;
995 const double xInc1= (double)xInc / (double)(1<<16);
996
997 if (flags&SWS_BICUBIC) sizeFactor= 4.0;
998 else if (flags&SWS_X) sizeFactor= 8.0;
999 else if (flags&SWS_AREA) sizeFactor= 1.0; //downscale only, for upscale it is bilinear
1000 else if (flags&SWS_GAUSS) sizeFactor= 8.0; // infinite ;)
1001 else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? 2.0*param[0] : 6.0;
1002 else if (flags&SWS_SINC) sizeFactor= 20.0; // infinite ;)
1003 else if (flags&SWS_SPLINE) sizeFactor= 20.0; // infinite ;)
1004 else if (flags&SWS_BILINEAR) sizeFactor= 2.0;
1005 else {
1006 sizeFactor= 0.0; //GCC warning killer
1007 ASSERT(0)
1008 }
1009
1010 if (xInc1 <= 1.0) filterSizeInSrc= sizeFactor; // upscale
1011 else filterSizeInSrc= sizeFactor*srcW / (double)dstW;
1012
1013 filterSize= (int)ceil(1 + filterSizeInSrc); // will be reduced later if possible
1014 if (filterSize > srcW-2) filterSize=srcW-2;
1015
1016 filter= av_malloc(dstW*sizeof(double)*filterSize);
1017
1018 xDstInSrc= xInc1 / 2.0 - 0.5;
1019 for (i=0; i<dstW; i++)
1020 {
1021 int xx= (int)(xDstInSrc - (filterSize-1)*0.5 + 0.5);
1022 int j;
1023 (*filterPos)[i]= xx;
1024 for (j=0; j<filterSize; j++)
1025 {
1026 double d= FFABS(xx - xDstInSrc)/filterSizeInSrc*sizeFactor;
1027 double coeff;
1028 if (flags & SWS_BICUBIC)
1029 {
1030 double B= param[0] != SWS_PARAM_DEFAULT ? param[0] : 0.0;
1031 double C= param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6;
1032
1033 if (d<1.0)
1034 coeff = (12-9*B-6*C)*d*d*d + (-18+12*B+6*C)*d*d + 6-2*B;
1035 else if (d<2.0)
1036 coeff = (-B-6*C)*d*d*d + (6*B+30*C)*d*d + (-12*B-48*C)*d +8*B+24*C;
1037 else
1038 coeff=0.0;
1039 }
1040 /* else if (flags & SWS_X)
1041 {
1042 double p= param ? param*0.01 : 0.3;
1043 coeff = d ? sin(d*PI)/(d*PI) : 1.0;
1044 coeff*= pow(2.0, - p*d*d);
1045 }*/
1046 else if (flags & SWS_X)
1047 {
1048 double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
1049
1050 if (d<1.0)
1051 coeff = cos(d*PI);
1052 else
1053 coeff=-1.0;
1054 if (coeff<0.0) coeff= -pow(-coeff, A);
1055 else coeff= pow( coeff, A);
1056 coeff= coeff*0.5 + 0.5;
1057 }
1058 else if (flags & SWS_AREA)
1059 {
1060 double srcPixelSize= 1.0/xInc1;
1061 if (d + srcPixelSize/2 < 0.5) coeff= 1.0;
1062 else if (d - srcPixelSize/2 < 0.5) coeff= (0.5-d)/srcPixelSize + 0.5;
1063 else coeff=0.0;
1064 }
1065 else if (flags & SWS_GAUSS)
1066 {
1067 double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
1068 coeff = pow(2.0, - p*d*d);
1069 }
1070 else if (flags & SWS_SINC)
1071 {
1072 coeff = d ? sin(d*PI)/(d*PI) : 1.0;
1073 }
1074 else if (flags & SWS_LANCZOS)
1075 {
1076 double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
1077 coeff = d ? sin(d*PI)*sin(d*PI/p)/(d*d*PI*PI/p) : 1.0;
1078 if (d>p) coeff=0;
1079 }
1080 else if (flags & SWS_BILINEAR)
1081 {
1082 coeff= 1.0 - d;
1083 if (coeff<0) coeff=0;
1084 }
1085 else if (flags & SWS_SPLINE)
1086 {
1087 double p=-2.196152422706632;
1088 coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, d);
1089 }
1090 else {
1091 coeff= 0.0; //GCC warning killer
1092 ASSERT(0)
1093 }
1094
1095 filter[i*filterSize + j]= coeff;
1096 xx++;
1097 }
1098 xDstInSrc+= xInc1;
1099 }
1100 }
1101
1102 /* apply src & dst Filter to filter -> filter2
1103 av_free(filter);
1104 */
1105 ASSERT(filterSize>0)
1106 filter2Size= filterSize;
1107 if (srcFilter) filter2Size+= srcFilter->length - 1;
1108 if (dstFilter) filter2Size+= dstFilter->length - 1;
1109 ASSERT(filter2Size>0)
1110 filter2= av_malloc(filter2Size*dstW*sizeof(double));
1111
1112 for (i=0; i<dstW; i++)
1113 {
1114 int j;
1115 SwsVector scaleFilter;
1116 SwsVector *outVec;
1117
1118 scaleFilter.coeff= filter + i*filterSize;
1119 scaleFilter.length= filterSize;
1120
1121 if (srcFilter) outVec= sws_getConvVec(srcFilter, &scaleFilter);
1122 else outVec= &scaleFilter;
1123
1124 ASSERT(outVec->length == filter2Size)
1125 //FIXME dstFilter
1126
1127 for (j=0; j<outVec->length; j++)
1128 {
1129 filter2[i*filter2Size + j]= outVec->coeff[j];
1130 }
1131
1132 (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
1133
1134 if (outVec != &scaleFilter) sws_freeVec(outVec);
1135 }
1136 av_free(filter); filter=NULL;
1137
1138 /* try to reduce the filter-size (step1 find size and shift left) */
1139 // Assume its near normalized (*0.5 or *2.0 is ok but * 0.001 is not)
1140 minFilterSize= 0;
1141 for (i=dstW-1; i>=0; i--)
1142 {
1143 int min= filter2Size;
1144 int j;
1145 double cutOff=0.0;
1146
1147 /* get rid off near zero elements on the left by shifting left */
1148 for (j=0; j<filter2Size; j++)
1149 {
1150 int k;
1151 cutOff += FFABS(filter2[i*filter2Size]);
1152
1153 if (cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1154
1155 /* preserve Monotonicity because the core can't handle the filter otherwise */
1156 if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
1157
1158 // Move filter coeffs left
1159 for (k=1; k<filter2Size; k++)
1160 filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
1161 filter2[i*filter2Size + k - 1]= 0.0;
1162 (*filterPos)[i]++;
1163 }
1164
1165 cutOff=0.0;
1166 /* count near zeros on the right */
1167 for (j=filter2Size-1; j>0; j--)
1168 {
1169 cutOff += FFABS(filter2[i*filter2Size + j]);
1170
1171 if (cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1172 min--;
1173 }
1174
1175 if (min>minFilterSize) minFilterSize= min;
1176 }
1177
1178 if (flags & SWS_CPU_CAPS_ALTIVEC) {
1179 // we can handle the special case 4,
1180 // so we don't want to go to the full 8
1181 if (minFilterSize < 5)
1182 filterAlign = 4;
1183
1184 // we really don't want to waste our time
1185 // doing useless computation, so fall-back on
1186 // the scalar C code for very small filter.
1187 // vectorizing is worth it only if you have
1188 // decent-sized vector.
1189 if (minFilterSize < 3)
1190 filterAlign = 1;
1191 }
1192
1193 if (flags & SWS_CPU_CAPS_MMX) {
1194 // special case for unscaled vertical filtering
1195 if (minFilterSize == 1 && filterAlign == 2)
1196 filterAlign= 1;
1197 }
1198
1199 ASSERT(minFilterSize > 0)
1200 filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
1201 ASSERT(filterSize > 0)
1202 filter= av_malloc(filterSize*dstW*sizeof(double));
1203 if (filterSize >= MAX_FILTER_SIZE)
1204 return -1;
1205 *outFilterSize= filterSize;
1206
1207 if (flags&SWS_PRINT_INFO)
1208 av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
1209 /* try to reduce the filter-size (step2 reduce it) */
1210 for (i=0; i<dstW; i++)
1211 {
1212 int j;
1213
1214 for (j=0; j<filterSize; j++)
1215 {
1216 if (j>=filter2Size) filter[i*filterSize + j]= 0.0;
1217 else filter[i*filterSize + j]= filter2[i*filter2Size + j];
1218 }
1219 }
1220 av_free(filter2); filter2=NULL;
1221
1222
1223 //FIXME try to align filterpos if possible
1224
1225 //fix borders
1226 for (i=0; i<dstW; i++)
1227 {
1228 int j;
1229 if ((*filterPos)[i] < 0)
1230 {
1231 // Move filter coeffs left to compensate for filterPos
1232 for (j=1; j<filterSize; j++)
1233 {
1234 int left= FFMAX(j + (*filterPos)[i], 0);
1235 filter[i*filterSize + left] += filter[i*filterSize + j];
1236 filter[i*filterSize + j]=0;
1237 }
1238 (*filterPos)[i]= 0;
1239 }
1240
1241 if ((*filterPos)[i] + filterSize > srcW)
1242 {
1243 int shift= (*filterPos)[i] + filterSize - srcW;
1244 // Move filter coeffs right to compensate for filterPos
1245 for (j=filterSize-2; j>=0; j--)
1246 {
1247 int right= FFMIN(j + shift, filterSize-1);
1248 filter[i*filterSize +right] += filter[i*filterSize +j];
1249 filter[i*filterSize +j]=0;
1250 }
1251 (*filterPos)[i]= srcW - filterSize;
1252 }
1253 }
1254
1255 // Note the +1 is for the MMXscaler which reads over the end
1256 /* align at 16 for AltiVec (needed by hScale_altivec_real) */
1257 *outFilter= av_mallocz(*outFilterSize*(dstW+1)*sizeof(int16_t));
1258
1259 /* Normalize & Store in outFilter */
1260 for (i=0; i<dstW; i++)
1261 {
1262 int j;
1263 double error=0;
1264 double sum=0;
1265 double scale= one;
1266
1267 for (j=0; j<filterSize; j++)
1268 {
1269 sum+= filter[i*filterSize + j];
1270 }
1271 scale/= sum;
1272 for (j=0; j<*outFilterSize; j++)
1273 {
1274 double v= filter[i*filterSize + j]*scale + error;
1275 int intV= floor(v + 0.5);
1276 (*outFilter)[i*(*outFilterSize) + j]= intV;
1277 error = v - intV;
1278 }
1279 }
1280
1281 (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
1282 for (i=0; i<*outFilterSize; i++)
1283 {
1284 int j= dstW*(*outFilterSize);
1285 (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
1286 }
1287
1288 av_free(filter);
1289 return 0;
1290 }
1291
1292 #ifdef COMPILE_MMX2
1293 static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
1294 {
1295 uint8_t *fragmentA;
1296 long imm8OfPShufW1A;
1297 long imm8OfPShufW2A;
1298 long fragmentLengthA;
1299 uint8_t *fragmentB;
1300 long imm8OfPShufW1B;
1301 long imm8OfPShufW2B;
1302 long fragmentLengthB;
1303 int fragmentPos;
1304
1305 int xpos, i;
1306
1307 // create an optimized horizontal scaling routine
1308
1309 //code fragment
1310
1311 asm volatile(
1312 "jmp 9f \n\t"
1313 // Begin
1314 "0: \n\t"
1315 "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
1316 "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
1317 "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
1318 "punpcklbw %%mm7, %%mm1 \n\t"
1319 "punpcklbw %%mm7, %%mm0 \n\t"
1320 "pshufw $0xFF, %%mm1, %%mm1 \n\t"
1321 "1: \n\t"
1322 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
1323 "2: \n\t"
1324 "psubw %%mm1, %%mm0 \n\t"
1325 "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
1326 "pmullw %%mm3, %%mm0 \n\t"
1327 "psllw $7, %%mm1 \n\t"
1328 "paddw %%mm1, %%mm0 \n\t"
1329
1330 "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
1331
1332 "add $8, %%"REG_a" \n\t"
1333 // End
1334 "9: \n\t"
1335 // "int $3 \n\t"
1336 "lea 0b, %0 \n\t"
1337 "lea 1b, %1 \n\t"
1338 "lea 2b, %2 \n\t"
1339 "dec %1 \n\t"
1340 "dec %2 \n\t"
1341 "sub %0, %1 \n\t"
1342 "sub %0, %2 \n\t"
1343 "lea 9b, %3 \n\t"
1344 "sub %0, %3 \n\t"
1345
1346
1347 :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
1348 "=r" (fragmentLengthA)
1349 );
1350
1351 asm volatile(
1352 "jmp 9f \n\t"
1353 // Begin
1354 "0: \n\t"
1355 "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
1356 "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
1357 "punpcklbw %%mm7, %%mm0 \n\t"
1358 "pshufw $0xFF, %%mm0, %%mm1 \n\t"
1359 "1: \n\t"
1360 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
1361 "2: \n\t"
1362 "psubw %%mm1, %%mm0 \n\t"
1363 "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
1364 "pmullw %%mm3, %%mm0 \n\t"
1365 "psllw $7, %%mm1 \n\t"
1366 "paddw %%mm1, %%mm0 \n\t"
1367
1368 "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
1369
1370 "add $8, %%"REG_a" \n\t"
1371 // End
1372 "9: \n\t"
1373 // "int $3 \n\t"
1374 "lea 0b, %0 \n\t"
1375 "lea 1b, %1 \n\t"
1376 "lea 2b, %2 \n\t"
1377 "dec %1 \n\t"
1378 "dec %2 \n\t"
1379 "sub %0, %1 \n\t"
1380 "sub %0, %2 \n\t"
1381 "lea 9b, %3 \n\t"
1382 "sub %0, %3 \n\t"
1383
1384
1385 :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
1386 "=r" (fragmentLengthB)
1387 );
1388
1389 xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
1390 fragmentPos=0;
1391
1392 for (i=0; i<dstW/numSplits; i++)
1393 {
1394 int xx=xpos>>16;
1395
1396 if ((i&3) == 0)
1397 {
1398 int a=0;
1399 int b=((xpos+xInc)>>16) - xx;
1400 int c=((xpos+xInc*2)>>16) - xx;
1401 int d=((xpos+xInc*3)>>16) - xx;
1402
1403 filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
1404 filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
1405 filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
1406 filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
1407 filterPos[i/2]= xx;
1408
1409 if (d+1<4)
1410 {
1411 int maxShift= 3-(d+1);
1412 int shift=0;
1413
1414 memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
1415
1416 funnyCode[fragmentPos + imm8OfPShufW1B]=
1417 (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
1418 funnyCode[fragmentPos + imm8OfPShufW2B]=
1419 a | (b<<2) | (c<<4) | (d<<6);
1420
1421 if (i+3>=dstW) shift=maxShift; //avoid overread
1422 else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
1423
1424 if (shift && i>=shift)
1425 {
1426 funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
1427 funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
1428 filterPos[i/2]-=shift;
1429 }
1430
1431 fragmentPos+= fragmentLengthB;
1432 }
1433 else
1434 {
1435 int maxShift= 3-d;
1436 int shift=0;
1437
1438 memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
1439
1440 funnyCode[fragmentPos + imm8OfPShufW1A]=
1441 funnyCode[fragmentPos + imm8OfPShufW2A]=
1442 a | (b<<2) | (c<<4) | (d<<6);
1443
1444 if (i+4>=dstW) shift=maxShift; //avoid overread
1445 else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
1446
1447 if (shift && i>=shift)
1448 {
1449 funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
1450 funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
1451 filterPos[i/2]-=shift;
1452 }
1453
1454 fragmentPos+= fragmentLengthA;
1455 }
1456
1457 funnyCode[fragmentPos]= RET;
1458 }
1459 xpos+=xInc;
1460 }
1461 filterPos[i/2]= xpos>>16; // needed to jump to the next part
1462 }
1463 #endif /* COMPILE_MMX2 */
1464
1465 static void globalInit(void){
1466 // generating tables:
1467 int i;
1468 for (i=0; i<768; i++){
1469 int c= av_clip_uint8(i-256);
1470 clip_table[i]=c;
1471 }
1472 }
1473
1474 static SwsFunc getSwsFunc(int flags){
1475
1476 #if defined(RUNTIME_CPUDETECT) && defined (CONFIG_GPL)
1477 #if defined(ARCH_X86)
1478 // ordered per speed fasterst first
1479 if (flags & SWS_CPU_CAPS_MMX2)
1480 return swScale_MMX2;
1481 else if (flags & SWS_CPU_CAPS_3DNOW)
1482 return swScale_3DNow;
1483 else if (flags & SWS_CPU_CAPS_MMX)
1484 return swScale_MMX;
1485 else
1486 return swScale_C;
1487
1488 #else
1489 #ifdef ARCH_POWERPC
1490 if (flags & SWS_CPU_CAPS_ALTIVEC)
1491 return swScale_altivec;
1492 else
1493 return swScale_C;
1494 #endif
1495 return swScale_C;
1496 #endif /* defined(ARCH_X86) */
1497 #else //RUNTIME_CPUDETECT
1498 #ifdef HAVE_MMX2
1499 return swScale_MMX2;
1500 #elif defined (HAVE_3DNOW)
1501 return swScale_3DNow;
1502 #elif defined (HAVE_MMX)
1503 return swScale_MMX;
1504 #elif defined (HAVE_ALTIVEC)
1505 return swScale_altivec;
1506 #else
1507 return swScale_C;
1508 #endif
1509 #endif //!RUNTIME_CPUDETECT
1510 }
1511
1512 static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1513 int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1514 uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1515 /* Copy Y plane */
1516 if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
1517 memcpy(dst, src[0], srcSliceH*dstStride[0]);
1518 else
1519 {
1520 int i;
1521 uint8_t *srcPtr= src[0];
1522 uint8_t *dstPtr= dst;
1523 for (i=0; i<srcSliceH; i++)
1524 {
1525 memcpy(dstPtr, srcPtr, c->srcW);
1526 srcPtr+= srcStride[0];
1527 dstPtr+= dstStride[0];
1528 }
1529 }
1530 dst = dstParam[1] + dstStride[1]*srcSliceY/2;
1531 if (c->dstFormat == PIX_FMT_NV12)
1532 interleaveBytes( src[1],src[2],dst,c->srcW/2,srcSliceH/2,srcStride[1],srcStride[2],dstStride[0] );
1533 else
1534 interleaveBytes( src[2],src[1],dst,c->srcW/2,srcSliceH/2,srcStride[2],srcStride[1],dstStride[0] );
1535
1536 return srcSliceH;
1537 }
1538
1539 static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1540 int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1541 uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1542
1543 yv12toyuy2( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1544
1545 return srcSliceH;
1546 }
1547
1548 static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1549 int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1550 uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1551
1552 yv12touyvy( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1553
1554 return srcSliceH;
1555 }
1556
1557 /* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
1558 static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1559 int srcSliceH, uint8_t* dst[], int dstStride[]){
1560 const int srcFormat= c->srcFormat;
1561 const int dstFormat= c->dstFormat;
1562 const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
1563 const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
1564 const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
1565 const int dstId= fmt_depth(dstFormat) >> 2;
1566 void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
1567
1568 /* BGR -> BGR */
1569 if ( (isBGR(srcFormat) && isBGR(dstFormat))
1570 || (isRGB(srcFormat) && isRGB(dstFormat))){
1571 switch(srcId | (dstId<<4)){
1572 case 0x34: conv= rgb16to15; break;
1573 case 0x36: conv= rgb24to15; break;
1574 case 0x38: conv= rgb32to15; break;
1575 case 0x43: conv= rgb15to16; break;
1576 case 0x46: conv= rgb24to16; break;
1577 case 0x48: conv= rgb32to16; break;
1578 case 0x63: conv= rgb15to24; break;
1579 case 0x64: conv= rgb16to24; break;
1580 case 0x68: conv= rgb32to24; break;
1581 case 0x83: conv= rgb15to32; break;
1582 case 0x84: conv= rgb16to32; break;
1583 case 0x86: conv= rgb24to32; break;
1584 default: av_log(c, AV_LOG_ERROR, "swScaler: internal error %s -> %s converter\n",
1585 sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
1586 }
1587 }else if ( (isBGR(srcFormat) && isRGB(dstFormat))
1588 || (isRGB(srcFormat) && isBGR(dstFormat))){
1589 switch(srcId | (dstId<<4)){
1590 case 0x33: conv= rgb15tobgr15; break;
1591 case 0x34: conv= rgb16tobgr15; break;
1592 case 0x36: conv= rgb24tobgr15; break;
1593 case 0x38: conv= rgb32tobgr15; break;
1594 case 0x43: conv= rgb15tobgr16; break;
1595 case 0x44: conv= rgb16tobgr16; break;
1596 case 0x46: conv= rgb24tobgr16; break;
1597 case 0x48: conv= rgb32tobgr16; break;
1598 case 0x63: conv= rgb15tobgr24; break;
1599 case 0x64: conv= rgb16tobgr24; break;
1600 case 0x66: conv= rgb24tobgr24; break;
1601 case 0x68: conv= rgb32tobgr24; break;
1602 case 0x83: conv= rgb15tobgr32; break;
1603 case 0x84: conv= rgb16tobgr32; break;
1604 case 0x86: conv= rgb24tobgr32; break;
1605 case 0x88: conv= rgb32tobgr32; break;
1606 default: av_log(c, AV_LOG_ERROR, "swScaler: internal error %s -> %s converter\n",
1607 sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
1608 }
1609 }else{
1610 av_log(c, AV_LOG_ERROR, "swScaler: internal error %s -> %s converter\n",
1611 sws_format_name(srcFormat), sws_format_name(dstFormat));
1612 }
1613
1614 if(conv)
1615 {
1616 if (dstStride[0]*srcBpp == srcStride[0]*dstBpp)
1617 conv(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
1618 else
1619 {
1620 int i;
1621 uint8_t *srcPtr= src[0];
1622 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1623
1624 for (i=0; i<srcSliceH; i++)
1625 {
1626 conv(srcPtr, dstPtr, c->srcW*srcBpp);
1627 srcPtr+= srcStride[0];
1628 dstPtr+= dstStride[0];
1629 }
1630 }
1631 }
1632 return srcSliceH;
1633 }
1634
1635 static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1636 int srcSliceH, uint8_t* dst[], int dstStride[]){
1637
1638 rgb24toyv12(
1639 src[0],
1640 dst[0]+ srcSliceY *dstStride[0],
1641 dst[1]+(srcSliceY>>1)*dstStride[1],
1642 dst[2]+(srcSliceY>>1)*dstStride[2],
1643 c->srcW, srcSliceH,
1644 dstStride[0], dstStride[1], srcStride[0]);
1645 return srcSliceH;
1646 }
1647
1648 static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1649 int srcSliceH, uint8_t* dst[], int dstStride[]){
1650 int i;
1651
1652 /* copy Y */
1653 if (srcStride[0]==dstStride[0] && srcStride[0] > 0)
1654 memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
1655 else{
1656 uint8_t *srcPtr= src[0];
1657 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1658
1659 for (i=0; i<srcSliceH; i++)
1660 {
1661 memcpy(dstPtr, srcPtr, c->srcW);
1662 srcPtr+= srcStride[0];
1663 dstPtr+= dstStride[0];
1664 }
1665 }
1666
1667 if (c->dstFormat==PIX_FMT_YUV420P){
1668 planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
1669 planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
1670 }else{
1671 planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
1672 planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
1673 }
1674 return srcSliceH;
1675 }
1676
1677 /* unscaled copy like stuff (assumes nearly identical formats) */
1678 static int simpleCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1679 int srcSliceH, uint8_t* dst[], int dstStride[]){
1680
1681 if (isPacked(c->srcFormat))
1682 {
1683 if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
1684 memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
1685 else
1686 {
1687 int i;
1688 uint8_t *srcPtr= src[0];
1689 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1690 int length=0;
1691
1692 /* universal length finder */
1693 while(length+c->srcW <= FFABS(dstStride[0])
1694 && length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW;
1695 ASSERT(length!=0);
1696
1697 for (i=0; i<srcSliceH; i++)
1698 {
1699 memcpy(dstPtr, srcPtr, length);
1700 srcPtr+= srcStride[0];
1701 dstPtr+= dstStride[0];
1702 }
1703 }
1704 }
1705 else
1706 { /* Planar YUV or gray */
1707 int plane;
1708 for (plane=0; plane<3; plane++)
1709 {
1710 int length= plane==0 ? c->srcW : -((-c->srcW )>>c->chrDstHSubSample);
1711 int y= plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
1712 int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
1713
1714 if ((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
1715 {
1716 if (!isGray(c->dstFormat))
1717 memset(dst[plane], 128, dstStride[plane]*height);
1718 }
1719 else
1720 {
1721 if (dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
1722 memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
1723 else
1724 {
1725 int i;
1726 uint8_t *srcPtr= src[plane];
1727 uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
1728 for (i=0; i<height; i++)
1729 {
1730 memcpy(dstPtr, srcPtr, length);
1731 srcPtr+= srcStride[plane];
1732 dstPtr+= dstStride[plane];
1733 }
1734 }
1735 }
1736 }
1737 }
1738 return srcSliceH;
1739 }
1740
1741 static int gray16togray(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1742 int srcSliceH, uint8_t* dst[], int dstStride[]){
1743
1744 int length= c->srcW;
1745 int y= srcSliceY;
1746 int height= srcSliceH;
1747 int i, j;
1748 uint8_t *srcPtr= src[0];
1749 uint8_t *dstPtr= dst[0] + dstStride[0]*y;
1750
1751 if (!isGray(c->dstFormat)){
1752 int height= -((-srcSliceH)>>c->chrDstVSubSample);
1753 memset(dst[1], 128, dstStride[1]*height);
1754 memset(dst[2], 128, dstStride[2]*height);
1755 }
1756 if (c->srcFormat == PIX_FMT_GRAY16LE) srcPtr++;
1757 for (i=0; i<height; i++)
1758 {
1759 for (j=0; j<length; j++) dstPtr[j] = srcPtr[j<<1];
1760 srcPtr+= srcStride[0];
1761 dstPtr+= dstStride[0];
1762 }
1763 return srcSliceH;
1764 }
1765
1766 static int graytogray16(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1767 int srcSliceH, uint8_t* dst[], int dstStride[]){
1768
1769 int length= c->srcW;
1770 int y= srcSliceY;
1771 int height= srcSliceH;
1772 int i, j;
1773 uint8_t *srcPtr= src[0];
1774 uint8_t *dstPtr= dst[0] + dstStride[0]*y;
1775 for (i=0; i<height; i++)
1776 {
1777 for (j=0; j<length; j++)
1778 {
1779 dstPtr[j<<1] = srcPtr[j];
1780 dstPtr[(j<<1)+1] = srcPtr[j];
1781 }
1782 srcPtr+= srcStride[0];
1783 dstPtr+= dstStride[0];
1784 }
1785 return srcSliceH;
1786 }
1787
1788 static int gray16swap(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1789 int srcSliceH, uint8_t* dst[], int dstStride[]){
1790
1791 int length= c->srcW;
1792 int y= srcSliceY;
1793 int height= srcSliceH;
1794 int i, j;
1795 uint16_t *srcPtr= src[0];
1796 uint16_t *dstPtr= dst[0] + dstStride[0]*y/2;
1797 for (i=0; i<height; i++)
1798 {
1799 for (j=0; j<length; j++) dstPtr[j] = bswap_16(srcPtr[j]);
1800 srcPtr+= srcStride[0]/2;
1801 dstPtr+= dstStride[0]/2;
1802 }
1803 return srcSliceH;
1804 }
1805
1806
1807 static void getSubSampleFactors(int *h, int *v, int format){
1808 switch(format){
1809 case PIX_FMT_UYVY422:
1810 case PIX_FMT_YUYV422:
1811 *h=1;
1812 *v=0;
1813 break;
1814 case PIX_FMT_YUV420P:
1815 case PIX_FMT_GRAY16BE:
1816 case PIX_FMT_GRAY16LE:
1817 case PIX_FMT_GRAY8: //FIXME remove after different subsamplings are fully implemented
1818 case PIX_FMT_NV12:
1819 case PIX_FMT_NV21:
1820 *h=1;
1821 *v=1;
1822 break;
1823 case PIX_FMT_YUV410P:
1824 *h=2;
1825 *v=2;
1826 break;
1827 case PIX_FMT_YUV444P:
1828 *h=0;
1829 *v=0;
1830 break;
1831 case PIX_FMT_YUV422P:
1832 *h=1;
1833 *v=0;
1834 break;
1835 case PIX_FMT_YUV411P:
1836 *h=2;
1837 *v=0;
1838 break;
1839 default:
1840 *h=0;
1841 *v=0;
1842 break;
1843 }
1844 }
1845
1846 static uint16_t roundToInt16(int64_t f){
1847 int r= (f + (1<<15))>>16;
1848 if (r<-0x7FFF) return 0x8000;
1849 else if (r> 0x7FFF) return 0x7FFF;
1850 else return r;
1851 }
1852
1853 /**
1854 * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
1855 * @param fullRange if 1 then the luma range is 0..255 if 0 its 16..235
1856 * @return -1 if not supported
1857 */
1858 int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
1859 int64_t crv = inv_table[0];
1860 int64_t cbu = inv_table[1];
1861 int64_t cgu = -inv_table[2];
1862 int64_t cgv = -inv_table[3];
1863 int64_t cy = 1<<16;
1864 int64_t oy = 0;
1865
1866 if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1867 memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
1868 memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
1869
1870 c->brightness= brightness;
1871 c->contrast = contrast;
1872 c->saturation= saturation;
1873 c->srcRange = srcRange;
1874 c->dstRange = dstRange;
1875
1876 c->uOffset= 0x0400040004000400LL;
1877 c->vOffset= 0x0400040004000400LL;
1878
1879 if (!srcRange){
1880 cy= (cy*255) / 219;
1881 oy= 16<<16;
1882 }else{
1883 crv= (crv*224) / 255;
1884 cbu= (cbu*224) / 255;
1885 cgu= (cgu*224) / 255;
1886 cgv= (cgv*224) / 255;
1887 }
1888
1889 cy = (cy *contrast )>>16;
1890 crv= (crv*contrast * saturation)>>32;
1891 cbu= (cbu*contrast * saturation)>>32;
1892 cgu= (cgu*contrast * saturation)>>32;
1893 cgv= (cgv*contrast * saturation)>>32;
1894
1895 oy -= 256*brightness;
1896
1897 c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
1898 c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
1899 c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
1900 c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
1901 c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
1902 c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
1903
1904 yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
1905 //FIXME factorize
1906
1907 #ifdef COMPILE_ALTIVEC
1908 if (c->flags & SWS_CPU_CAPS_ALTIVEC)
1909 yuv2rgb_altivec_init_tables (c, inv_table, brightness, contrast, saturation);
1910 #endif
1911 return 0;
1912 }
1913
1914 /**
1915 * @return -1 if not supported
1916 */
1917 int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
1918 if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1919
1920 *inv_table = c->srcColorspaceTable;
1921 *table = c->dstColorspaceTable;
1922 *srcRange = c->srcRange;
1923 *dstRange = c->dstRange;
1924 *brightness= c->brightness;
1925 *contrast = c->contrast;
1926 *saturation= c->saturation;
1927
1928 return 0;
1929 }
1930
1931 static int handle_jpeg(int *format)
1932 {
1933 switch (*format) {
1934 case PIX_FMT_YUVJ420P:
1935 *format = PIX_FMT_YUV420P;
1936 return 1;
1937 case PIX_FMT_YUVJ422P:
1938 *format = PIX_FMT_YUV422P;
1939 return 1;
1940 case PIX_FMT_YUVJ444P:
1941 *format = PIX_FMT_YUV444P;
1942 return 1;
1943 default:
1944 return 0;
1945 }
1946 }
1947
1948 SwsContext *sws_getContext(int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat, int flags,
1949 SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){
1950
1951 SwsContext *c;
1952 int i;
1953 int usesVFilter, usesHFilter;
1954 int unscaled, needsDither;
1955 int srcRange, dstRange;
1956 SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
1957 #if defined(ARCH_X86)
1958 if (flags & SWS_CPU_CAPS_MMX)
1959 asm volatile("emms\n\t"::: "memory");
1960 #endif
1961
1962 #if !defined(RUNTIME_CPUDETECT) || !defined (CONFIG_GPL) //ensure that the flags match the compiled variant if cpudetect is off
1963 flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC);
1964 #ifdef HAVE_MMX2
1965 flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
1966 #elif defined (HAVE_3DNOW)
1967 flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
1968 #elif defined (HAVE_MMX)
1969 flags |= SWS_CPU_CAPS_MMX;
1970 #elif defined (HAVE_ALTIVEC)
1971 flags |= SWS_CPU_CAPS_ALTIVEC;
1972 #endif
1973 #endif /* RUNTIME_CPUDETECT */
1974 if (clip_table[512] != 255) globalInit();
1975 if (rgb15to16 == NULL) sws_rgb2rgb_init(flags);
1976
1977 unscaled = (srcW == dstW && srcH == dstH);
1978 needsDither= (isBGR(dstFormat) || isRGB(dstFormat))
1979 && (fmt_depth(dstFormat))<24
1980 && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
1981
1982 srcRange = handle_jpeg(&srcFormat);
1983 dstRange = handle_jpeg(&dstFormat);
1984
1985 if (!isSupportedIn(srcFormat))
1986 {
1987 av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input format\n", sws_format_name(srcFormat));
1988 return NULL;
1989 }
1990 if (!isSupportedOut(dstFormat))
1991 {
1992 av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output format\n", sws_format_name(dstFormat));
1993 return NULL;
1994 }
1995
1996 /* sanity check */
1997 if (srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
1998 {
1999 av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
2000 srcW, srcH, dstW, dstH);
2001 return NULL;
2002 }
2003
2004 if (!dstFilter) dstFilter= &dummyFilter;
2005 if (!srcFilter) srcFilter= &dummyFilter;
2006
2007 c= av_mallocz(sizeof(SwsContext));
2008
2009 c->av_class = &sws_context_class;
2010 c->srcW= srcW;
2011 c->srcH= srcH;
2012 c->dstW= dstW;
2013 c->dstH= dstH;
2014 c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
2015 c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
2016 c->flags= flags;
2017 c->dstFormat= dstFormat;
2018 c->srcFormat= srcFormat;
2019 c->vRounder= 4* 0x0001000100010001ULL;
2020
2021 usesHFilter= usesVFilter= 0;
2022 if (dstFilter->lumV!=NULL && dstFilter->lumV->length>1) usesVFilter=1;
2023 if (dstFilter->lumH!=NULL && dstFilter->lumH->length>1) usesHFilter=1;
2024 if (dstFilter->chrV!=NULL && dstFilter->chrV->length>1) usesVFilter=1;
2025 if (dstFilter->chrH!=NULL && dstFilter->chrH->length>1) usesHFilter=1;
2026 if (srcFilter->lumV!=NULL && srcFilter->lumV->length>1) usesVFilter=1;
2027 if (srcFilter->lumH!=NULL && srcFilter->lumH->length>1) usesHFilter=1;
2028 if (srcFilter->chrV!=NULL && srcFilter->chrV->length>1) usesVFilter=1;
2029 if (srcFilter->chrH!=NULL && srcFilter->chrH->length>1) usesHFilter=1;
2030
2031 getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
2032 getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
2033
2034 // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
2035 if ((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
2036
2037 // drop some chroma lines if the user wants it
2038 c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
2039 c->chrSrcVSubSample+= c->vChrDrop;
2040
2041 // drop every 2. pixel for chroma calculation unless user wants full chroma
2042 if ((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)
2043 && srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
2044 && srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
2045 && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE)
2046 c->chrSrcHSubSample=1;
2047
2048 if (param){
2049 c->param[0] = param[0];
2050 c->param[1] = param[1];
2051 }else{
2052 c->param[0] =
2053 c->param[1] = SWS_PARAM_DEFAULT;
2054 }
2055
2056 c->chrIntHSubSample= c->chrDstHSubSample;
2057 c->chrIntVSubSample= c->chrSrcVSubSample;
2058
2059 // Note the -((-x)>>y) is so that we always round toward +inf.
2060 c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
2061 c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
2062 c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
2063 c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
2064
2065 sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], srcRange, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
2066
2067 /* unscaled special Cases */
2068 if (unscaled && !usesHFilter && !usesVFilter)
2069 {
2070 /* yv12_to_nv12 */
2071 if (srcFormat == PIX_FMT_YUV420P && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21))
2072 {
2073 c->swScale= PlanarToNV12Wrapper;
2074 }
2075 #ifdef CONFIG_GPL
2076 /* yuv2bgr */
2077 if ((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P) && (isBGR(dstFormat) || isRGB(dstFormat)))
2078 {
2079 c->swScale= yuv2rgb_get_func_ptr(c);
2080 }
2081 #endif
2082
2083 if ( srcFormat==PIX_FMT_YUV410P && dstFormat==PIX_FMT_YUV420P )
2084 {
2085 c->swScale= yvu9toyv12Wrapper;
2086 }
2087
2088 /* bgr24toYV12 */
2089 if (srcFormat==PIX_FMT_BGR24 && dstFormat==PIX_FMT_YUV420P)
2090 c->swScale= bgr24toyv12Wrapper;
2091
2092 /* rgb/bgr -> rgb/bgr (no dither needed forms) */
2093 if ( (isBGR(srcFormat) || isRGB(srcFormat))
2094 && (isBGR(dstFormat) || isRGB(dstFormat))
2095 && srcFormat != PIX_FMT_BGR8 && dstFormat != PIX_FMT_BGR8
2096 && srcFormat != PIX_FMT_RGB8 && dstFormat != PIX_FMT_RGB8
2097 && srcFormat != PIX_FMT_BGR4 && dstFormat != PIX_FMT_BGR4
2098 && srcFormat != PIX_FMT_RGB4 && dstFormat != PIX_FMT_RGB4
2099 && srcFormat != PIX_FMT_BGR4_BYTE && dstFormat != PIX_FMT_BGR4_BYTE
2100 && srcFormat != PIX_FMT_RGB4_BYTE && dstFormat != PIX_FMT_RGB4_BYTE
2101 && srcFormat != PIX_FMT_MONOBLACK && dstFormat != PIX_FMT_MONOBLACK
2102 && !needsDither)
2103 c->swScale= rgb2rgbWrapper;
2104
2105 /* LQ converters if -sws 0 or -sws 4*/
2106 if (c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
2107 /* rgb/bgr -> rgb/bgr (dither needed forms) */
2108 if ( (isBGR(srcFormat) || isRGB(srcFormat))
2109 && (isBGR(dstFormat) || isRGB(dstFormat))
2110 && needsDither)
2111 c->swScale= rgb2rgbWrapper;
2112
2113 /* yv12_to_yuy2 */
2114 if (srcFormat == PIX_FMT_YUV420P &&
2115 (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422))
2116 {
2117 if (dstFormat == PIX_FMT_YUYV422)
2118 c->swScale= PlanarToYuy2Wrapper;
2119 else
2120 c->swScale= PlanarToUyvyWrapper;
2121 }
2122 }
2123
2124 #ifdef COMPILE_ALTIVEC
2125 if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
2126 ((srcFormat == PIX_FMT_YUV420P &&
2127 (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422)))) {
2128 // unscaled YV12 -> packed YUV, we want speed
2129 if (dstFormat == PIX_FMT_YUYV422)
2130 c->swScale= yv12toyuy2_unscaled_altivec;
2131 else
2132 c->swScale= yv12touyvy_unscaled_altivec;
2133 }
2134 #endif
2135
2136 /* simple copy */
2137 if ( srcFormat == dstFormat
2138 || (isPlanarYUV(srcFormat) && isGray(dstFormat))
2139 || (isPlanarYUV(dstFormat) && isGray(srcFormat)) )
2140 {
2141 c->swScale= simpleCopy;
2142 }
2143
2144 /* gray16{le,be} conversions */
2145 if (isGray16(srcFormat) && (isPlanarYUV(dstFormat) || (dstFormat == PIX_FMT_GRAY8)))
2146 {
2147 c->swScale= gray16togray;
2148 }
2149 if ((isPlanarYUV(srcFormat) || (srcFormat == PIX_FMT_GRAY8)) && isGray16(dstFormat))
2150 {
2151 c->swScale= graytogray16;
2152 }
2153 if (srcFormat != dstFormat && isGray16(srcFormat) && isGray16(dstFormat))
2154 {
2155 c->swScale= gray16swap;
2156 }
2157
2158 if (c->swScale){
2159 if (flags&SWS_PRINT_INFO)
2160 av_log(c, AV_LOG_INFO, "SwScaler: using unscaled %s -> %s special converter\n",
2161 sws_format_name(srcFormat), sws_format_name(dstFormat));
2162 return c;
2163 }
2164 }
2165
2166 if (flags & SWS_CPU_CAPS_MMX2)
2167 {
2168 c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
2169 if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
2170 {
2171 if (flags&SWS_PRINT_INFO)
2172 av_log(c, AV_LOG_INFO, "SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
2173 }
2174 if (usesHFilter) c->canMMX2BeUsed=0;
2175 }
2176 else
2177 c->canMMX2BeUsed=0;
2178
2179 c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
2180 c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
2181
2182 // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
2183 // but only for the FAST_BILINEAR mode otherwise do correct scaling
2184 // n-2 is the last chrominance sample available
2185 // this is not perfect, but noone shuld notice the difference, the more correct variant
2186 // would be like the vertical one, but that would require some special code for the
2187 // first and last pixel
2188 if (flags&SWS_FAST_BILINEAR)
2189 {
2190 if (c->canMMX2BeUsed)
2191 {
2192 c->lumXInc+= 20;
2193 c->chrXInc+= 20;
2194 }
2195 //we don't use the x86asm scaler if mmx is available
2196 else if (flags & SWS_CPU_CAPS_MMX)
2197 {
2198 c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
2199 c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
2200 }
2201 }
2202
2203 /* precalculate horizontal scaler filter coefficients */
2204 {
2205 const int filterAlign=
2206 (flags & SWS_CPU_CAPS_MMX) ? 4 :
2207 (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2208 1;
2209
2210 initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
2211 srcW , dstW, filterAlign, 1<<14,
2212 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
2213 srcFilter->lumH, dstFilter->lumH, c->param);
2214 initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
2215 c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
2216 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2217 srcFilter->chrH, dstFilter->chrH, c->param);
2218
2219 #define MAX_FUNNY_CODE_SIZE 10000
2220 #if defined(COMPILE_MMX2)
2221 // can't downscale !!!
2222 if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
2223 {
2224 #ifdef MAP_ANONYMOUS
2225 c->funnyYCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2226 c->funnyUVCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2227 #else
2228 c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
2229 c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
2230 #endif
2231
2232 c->lumMmx2Filter = av_malloc((dstW /8+8)*sizeof(int16_t));
2233 c->chrMmx2Filter = av_malloc((c->chrDstW /4+8)*sizeof(int16_t));
2234 c->lumMmx2FilterPos= av_malloc((dstW /2/8+8)*sizeof(int32_t));
2235 c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));
2236
2237 initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
2238 initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
2239 }
2240 #endif /* defined(COMPILE_MMX2) */
2241 } // Init Horizontal stuff
2242
2243
2244
2245 /* precalculate vertical scaler filter coefficients */
2246 {
2247 const int filterAlign=
2248 (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
2249 (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2250 1;
2251
2252 initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
2253 srcH , dstH, filterAlign, (1<<12)-4,
2254 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
2255 srcFilter->lumV, dstFilter->lumV, c->param);
2256 initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
2257 c->chrSrcH, c->chrDstH, filterAlign, (1<<12)-4,
2258 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2259 srcFilter->chrV, dstFilter->chrV, c->param);
2260
2261 #ifdef HAVE_ALTIVEC
2262 c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
2263 c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
2264
2265 for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
2266 int j;
2267 short *p = (short *)&c->vYCoeffsBank[i];
2268 for (j=0;j<8;j++)
2269 p[j] = c->vLumFilter[i];
2270 }
2271
2272 for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
2273 int j;
2274 short *p = (short *)&c->vCCoeffsBank[i];
2275 for (j=0;j<8;j++)
2276 p[j] = c->vChrFilter[i];
2277 }
2278 #endif
2279 }
2280
2281 // Calculate Buffer Sizes so that they won't run out while handling these damn slices
2282 c->vLumBufSize= c->vLumFilterSize;
2283 c->vChrBufSize= c->vChrFilterSize;
2284 for (i=0; i<dstH; i++)
2285 {
2286 int chrI= i*c->chrDstH / dstH;
2287 int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
2288 ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
2289
2290 nextSlice>>= c->chrSrcVSubSample;
2291 nextSlice<<= c->chrSrcVSubSample;
2292 if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
2293 c->vLumBufSize= nextSlice - c->vLumFilterPos[i ];
2294 if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
2295 c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
2296 }
2297
2298 // allocate pixbufs (we use dynamic allocation because otherwise we would need to
2299 c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
2300 c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
2301 //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
2302 /* align at 16 bytes for AltiVec */
2303 for (i=0; i<c->vLumBufSize; i++)
2304 c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_mallocz(4000);
2305 for (i=0; i<c->vChrBufSize; i++)
2306 c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc(8000);
2307
2308 //try to avoid drawing green stuff between the right end and the stride end
2309 for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000);
2310
2311 ASSERT(c->chrDstH <= dstH)
2312
2313 if (flags&SWS_PRINT_INFO)
2314 {
2315 #ifdef DITHER1XBPP
2316 char *dither= " dithered";
2317 #else
2318 char *dither= "";
2319 #endif
2320 if (flags&SWS_FAST_BILINEAR)
2321 av_log(c, AV_LOG_INFO, "SwScaler: FAST_BILINEAR scaler, ");
2322 else if (flags&SWS_BILINEAR)
2323 av_log(c, AV_LOG_INFO, "SwScaler: BILINEAR scaler, ");
2324 else if (flags&SWS_BICUBIC)
2325 av_log(c, AV_LOG_INFO, "SwScaler: BICUBIC scaler, ");
2326 else if (flags&SWS_X)
2327 av_log(c, AV_LOG_INFO, "SwScaler: Experimental scaler, ");
2328 else if (flags&SWS_POINT)
2329 av_log(c, AV_LOG_INFO, "SwScaler: Nearest Neighbor / POINT scaler, ");
2330 else if (flags&SWS_AREA)
2331 av_log(c, AV_LOG_INFO, "SwScaler: Area Averageing scaler, ");
2332 else if (flags&SWS_BICUBLIN)
2333 av_log(c, AV_LOG_INFO, "SwScaler: luma BICUBIC / chroma BILINEAR scaler, ");
2334 else if (flags&SWS_GAUSS)
2335 av_log(c, AV_LOG_INFO, "SwScaler: Gaussian scaler, ");
2336 else if (flags&SWS_SINC)
2337 av_log(c, AV_LOG_INFO, "SwScaler: Sinc scaler, ");
2338 else if (flags&SWS_LANCZOS)
2339 av_log(c, AV_LOG_INFO, "SwScaler: Lanczos scaler, ");
2340 else if (flags&SWS_SPLINE)
2341 av_log(c, AV_LOG_INFO, "SwScaler: Bicubic spline scaler, ");
2342 else
2343 av_log(c, AV_LOG_INFO, "SwScaler: ehh flags invalid?! ");
2344
2345 if (dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565)
2346 av_log(c, AV_LOG_INFO, "from %s to%s %s ",
2347 sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
2348 else
2349 av_log(c, AV_LOG_INFO, "from %s to %s ",
2350 sws_format_name(srcFormat), sws_format_name(dstFormat));
2351
2352 if (flags & SWS_CPU_CAPS_MMX2)
2353 av_log(c, AV_LOG_INFO, "using MMX2\n");
2354 else if (flags & SWS_CPU_CAPS_3DNOW)
2355 av_log(c, AV_LOG_INFO, "using 3DNOW\n");
2356 else if (flags & SWS_CPU_CAPS_MMX)
2357 av_log(c, AV_LOG_INFO, "using MMX\n");
2358 else if (flags & SWS_CPU_CAPS_ALTIVEC)
2359 av_log(c, AV_LOG_INFO, "using AltiVec\n");
2360 else
2361 av_log(c, AV_LOG_INFO, "using C\n");
2362 }
2363
2364 if (flags & SWS_PRINT_INFO)
2365 {
2366 if (flags & SWS_CPU_CAPS_MMX)
2367 {
2368 if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
2369 av_log(c, AV_LOG_VERBOSE, "SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
2370 else
2371 {
2372 if (c->hLumFilterSize==4)
2373 av_log(c, AV_LOG_VERBOSE, "SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
2374 else if (c->hLumFilterSize==8)
2375 av_log(c, AV_LOG_VERBOSE, "SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
2376 else
2377 av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");
2378
2379 if (c->hChrFilterSize==4)
2380 av_log(c, AV_LOG_VERBOSE, "SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
2381 else if (c->hChrFilterSize==8)
2382 av_log(c, AV_LOG_VERBOSE, "SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
2383 else
2384 av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
2385 }
2386 }
2387 else
2388 {
2389 #if defined(ARCH_X86)
2390 av_log(c, AV_LOG_VERBOSE, "SwScaler: using X86-Asm scaler for horizontal scaling\n");
2391 #else
2392 if (flags & SWS_FAST_BILINEAR)
2393 av_log(c, AV_LOG_VERBOSE, "SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
2394 else
2395 av_log(c, AV_LOG_VERBOSE, "SwScaler: using C scaler for horizontal scaling\n");
2396 #endif
2397 }
2398 if (isPlanarYUV(dstFormat))
2399 {
2400 if (c->vLumFilterSize==1)
2401 av_log(c, AV_LOG_VERBOSE, "SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2402 else
2403 av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2404 }
2405 else
2406 {
2407 if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
2408 av_log(c, AV_LOG_VERBOSE, "SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
2409 "SwScaler: 2-tap scaler for vertical chrominance scaling (BGR)\n",(flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2410 else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
2411 av_log(c, AV_LOG_VERBOSE, "SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2412 else
2413 av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2414 }
2415
2416 if (dstFormat==PIX_FMT_BGR24)
2417 av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR24 Converter\n",
2418 (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
2419 else if (dstFormat==PIX_FMT_RGB32)
2420 av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2421 else if (dstFormat==PIX_FMT_BGR565)
2422 av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2423 else if (dstFormat==PIX_FMT_BGR555)
2424 av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2425
2426 av_log(c, AV_LOG_VERBOSE, "SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
2427 }
2428 if (flags & SWS_PRINT_INFO)
2429 {
2430 av_log(c, AV_LOG_DEBUG, "SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2431 c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
2432 av_log(c, AV_LOG_DEBUG, "SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2433 c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
2434 }
2435
2436 c->swScale= getSwsFunc(flags);
2437 return c;
2438 }
2439
2440 /**
2441 * swscale warper, so we don't need to export the SwsContext.
2442 * assumes planar YUV to be in YUV order instead of YVU
2443 */
2444 int sws_scale(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
2445 int srcSliceH, uint8_t* dst[], int dstStride[]){
2446 int i;
2447 uint8_t* src2[4]= {src[0], src[1], src[2]};
2448 uint32_t pal[256];
2449 if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
2450 av_log(c, AV_LOG_ERROR, "swScaler: slices start in the middle!\n");
2451 return 0;
2452 }
2453 if (c->sliceDir == 0) {
2454 if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
2455 }
2456
2457 if (c->srcFormat == PIX_FMT_PAL8){
2458 for (i=0; i<256; i++){
2459 int p= ((uint32_t*)(src[1]))[i];
2460 int r= (p>>16)&0xFF;
2461 int g= (p>> 8)&0xFF;
2462 int b= p &0xFF;
2463 int y= av_clip_uint8(((RY*r + GY*g + BY*b)>>RGB2YUV_SHIFT) + 16 );
2464 int u= av_clip_uint8(((RU*r + GU*g + BU*b)>>RGB2YUV_SHIFT) + 128);
2465 int v= av_clip_uint8(((RV*r + GV*g + BV*b)>>RGB2YUV_SHIFT) + 128);
2466 pal[i]= y + (u<<8) + (v<<16);
2467 }
2468 src2[1]= pal;
2469 }
2470
2471 // copy strides, so they can safely be modified
2472 if (c->sliceDir == 1) {
2473 // slices go from top to bottom
2474 int srcStride2[4]= {srcStride[0], srcStride[1], srcStride[2]};
2475 int dstStride2[4]= {dstStride[0], dstStride[1], dstStride[2]};
2476 return c->swScale(c, src2, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
2477 } else {
2478 // slices go from bottom to top => we flip the image internally
2479 uint8_t* dst2[4]= {dst[0] + (c->dstH-1)*dstStride[0],
2480 dst[1] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1],
2481 dst[2] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2]};
2482 int srcStride2[4]= {-srcStride[0], -srcStride[1], -srcStride[2]};
2483 int dstStride2[4]= {-dstStride[0], -dstStride[1], -dstStride[2]};
2484
2485 src2[0] += (srcSliceH-1)*srcStride[0];
2486 if (c->srcFormat != PIX_FMT_PAL8)
2487 src2[1] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1];
2488 src2[2] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2];
2489
2490 return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
2491 }
2492 }
2493
2494 /**
2495 * swscale warper, so we don't need to export the SwsContext
2496 */
2497 int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
2498 int srcSliceH, uint8_t* dst[], int dstStride[]){
2499 return sws_scale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
2500 }
2501
2502 SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
2503 float lumaSharpen, float chromaSharpen,
2504 float chromaHShift, float chromaVShift,
2505 int verbose)
2506 {
2507 SwsFilter *filter= av_malloc(sizeof(SwsFilter));
2508
2509 if (lumaGBlur!=0.0){
2510 filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
2511 filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
2512 }else{
2513 filter->lumH= sws_getIdentityVec();
2514 filter->lumV= sws_getIdentityVec();
2515 }
2516
2517 if (chromaGBlur!=0.0){
2518 filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
2519 filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
2520 }else{
2521 filter->chrH= sws_getIdentityVec();
2522 filter->chrV= sws_getIdentityVec();
2523 }
2524
2525 if (chromaSharpen!=0.0){
2526 SwsVector *id= sws_getIdentityVec();
2527 sws_scaleVec(filter->chrH, -chromaSharpen);
2528 sws_scaleVec(filter->chrV, -chromaSharpen);
2529 sws_addVec(filter->chrH, id);
2530 sws_addVec(filter->chrV, id);
2531 sws_freeVec(id);
2532 }
2533
2534 if (lumaSharpen!=0.0){
2535 SwsVector *id= sws_getIdentityVec();
2536 sws_scaleVec(filter->lumH, -lumaSharpen);
2537 sws_scaleVec(filter->lumV, -lumaSharpen);
2538 sws_addVec(filter->lumH, id);
2539 sws_addVec(filter->lumV, id);
2540 sws_freeVec(id);
2541 }
2542
2543 if (chromaHShift != 0.0)
2544 sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
2545
2546 if (chromaVShift != 0.0)
2547 sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
2548
2549 sws_normalizeVec(filter->chrH, 1.0);
2550 sws_normalizeVec(filter->chrV, 1.0);
2551 sws_normalizeVec(filter->lumH, 1.0);
2552 sws_normalizeVec(filter->lumV, 1.0);
2553
2554 if (verbose) sws_printVec(filter->chrH);
2555 if (verbose) sws_printVec(filter->lumH);
2556
2557 return filter;
2558 }
2559
2560 /**
2561 * returns a normalized gaussian curve used to filter stuff
2562 * quality=3 is high quality, lowwer is lowwer quality
2563 */
2564 SwsVector *sws_getGaussianVec(double variance, double quality){
2565 const int length= (int)(variance*quality + 0.5) | 1;
2566 int i;
2567 double *coeff= av_malloc(length*sizeof(double));
2568 double middle= (length-1)*0.5;
2569 SwsVector *vec= av_malloc(sizeof(SwsVector));
2570
2571 vec->coeff= coeff;
2572 vec->length= length;
2573
2574 for (i=0; i<length; i++)
2575 {
2576 double dist= i-middle;
2577 coeff[i]= exp( -dist*dist/(2*variance*variance) ) / sqrt(2*variance*PI);
2578 }
2579
2580 sws_normalizeVec(vec, 1.0);
2581
2582 return vec;
2583 }
2584
2585 SwsVector *sws_getConstVec(double c, int length){
2586 int i;
2587 double *coeff= av_malloc(length*sizeof(double));
2588 SwsVector *vec= av_malloc(sizeof(SwsVector));
2589
2590 vec->coeff= coeff;
2591 vec->length= length;
2592
2593 for (i=0; i<length; i++)
2594 coeff[i]= c;
2595
2596 return vec;
2597 }
2598
2599
2600 SwsVector *sws_getIdentityVec(void){
2601 return sws_getConstVec(1.0, 1);
2602 }
2603
2604 double sws_dcVec(SwsVector *a){
2605 int i;
2606 double sum=0;
2607
2608 for (i=0; i<a->length; i++)
2609 sum+= a->coeff[i];
2610
2611 return sum;
2612 }
2613
2614 void sws_scaleVec(SwsVector *a, double scalar){
2615 int i;
2616
2617 for (i=0; i<a->length; i++)
2618 a->coeff[i]*= scalar;
2619 }
2620
2621 void sws_normalizeVec(SwsVector *a, double height){
2622 sws_scaleVec(a, height/sws_dcVec(a));
2623 }
2624
2625 static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
2626 int length= a->length + b->length - 1;
2627 double *coeff= av_malloc(length*sizeof(double));
2628 int i, j;
2629 SwsVector *vec= av_malloc(sizeof(SwsVector));
2630
2631 vec->coeff= coeff;
2632 vec->length= length;
2633
2634 for (i=0; i<length; i++) coeff[i]= 0.0;
2635
2636 for (i=0; i<a->length; i++)
2637 {
2638 for (j=0; j<b->length; j++)
2639 {
2640 coeff[i+j]+= a->coeff[i]*b->coeff[j];
2641 }
2642 }
2643
2644 return vec;
2645 }
2646
2647 static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
2648 int length= FFMAX(a->length, b->length);
2649 double *coeff= av_malloc(length*sizeof(double));
2650 int i;
2651 SwsVector *vec= av_malloc(sizeof(SwsVector));
2652
2653 vec->coeff= coeff;
2654 vec->length= length;
2655
2656 for (i=0; i<length; i++) coeff[i]= 0.0;
2657
2658 for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2659 for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
2660
2661 return vec;
2662 }
2663
2664 static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
2665 int length= FFMAX(a->length, b->length);
2666 double *coeff= av_malloc(length*sizeof(double));
2667 int i;
2668 SwsVector *vec= av_malloc(sizeof(SwsVector));
2669
2670 vec->coeff= coeff;
2671 vec->length= length;
2672
2673 for (i=0; i<length; i++) coeff[i]= 0.0;
2674
2675 for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2676 for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
2677
2678 return vec;
2679 }
2680
2681 /* shift left / or right if "shift" is negative */
2682 static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
2683 int length= a->length + FFABS(shift)*2;
2684 double *coeff= av_malloc(length*sizeof(double));
2685 int i;
2686 SwsVector *vec= av_malloc(sizeof(SwsVector));
2687
2688 vec->coeff= coeff;
2689 vec->length= length;
2690
2691 for (i=0; i<length; i++) coeff[i]= 0.0;
2692
2693 for (i=0; i<a->length; i++)
2694 {
2695 coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
2696 }
2697
2698 return vec;
2699 }
2700
2701 void sws_shiftVec(SwsVector *a, int shift){
2702 SwsVector *shifted= sws_getShiftedVec(a, shift);
2703 av_free(a->coeff);
2704 a->coeff= shifted->coeff;
2705 a->length= shifted->length;
2706 av_free(shifted);
2707 }
2708
2709 void sws_addVec(SwsVector *a, SwsVector *b){
2710 SwsVector *sum= sws_sumVec(a, b);
2711 av_free(a->coeff);
2712 a->coeff= sum->coeff;
2713 a->length= sum->length;
2714 av_free(sum);
2715 }
2716
2717 void sws_subVec(SwsVector *a, SwsVector *b){
2718 SwsVector *diff= sws_diffVec(a, b);
2719 av_free(a->coeff);
2720 a->coeff= diff->coeff;
2721 a->length= diff->length;
2722 av_free(diff);
2723 }
2724
2725 void sws_convVec(SwsVector *a, SwsVector *b){
2726 SwsVector *conv= sws_getConvVec(a, b);
2727 av_free(a->coeff);
2728 a->coeff= conv->coeff;
2729 a->length= conv->length;
2730 av_free(conv);
2731 }
2732
2733 SwsVector *sws_cloneVec(SwsVector *a){
2734 double *coeff= av_malloc(a->length*sizeof(double));
2735 int i;
2736 SwsVector *vec= av_malloc(sizeof(SwsVector));
2737
2738 vec->coeff= coeff;
2739 vec->length= a->length;
2740
2741 for (i=0; i<a->length; i++) coeff[i]= a->coeff[i];
2742
2743 return vec;
2744 }
2745
2746 void sws_printVec(SwsVector *a){
2747 int i;
2748 double max=0;
2749 double min=0;
2750 double range;
2751
2752 for (i=0; i<a->length; i++)
2753 if (a->coeff[i]>max) max= a->coeff[i];
2754
2755 for (i=0; i<a->length; i++)
2756 if (a->coeff[i]<min) min= a->coeff[i];
2757
2758 range= max - min;
2759
2760 for (i=0; i<a->length; i++)
2761 {
2762 int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
2763 av_log(NULL, AV_LOG_DEBUG, "%1.3f ", a->coeff[i]);
2764 for (;x>0; x--) av_log(NULL, AV_LOG_DEBUG, " ");
2765 av_log(NULL, AV_LOG_DEBUG, "|\n");
2766 }
2767 }
2768
2769 void sws_freeVec(SwsVector *a){
2770 if (!a) return;
2771 av_free(a->coeff);
2772 a->coeff=NULL;
2773 a->length=0;
2774 av_free(a);
2775 }
2776
2777 void sws_freeFilter(SwsFilter *filter){
2778 if (!filter) return;
2779
2780 if (filter->lumH) sws_freeVec(filter->lumH);
2781 if (filter->lumV) sws_freeVec(filter->lumV);
2782 if (filter->chrH) sws_freeVec(filter->chrH);
2783 if (filter->chrV) sws_freeVec(filter->chrV);
2784 av_free(filter);
2785 }
2786
2787
2788 void sws_freeContext(SwsContext *c){
2789 int i;
2790 if (!c) return;
2791
2792 if (c->lumPixBuf)
2793 {
2794 for (i=0; i<c->vLumBufSize; i++)
2795 {
2796 av_free(c->lumPixBuf[i]);
2797 c->lumPixBuf[i]=NULL;
2798 }
2799 av_free(c->lumPixBuf);
2800 c->lumPixBuf=NULL;
2801 }
2802
2803 if (c->chrPixBuf)
2804 {
2805 for (i=0; i<c->vChrBufSize; i++)
2806 {
2807 av_free(c->chrPixBuf[i]);
2808 c->chrPixBuf[i]=NULL;
2809 }
2810 av_free(c->chrPixBuf);
2811 c->chrPixBuf=NULL;
2812 }
2813
2814 av_free(c->vLumFilter);
2815 c->vLumFilter = NULL;
2816 av_free(c->vChrFilter);
2817 c->vChrFilter = NULL;
2818 av_free(c->hLumFilter);
2819 c->hLumFilter = NULL;
2820 av_free(c->hChrFilter);
2821 c->hChrFilter = NULL;
2822 #ifdef HAVE_ALTIVEC
2823 av_free(c->vYCoeffsBank);
2824 c->vYCoeffsBank = NULL;
2825 av_free(c->vCCoeffsBank);
2826 c->vCCoeffsBank = NULL;
2827 #endif
2828
2829 av_free(c->vLumFilterPos);
2830 c->vLumFilterPos = NULL;
2831 av_free(c->vChrFilterPos);
2832 c->vChrFilterPos = NULL;
2833 av_free(c->hLumFilterPos);
2834 c->hLumFilterPos = NULL;
2835 av_free(c->hChrFilterPos);
2836 c->hChrFilterPos = NULL;
2837
2838 #if defined(ARCH_X86) && defined(CONFIG_GPL)
2839 #ifdef MAP_ANONYMOUS
2840 if (c->funnyYCode) munmap(c->funnyYCode, MAX_FUNNY_CODE_SIZE);
2841 if (c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
2842 #else
2843 av_free(c->funnyYCode);
2844 av_free(c->funnyUVCode);
2845 #endif
2846 c->funnyYCode=NULL;
2847 c->funnyUVCode=NULL;
2848 #endif /* defined(ARCH_X86) */
2849
2850 av_free(c->lumMmx2Filter);
2851 c->lumMmx2Filter=NULL;
2852 av_free(c->chrMmx2Filter);
2853 c->chrMmx2Filter=NULL;
2854 av_free(c->lumMmx2FilterPos);
2855 c->lumMmx2FilterPos=NULL;
2856 av_free(c->chrMmx2FilterPos);
2857 c->chrMmx2FilterPos=NULL;
2858 av_free(c->yuvTable);
2859 c->yuvTable=NULL;
2860
2861 av_free(c);
2862 }
2863
2864 /**
2865 * Checks if context is valid or reallocs a new one instead.
2866 * If context is NULL, just calls sws_getContext() to get a new one.
2867 * Otherwise, checks if the parameters are the same already saved in context.
2868 * If that is the case, returns the current context.
2869 * Otherwise, frees context and gets a new one.
2870 *
2871 * Be warned that srcFilter, dstFilter are not checked, they are
2872 * asumed to remain valid.
2873 */
2874 struct SwsContext *sws_getCachedContext(struct SwsContext *context,
2875 int srcW, int srcH, int srcFormat,
2876 int dstW, int dstH, int dstFormat, int flags,
2877 SwsFilter *srcFilter, SwsFilter *dstFilter, double *param)
2878 {
2879 if (context != NULL) {
2880 if ((context->srcW != srcW) || (context->srcH != srcH) ||
2881 (context->srcFormat != srcFormat) ||
2882 (context->dstW != dstW) || (context->dstH != dstH) ||
2883 (context->dstFormat != dstFormat) || (context->flags != flags) ||
2884 (context->param != param))
2885 {
2886 sws_freeContext(context);
2887 context = NULL;
2888 }
2889 }
2890 if (context == NULL) {
2891 return sws_getContext(srcW, srcH, srcFormat,
2892 dstW, dstH, dstFormat, flags,
2893 srcFilter, dstFilter, param);
2894 }
2895 return context;
2896 }
2897