Do not attempt to use the unscaled yuv2rgb converter when height is odd because
[libav.git] / libswscale / swscale.c
1 /*
2 * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 * the C code (not assembly, mmx, ...) of this file can be used
21 * under the LGPL license too
22 */
23
24 /*
25 supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR32_1, BGR24, BGR16, BGR15, RGB32, RGB32_1, RGB24, Y8/Y800, YVU9/IF09, PAL8
26 supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
27 {BGR,RGB}{1,4,8,15,16} support dithering
28
29 unscaled special converters (YV12=I420=IYUV, Y800=Y8)
30 YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
31 x -> x
32 YUV9 -> YV12
33 YUV9/YV12 -> Y800
34 Y800 -> YUV9/YV12
35 BGR24 -> BGR32 & RGB24 -> RGB32
36 BGR32 -> BGR24 & RGB32 -> RGB24
37 BGR15 -> BGR16
38 */
39
40 /*
41 tested special converters (most are tested actually, but I did not write it down ...)
42 YV12 -> BGR16
43 YV12 -> YV12
44 BGR15 -> BGR16
45 BGR16 -> BGR16
46 YVU9 -> YV12
47
48 untested special converters
49 YV12/I420 -> BGR15/BGR24/BGR32 (it is the yuv2rgb stuff, so it should be ok)
50 YV12/I420 -> YV12/I420
51 YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
52 BGR24 -> BGR32 & RGB24 -> RGB32
53 BGR32 -> BGR24 & RGB32 -> RGB24
54 BGR24 -> YV12
55 */
56
57 #define _SVID_SOURCE //needed for MAP_ANONYMOUS
58 #include <inttypes.h>
59 #include <string.h>
60 #include <math.h>
61 #include <stdio.h>
62 #include <unistd.h>
63 #include "config.h"
64 #include <assert.h>
65 #ifdef HAVE_SYS_MMAN_H
66 #include <sys/mman.h>
67 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
68 #define MAP_ANONYMOUS MAP_ANON
69 #endif
70 #endif
71 #include "swscale.h"
72 #include "swscale_internal.h"
73 #include "rgb2rgb.h"
74 #include "libavutil/x86_cpu.h"
75 #include "libavutil/bswap.h"
76
77 unsigned swscale_version(void)
78 {
79 return LIBSWSCALE_VERSION_INT;
80 }
81
82 #undef MOVNTQ
83 #undef PAVGB
84
85 //#undef HAVE_MMX2
86 //#define HAVE_3DNOW
87 //#undef HAVE_MMX
88 //#undef ARCH_X86
89 //#define WORDS_BIGENDIAN
90 #define DITHER1XBPP
91
92 #define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
93
94 #define RET 0xC3 //near return opcode for X86
95
96 #ifdef M_PI
97 #define PI M_PI
98 #else
99 #define PI 3.14159265358979323846
100 #endif
101
102 #define isSupportedIn(x) ( \
103 (x)==PIX_FMT_YUV420P \
104 || (x)==PIX_FMT_YUVA420P \
105 || (x)==PIX_FMT_YUYV422 \
106 || (x)==PIX_FMT_UYVY422 \
107 || (x)==PIX_FMT_RGB32 \
108 || (x)==PIX_FMT_RGB32_1 \
109 || (x)==PIX_FMT_BGR24 \
110 || (x)==PIX_FMT_BGR565 \
111 || (x)==PIX_FMT_BGR555 \
112 || (x)==PIX_FMT_BGR32 \
113 || (x)==PIX_FMT_BGR32_1 \
114 || (x)==PIX_FMT_RGB24 \
115 || (x)==PIX_FMT_RGB565 \
116 || (x)==PIX_FMT_RGB555 \
117 || (x)==PIX_FMT_GRAY8 \
118 || (x)==PIX_FMT_YUV410P \
119 || (x)==PIX_FMT_YUV440P \
120 || (x)==PIX_FMT_GRAY16BE \
121 || (x)==PIX_FMT_GRAY16LE \
122 || (x)==PIX_FMT_YUV444P \
123 || (x)==PIX_FMT_YUV422P \
124 || (x)==PIX_FMT_YUV411P \
125 || (x)==PIX_FMT_PAL8 \
126 || (x)==PIX_FMT_BGR8 \
127 || (x)==PIX_FMT_RGB8 \
128 || (x)==PIX_FMT_BGR4_BYTE \
129 || (x)==PIX_FMT_RGB4_BYTE \
130 || (x)==PIX_FMT_YUV440P \
131 || (x)==PIX_FMT_MONOWHITE \
132 || (x)==PIX_FMT_MONOBLACK \
133 )
134 #define isSupportedOut(x) ( \
135 (x)==PIX_FMT_YUV420P \
136 || (x)==PIX_FMT_YUYV422 \
137 || (x)==PIX_FMT_UYVY422 \
138 || (x)==PIX_FMT_YUV444P \
139 || (x)==PIX_FMT_YUV422P \
140 || (x)==PIX_FMT_YUV411P \
141 || isRGB(x) \
142 || isBGR(x) \
143 || (x)==PIX_FMT_NV12 \
144 || (x)==PIX_FMT_NV21 \
145 || (x)==PIX_FMT_GRAY16BE \
146 || (x)==PIX_FMT_GRAY16LE \
147 || (x)==PIX_FMT_GRAY8 \
148 || (x)==PIX_FMT_YUV410P \
149 || (x)==PIX_FMT_YUV440P \
150 )
151 #define isPacked(x) ( \
152 (x)==PIX_FMT_PAL8 \
153 || (x)==PIX_FMT_YUYV422 \
154 || (x)==PIX_FMT_UYVY422 \
155 || isRGB(x) \
156 || isBGR(x) \
157 )
158 #define usePal(x) ( \
159 (x)==PIX_FMT_PAL8 \
160 || (x)==PIX_FMT_BGR4_BYTE \
161 || (x)==PIX_FMT_RGB4_BYTE \
162 || (x)==PIX_FMT_BGR8 \
163 || (x)==PIX_FMT_RGB8 \
164 )
165
166 #define RGB2YUV_SHIFT 15
167 #define BY ( (int)(0.114*219/255*(1<<RGB2YUV_SHIFT)+0.5))
168 #define BV (-(int)(0.081*224/255*(1<<RGB2YUV_SHIFT)+0.5))
169 #define BU ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
170 #define GY ( (int)(0.587*219/255*(1<<RGB2YUV_SHIFT)+0.5))
171 #define GV (-(int)(0.419*224/255*(1<<RGB2YUV_SHIFT)+0.5))
172 #define GU (-(int)(0.331*224/255*(1<<RGB2YUV_SHIFT)+0.5))
173 #define RY ( (int)(0.299*219/255*(1<<RGB2YUV_SHIFT)+0.5))
174 #define RV ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
175 #define RU (-(int)(0.169*224/255*(1<<RGB2YUV_SHIFT)+0.5))
176
177 extern const int32_t Inverse_Table_6_9[8][4];
178
179 static const double rgb2yuv_table[8][9]={
180 {0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
181 {0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
182 {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
183 {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
184 {0.59 , 0.11 , 0.30 , -0.331, 0.5, -0.169, -0.421, -0.079, 0.5}, //FCC
185 {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
186 {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5}, //SMPTE 170M
187 {0.701 , 0.087 , 0.212 , -0.384, 0.5 -0.116, -0.445, -0.055, 0.5}, //SMPTE 240M
188 };
189
190 /*
191 NOTES
192 Special versions: fast Y 1:1 scaling (no interpolation in y direction)
193
194 TODO
195 more intelligent misalignment avoidance for the horizontal scaler
196 write special vertical cubic upscale version
197 Optimize C code (yv12 / minmax)
198 add support for packed pixel yuv input & output
199 add support for Y8 output
200 optimize bgr24 & bgr32
201 add BGR4 output support
202 write special BGR->BGR scaler
203 */
204
205 #if defined(ARCH_X86) && defined (CONFIG_GPL)
206 DECLARE_ASM_CONST(8, uint64_t, bF8)= 0xF8F8F8F8F8F8F8F8LL;
207 DECLARE_ASM_CONST(8, uint64_t, bFC)= 0xFCFCFCFCFCFCFCFCLL;
208 DECLARE_ASM_CONST(8, uint64_t, w10)= 0x0010001000100010LL;
209 DECLARE_ASM_CONST(8, uint64_t, w02)= 0x0002000200020002LL;
210 DECLARE_ASM_CONST(8, uint64_t, bm00001111)=0x00000000FFFFFFFFLL;
211 DECLARE_ASM_CONST(8, uint64_t, bm00000111)=0x0000000000FFFFFFLL;
212 DECLARE_ASM_CONST(8, uint64_t, bm11111000)=0xFFFFFFFFFF000000LL;
213 DECLARE_ASM_CONST(8, uint64_t, bm01010101)=0x00FF00FF00FF00FFLL;
214
215 const DECLARE_ALIGNED(8, uint64_t, ff_dither4[2]) = {
216 0x0103010301030103LL,
217 0x0200020002000200LL,};
218
219 const DECLARE_ALIGNED(8, uint64_t, ff_dither8[2]) = {
220 0x0602060206020602LL,
221 0x0004000400040004LL,};
222
223 DECLARE_ASM_CONST(8, uint64_t, b16Mask)= 0x001F001F001F001FLL;
224 DECLARE_ASM_CONST(8, uint64_t, g16Mask)= 0x07E007E007E007E0LL;
225 DECLARE_ASM_CONST(8, uint64_t, r16Mask)= 0xF800F800F800F800LL;
226 DECLARE_ASM_CONST(8, uint64_t, b15Mask)= 0x001F001F001F001FLL;
227 DECLARE_ASM_CONST(8, uint64_t, g15Mask)= 0x03E003E003E003E0LL;
228 DECLARE_ASM_CONST(8, uint64_t, r15Mask)= 0x7C007C007C007C00LL;
229
230 DECLARE_ALIGNED(8, const uint64_t, ff_M24A) = 0x00FF0000FF0000FFLL;
231 DECLARE_ALIGNED(8, const uint64_t, ff_M24B) = 0xFF0000FF0000FF00LL;
232 DECLARE_ALIGNED(8, const uint64_t, ff_M24C) = 0x0000FF0000FF0000LL;
233
234 #ifdef FAST_BGR2YV12
235 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000000210041000DULL;
236 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000FFEEFFDC0038ULL;
237 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00000038FFD2FFF8ULL;
238 #else
239 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000020E540830C8BULL;
240 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000ED0FDAC23831ULL;
241 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00003831D0E6F6EAULL;
242 #endif /* FAST_BGR2YV12 */
243 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YOffset) = 0x1010101010101010ULL;
244 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UVOffset) = 0x8080808080808080ULL;
245 DECLARE_ALIGNED(8, const uint64_t, ff_w1111) = 0x0001000100010001ULL;
246
247 DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toY1Coeff) = 0x0C88000040870C88ULL;
248 DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toY2Coeff) = 0x20DE4087000020DEULL;
249 DECLARE_ASM_CONST(8, uint64_t, ff_rgb24toY1Coeff) = 0x20DE0000408720DEULL;
250 DECLARE_ASM_CONST(8, uint64_t, ff_rgb24toY2Coeff) = 0x0C88408700000C88ULL;
251 DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toYOffset) = 0x0008400000084000ULL;
252
253 DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toUV[2][4]) = {
254 {0x38380000DAC83838ULL, 0xECFFDAC80000ECFFULL, 0xF6E40000D0E3F6E4ULL, 0x3838D0E300003838ULL},
255 {0xECFF0000DAC8ECFFULL, 0x3838DAC800003838ULL, 0x38380000D0E33838ULL, 0xF6E4D0E30000F6E4ULL},
256 };
257
258 DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toUVOffset)= 0x0040400000404000ULL;
259
260 #endif /* defined(ARCH_X86) */
261
262 // clipping helper table for C implementations:
263 static unsigned char clip_table[768];
264
265 static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
266
267 static const uint8_t __attribute__((aligned(8))) dither_2x2_4[2][8]={
268 { 1, 3, 1, 3, 1, 3, 1, 3, },
269 { 2, 0, 2, 0, 2, 0, 2, 0, },
270 };
271
272 static const uint8_t __attribute__((aligned(8))) dither_2x2_8[2][8]={
273 { 6, 2, 6, 2, 6, 2, 6, 2, },
274 { 0, 4, 0, 4, 0, 4, 0, 4, },
275 };
276
277 const uint8_t __attribute__((aligned(8))) dither_8x8_32[8][8]={
278 { 17, 9, 23, 15, 16, 8, 22, 14, },
279 { 5, 29, 3, 27, 4, 28, 2, 26, },
280 { 21, 13, 19, 11, 20, 12, 18, 10, },
281 { 0, 24, 6, 30, 1, 25, 7, 31, },
282 { 16, 8, 22, 14, 17, 9, 23, 15, },
283 { 4, 28, 2, 26, 5, 29, 3, 27, },
284 { 20, 12, 18, 10, 21, 13, 19, 11, },
285 { 1, 25, 7, 31, 0, 24, 6, 30, },
286 };
287
288 #if 0
289 const uint8_t __attribute__((aligned(8))) dither_8x8_64[8][8]={
290 { 0, 48, 12, 60, 3, 51, 15, 63, },
291 { 32, 16, 44, 28, 35, 19, 47, 31, },
292 { 8, 56, 4, 52, 11, 59, 7, 55, },
293 { 40, 24, 36, 20, 43, 27, 39, 23, },
294 { 2, 50, 14, 62, 1, 49, 13, 61, },
295 { 34, 18, 46, 30, 33, 17, 45, 29, },
296 { 10, 58, 6, 54, 9, 57, 5, 53, },
297 { 42, 26, 38, 22, 41, 25, 37, 21, },
298 };
299 #endif
300
301 const uint8_t __attribute__((aligned(8))) dither_8x8_73[8][8]={
302 { 0, 55, 14, 68, 3, 58, 17, 72, },
303 { 37, 18, 50, 32, 40, 22, 54, 35, },
304 { 9, 64, 5, 59, 13, 67, 8, 63, },
305 { 46, 27, 41, 23, 49, 31, 44, 26, },
306 { 2, 57, 16, 71, 1, 56, 15, 70, },
307 { 39, 21, 52, 34, 38, 19, 51, 33, },
308 { 11, 66, 7, 62, 10, 65, 6, 60, },
309 { 48, 30, 43, 25, 47, 29, 42, 24, },
310 };
311
312 #if 0
313 const uint8_t __attribute__((aligned(8))) dither_8x8_128[8][8]={
314 { 68, 36, 92, 60, 66, 34, 90, 58, },
315 { 20, 116, 12, 108, 18, 114, 10, 106, },
316 { 84, 52, 76, 44, 82, 50, 74, 42, },
317 { 0, 96, 24, 120, 6, 102, 30, 126, },
318 { 64, 32, 88, 56, 70, 38, 94, 62, },
319 { 16, 112, 8, 104, 22, 118, 14, 110, },
320 { 80, 48, 72, 40, 86, 54, 78, 46, },
321 { 4, 100, 28, 124, 2, 98, 26, 122, },
322 };
323 #endif
324
325 #if 1
326 const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
327 {117, 62, 158, 103, 113, 58, 155, 100, },
328 { 34, 199, 21, 186, 31, 196, 17, 182, },
329 {144, 89, 131, 76, 141, 86, 127, 72, },
330 { 0, 165, 41, 206, 10, 175, 52, 217, },
331 {110, 55, 151, 96, 120, 65, 162, 107, },
332 { 28, 193, 14, 179, 38, 203, 24, 189, },
333 {138, 83, 124, 69, 148, 93, 134, 79, },
334 { 7, 172, 48, 213, 3, 168, 45, 210, },
335 };
336 #elif 1
337 // tries to correct a gamma of 1.5
338 const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
339 { 0, 143, 18, 200, 2, 156, 25, 215, },
340 { 78, 28, 125, 64, 89, 36, 138, 74, },
341 { 10, 180, 3, 161, 16, 195, 8, 175, },
342 {109, 51, 93, 38, 121, 60, 105, 47, },
343 { 1, 152, 23, 210, 0, 147, 20, 205, },
344 { 85, 33, 134, 71, 81, 30, 130, 67, },
345 { 14, 190, 6, 171, 12, 185, 5, 166, },
346 {117, 57, 101, 44, 113, 54, 97, 41, },
347 };
348 #elif 1
349 // tries to correct a gamma of 2.0
350 const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
351 { 0, 124, 8, 193, 0, 140, 12, 213, },
352 { 55, 14, 104, 42, 66, 19, 119, 52, },
353 { 3, 168, 1, 145, 6, 187, 3, 162, },
354 { 86, 31, 70, 21, 99, 39, 82, 28, },
355 { 0, 134, 11, 206, 0, 129, 9, 200, },
356 { 62, 17, 114, 48, 58, 16, 109, 45, },
357 { 5, 181, 2, 157, 4, 175, 1, 151, },
358 { 95, 36, 78, 26, 90, 34, 74, 24, },
359 };
360 #else
361 // tries to correct a gamma of 2.5
362 const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
363 { 0, 107, 3, 187, 0, 125, 6, 212, },
364 { 39, 7, 86, 28, 49, 11, 102, 36, },
365 { 1, 158, 0, 131, 3, 180, 1, 151, },
366 { 68, 19, 52, 12, 81, 25, 64, 17, },
367 { 0, 119, 5, 203, 0, 113, 4, 195, },
368 { 45, 9, 96, 33, 42, 8, 91, 30, },
369 { 2, 172, 1, 144, 2, 165, 0, 137, },
370 { 77, 23, 60, 15, 72, 21, 56, 14, },
371 };
372 #endif
373
374 const char *sws_format_name(enum PixelFormat format)
375 {
376 switch (format) {
377 case PIX_FMT_YUV420P:
378 return "yuv420p";
379 case PIX_FMT_YUVA420P:
380 return "yuva420p";
381 case PIX_FMT_YUYV422:
382 return "yuyv422";
383 case PIX_FMT_RGB24:
384 return "rgb24";
385 case PIX_FMT_BGR24:
386 return "bgr24";
387 case PIX_FMT_YUV422P:
388 return "yuv422p";
389 case PIX_FMT_YUV444P:
390 return "yuv444p";
391 case PIX_FMT_RGB32:
392 return "rgb32";
393 case PIX_FMT_YUV410P:
394 return "yuv410p";
395 case PIX_FMT_YUV411P:
396 return "yuv411p";
397 case PIX_FMT_RGB565:
398 return "rgb565";
399 case PIX_FMT_RGB555:
400 return "rgb555";
401 case PIX_FMT_GRAY16BE:
402 return "gray16be";
403 case PIX_FMT_GRAY16LE:
404 return "gray16le";
405 case PIX_FMT_GRAY8:
406 return "gray8";
407 case PIX_FMT_MONOWHITE:
408 return "mono white";
409 case PIX_FMT_MONOBLACK:
410 return "mono black";
411 case PIX_FMT_PAL8:
412 return "Palette";
413 case PIX_FMT_YUVJ420P:
414 return "yuvj420p";
415 case PIX_FMT_YUVJ422P:
416 return "yuvj422p";
417 case PIX_FMT_YUVJ444P:
418 return "yuvj444p";
419 case PIX_FMT_XVMC_MPEG2_MC:
420 return "xvmc_mpeg2_mc";
421 case PIX_FMT_XVMC_MPEG2_IDCT:
422 return "xvmc_mpeg2_idct";
423 case PIX_FMT_UYVY422:
424 return "uyvy422";
425 case PIX_FMT_UYYVYY411:
426 return "uyyvyy411";
427 case PIX_FMT_RGB32_1:
428 return "rgb32x";
429 case PIX_FMT_BGR32_1:
430 return "bgr32x";
431 case PIX_FMT_BGR32:
432 return "bgr32";
433 case PIX_FMT_BGR565:
434 return "bgr565";
435 case PIX_FMT_BGR555:
436 return "bgr555";
437 case PIX_FMT_BGR8:
438 return "bgr8";
439 case PIX_FMT_BGR4:
440 return "bgr4";
441 case PIX_FMT_BGR4_BYTE:
442 return "bgr4 byte";
443 case PIX_FMT_RGB8:
444 return "rgb8";
445 case PIX_FMT_RGB4:
446 return "rgb4";
447 case PIX_FMT_RGB4_BYTE:
448 return "rgb4 byte";
449 case PIX_FMT_NV12:
450 return "nv12";
451 case PIX_FMT_NV21:
452 return "nv21";
453 case PIX_FMT_YUV440P:
454 return "yuv440p";
455 default:
456 return "Unknown format";
457 }
458 }
459
460 static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
461 int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
462 uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
463 {
464 //FIXME Optimize (just quickly writen not opti..)
465 int i;
466 for (i=0; i<dstW; i++)
467 {
468 int val=1<<18;
469 int j;
470 for (j=0; j<lumFilterSize; j++)
471 val += lumSrc[j][i] * lumFilter[j];
472
473 dest[i]= av_clip_uint8(val>>19);
474 }
475
476 if (uDest)
477 for (i=0; i<chrDstW; i++)
478 {
479 int u=1<<18;
480 int v=1<<18;
481 int j;
482 for (j=0; j<chrFilterSize; j++)
483 {
484 u += chrSrc[j][i] * chrFilter[j];
485 v += chrSrc[j][i + VOFW] * chrFilter[j];
486 }
487
488 uDest[i]= av_clip_uint8(u>>19);
489 vDest[i]= av_clip_uint8(v>>19);
490 }
491 }
492
493 static inline void yuv2nv12XinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
494 int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
495 uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
496 {
497 //FIXME Optimize (just quickly writen not opti..)
498 int i;
499 for (i=0; i<dstW; i++)
500 {
501 int val=1<<18;
502 int j;
503 for (j=0; j<lumFilterSize; j++)
504 val += lumSrc[j][i] * lumFilter[j];
505
506 dest[i]= av_clip_uint8(val>>19);
507 }
508
509 if (!uDest)
510 return;
511
512 if (dstFormat == PIX_FMT_NV12)
513 for (i=0; i<chrDstW; i++)
514 {
515 int u=1<<18;
516 int v=1<<18;
517 int j;
518 for (j=0; j<chrFilterSize; j++)
519 {
520 u += chrSrc[j][i] * chrFilter[j];
521 v += chrSrc[j][i + VOFW] * chrFilter[j];
522 }
523
524 uDest[2*i]= av_clip_uint8(u>>19);
525 uDest[2*i+1]= av_clip_uint8(v>>19);
526 }
527 else
528 for (i=0; i<chrDstW; i++)
529 {
530 int u=1<<18;
531 int v=1<<18;
532 int j;
533 for (j=0; j<chrFilterSize; j++)
534 {
535 u += chrSrc[j][i] * chrFilter[j];
536 v += chrSrc[j][i + VOFW] * chrFilter[j];
537 }
538
539 uDest[2*i]= av_clip_uint8(v>>19);
540 uDest[2*i+1]= av_clip_uint8(u>>19);
541 }
542 }
543
544 #define YSCALE_YUV_2_PACKEDX_NOCLIP_C(type) \
545 for (i=0; i<(dstW>>1); i++){\
546 int j;\
547 int Y1 = 1<<18;\
548 int Y2 = 1<<18;\
549 int U = 1<<18;\
550 int V = 1<<18;\
551 type av_unused *r, *b, *g;\
552 const int i2= 2*i;\
553 \
554 for (j=0; j<lumFilterSize; j++)\
555 {\
556 Y1 += lumSrc[j][i2] * lumFilter[j];\
557 Y2 += lumSrc[j][i2+1] * lumFilter[j];\
558 }\
559 for (j=0; j<chrFilterSize; j++)\
560 {\
561 U += chrSrc[j][i] * chrFilter[j];\
562 V += chrSrc[j][i+VOFW] * chrFilter[j];\
563 }\
564 Y1>>=19;\
565 Y2>>=19;\
566 U >>=19;\
567 V >>=19;\
568
569 #define YSCALE_YUV_2_PACKEDX_C(type) \
570 YSCALE_YUV_2_PACKEDX_NOCLIP_C(type)\
571 if ((Y1|Y2|U|V)&256)\
572 {\
573 if (Y1>255) Y1=255; \
574 else if (Y1<0)Y1=0; \
575 if (Y2>255) Y2=255; \
576 else if (Y2<0)Y2=0; \
577 if (U>255) U=255; \
578 else if (U<0) U=0; \
579 if (V>255) V=255; \
580 else if (V<0) V=0; \
581 }
582
583 #define YSCALE_YUV_2_PACKEDX_FULL_C \
584 for (i=0; i<dstW; i++){\
585 int j;\
586 int Y = 0;\
587 int U = -128<<19;\
588 int V = -128<<19;\
589 int R,G,B;\
590 \
591 for (j=0; j<lumFilterSize; j++){\
592 Y += lumSrc[j][i ] * lumFilter[j];\
593 }\
594 for (j=0; j<chrFilterSize; j++){\
595 U += chrSrc[j][i ] * chrFilter[j];\
596 V += chrSrc[j][i+VOFW] * chrFilter[j];\
597 }\
598 Y >>=10;\
599 U >>=10;\
600 V >>=10;\
601
602 #define YSCALE_YUV_2_RGBX_FULL_C(rnd) \
603 YSCALE_YUV_2_PACKEDX_FULL_C\
604 Y-= c->yuv2rgb_y_offset;\
605 Y*= c->yuv2rgb_y_coeff;\
606 Y+= rnd;\
607 R= Y + V*c->yuv2rgb_v2r_coeff;\
608 G= Y + V*c->yuv2rgb_v2g_coeff + U*c->yuv2rgb_u2g_coeff;\
609 B= Y + U*c->yuv2rgb_u2b_coeff;\
610 if ((R|G|B)&(0xC0000000)){\
611 if (R>=(256<<22)) R=(256<<22)-1; \
612 else if (R<0)R=0; \
613 if (G>=(256<<22)) G=(256<<22)-1; \
614 else if (G<0)G=0; \
615 if (B>=(256<<22)) B=(256<<22)-1; \
616 else if (B<0)B=0; \
617 }\
618
619
620 #define YSCALE_YUV_2_GRAY16_C \
621 for (i=0; i<(dstW>>1); i++){\
622 int j;\
623 int Y1 = 1<<18;\
624 int Y2 = 1<<18;\
625 int U = 1<<18;\
626 int V = 1<<18;\
627 \
628 const int i2= 2*i;\
629 \
630 for (j=0; j<lumFilterSize; j++)\
631 {\
632 Y1 += lumSrc[j][i2] * lumFilter[j];\
633 Y2 += lumSrc[j][i2+1] * lumFilter[j];\
634 }\
635 Y1>>=11;\
636 Y2>>=11;\
637 if ((Y1|Y2|U|V)&65536)\
638 {\
639 if (Y1>65535) Y1=65535; \
640 else if (Y1<0)Y1=0; \
641 if (Y2>65535) Y2=65535; \
642 else if (Y2<0)Y2=0; \
643 }
644
645 #define YSCALE_YUV_2_RGBX_C(type) \
646 YSCALE_YUV_2_PACKEDX_C(type) /* FIXME fix tables so that cliping is not needed and then use _NOCLIP*/\
647 r = (type *)c->table_rV[V]; \
648 g = (type *)(c->table_gU[U] + c->table_gV[V]); \
649 b = (type *)c->table_bU[U]; \
650
651 #define YSCALE_YUV_2_PACKED2_C \
652 for (i=0; i<(dstW>>1); i++){ \
653 const int i2= 2*i; \
654 int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19; \
655 int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19; \
656 int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19; \
657 int V= (uvbuf0[i+VOFW]*uvalpha1+uvbuf1[i+VOFW]*uvalpha)>>19; \
658
659 #define YSCALE_YUV_2_GRAY16_2_C \
660 for (i=0; i<(dstW>>1); i++){ \
661 const int i2= 2*i; \
662 int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>11; \
663 int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>11; \
664
665 #define YSCALE_YUV_2_RGB2_C(type) \
666 YSCALE_YUV_2_PACKED2_C\
667 type *r, *b, *g;\
668 r = (type *)c->table_rV[V];\
669 g = (type *)(c->table_gU[U] + c->table_gV[V]);\
670 b = (type *)c->table_bU[U];\
671
672 #define YSCALE_YUV_2_PACKED1_C \
673 for (i=0; i<(dstW>>1); i++){\
674 const int i2= 2*i;\
675 int Y1= buf0[i2 ]>>7;\
676 int Y2= buf0[i2+1]>>7;\
677 int U= (uvbuf1[i ])>>7;\
678 int V= (uvbuf1[i+VOFW])>>7;\
679
680 #define YSCALE_YUV_2_GRAY16_1_C \
681 for (i=0; i<(dstW>>1); i++){\
682 const int i2= 2*i;\
683 int Y1= buf0[i2 ]<<1;\
684 int Y2= buf0[i2+1]<<1;\
685
686 #define YSCALE_YUV_2_RGB1_C(type) \
687 YSCALE_YUV_2_PACKED1_C\
688 type *r, *b, *g;\
689 r = (type *)c->table_rV[V];\
690 g = (type *)(c->table_gU[U] + c->table_gV[V]);\
691 b = (type *)c->table_bU[U];\
692
693 #define YSCALE_YUV_2_PACKED1B_C \
694 for (i=0; i<(dstW>>1); i++){\
695 const int i2= 2*i;\
696 int Y1= buf0[i2 ]>>7;\
697 int Y2= buf0[i2+1]>>7;\
698 int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\
699 int V= (uvbuf0[i+VOFW] + uvbuf1[i+VOFW])>>8;\
700
701 #define YSCALE_YUV_2_RGB1B_C(type) \
702 YSCALE_YUV_2_PACKED1B_C\
703 type *r, *b, *g;\
704 r = (type *)c->table_rV[V];\
705 g = (type *)(c->table_gU[U] + c->table_gV[V]);\
706 b = (type *)c->table_bU[U];\
707
708 #define YSCALE_YUV_2_MONO2_C \
709 const uint8_t * const d128=dither_8x8_220[y&7];\
710 uint8_t *g= c->table_gU[128] + c->table_gV[128];\
711 for (i=0; i<dstW-7; i+=8){\
712 int acc;\
713 acc = g[((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19) + d128[0]];\
714 acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
715 acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
716 acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
717 acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
718 acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
719 acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
720 acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
721 ((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\
722 dest++;\
723 }\
724
725
726 #define YSCALE_YUV_2_MONOX_C \
727 const uint8_t * const d128=dither_8x8_220[y&7];\
728 uint8_t *g= c->table_gU[128] + c->table_gV[128];\
729 int acc=0;\
730 for (i=0; i<dstW-1; i+=2){\
731 int j;\
732 int Y1=1<<18;\
733 int Y2=1<<18;\
734 \
735 for (j=0; j<lumFilterSize; j++)\
736 {\
737 Y1 += lumSrc[j][i] * lumFilter[j];\
738 Y2 += lumSrc[j][i+1] * lumFilter[j];\
739 }\
740 Y1>>=19;\
741 Y2>>=19;\
742 if ((Y1|Y2)&256)\
743 {\
744 if (Y1>255) Y1=255;\
745 else if (Y1<0)Y1=0;\
746 if (Y2>255) Y2=255;\
747 else if (Y2<0)Y2=0;\
748 }\
749 acc+= acc + g[Y1+d128[(i+0)&7]];\
750 acc+= acc + g[Y2+d128[(i+1)&7]];\
751 if ((i&7)==6){\
752 ((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\
753 dest++;\
754 }\
755 }
756
757
758 #define YSCALE_YUV_2_ANYRGB_C(func, func2, func_g16, func_monoblack)\
759 switch(c->dstFormat)\
760 {\
761 case PIX_FMT_RGB32:\
762 case PIX_FMT_BGR32:\
763 case PIX_FMT_RGB32_1:\
764 case PIX_FMT_BGR32_1:\
765 func(uint32_t)\
766 ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
767 ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
768 } \
769 break;\
770 case PIX_FMT_RGB24:\
771 func(uint8_t)\
772 ((uint8_t*)dest)[0]= r[Y1];\
773 ((uint8_t*)dest)[1]= g[Y1];\
774 ((uint8_t*)dest)[2]= b[Y1];\
775 ((uint8_t*)dest)[3]= r[Y2];\
776 ((uint8_t*)dest)[4]= g[Y2];\
777 ((uint8_t*)dest)[5]= b[Y2];\
778 dest+=6;\
779 }\
780 break;\
781 case PIX_FMT_BGR24:\
782 func(uint8_t)\
783 ((uint8_t*)dest)[0]= b[Y1];\
784 ((uint8_t*)dest)[1]= g[Y1];\
785 ((uint8_t*)dest)[2]= r[Y1];\
786 ((uint8_t*)dest)[3]= b[Y2];\
787 ((uint8_t*)dest)[4]= g[Y2];\
788 ((uint8_t*)dest)[5]= r[Y2];\
789 dest+=6;\
790 }\
791 break;\
792 case PIX_FMT_RGB565:\
793 case PIX_FMT_BGR565:\
794 {\
795 const int dr1= dither_2x2_8[y&1 ][0];\
796 const int dg1= dither_2x2_4[y&1 ][0];\
797 const int db1= dither_2x2_8[(y&1)^1][0];\
798 const int dr2= dither_2x2_8[y&1 ][1];\
799 const int dg2= dither_2x2_4[y&1 ][1];\
800 const int db2= dither_2x2_8[(y&1)^1][1];\
801 func(uint16_t)\
802 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
803 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
804 }\
805 }\
806 break;\
807 case PIX_FMT_RGB555:\
808 case PIX_FMT_BGR555:\
809 {\
810 const int dr1= dither_2x2_8[y&1 ][0];\
811 const int dg1= dither_2x2_8[y&1 ][1];\
812 const int db1= dither_2x2_8[(y&1)^1][0];\
813 const int dr2= dither_2x2_8[y&1 ][1];\
814 const int dg2= dither_2x2_8[y&1 ][0];\
815 const int db2= dither_2x2_8[(y&1)^1][1];\
816 func(uint16_t)\
817 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
818 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
819 }\
820 }\
821 break;\
822 case PIX_FMT_RGB8:\
823 case PIX_FMT_BGR8:\
824 {\
825 const uint8_t * const d64= dither_8x8_73[y&7];\
826 const uint8_t * const d32= dither_8x8_32[y&7];\
827 func(uint8_t)\
828 ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
829 ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
830 }\
831 }\
832 break;\
833 case PIX_FMT_RGB4:\
834 case PIX_FMT_BGR4:\
835 {\
836 const uint8_t * const d64= dither_8x8_73 [y&7];\
837 const uint8_t * const d128=dither_8x8_220[y&7];\
838 func(uint8_t)\
839 ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
840 + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
841 }\
842 }\
843 break;\
844 case PIX_FMT_RGB4_BYTE:\
845 case PIX_FMT_BGR4_BYTE:\
846 {\
847 const uint8_t * const d64= dither_8x8_73 [y&7];\
848 const uint8_t * const d128=dither_8x8_220[y&7];\
849 func(uint8_t)\
850 ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
851 ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
852 }\
853 }\
854 break;\
855 case PIX_FMT_MONOBLACK:\
856 case PIX_FMT_MONOWHITE:\
857 {\
858 func_monoblack\
859 }\
860 break;\
861 case PIX_FMT_YUYV422:\
862 func2\
863 ((uint8_t*)dest)[2*i2+0]= Y1;\
864 ((uint8_t*)dest)[2*i2+1]= U;\
865 ((uint8_t*)dest)[2*i2+2]= Y2;\
866 ((uint8_t*)dest)[2*i2+3]= V;\
867 } \
868 break;\
869 case PIX_FMT_UYVY422:\
870 func2\
871 ((uint8_t*)dest)[2*i2+0]= U;\
872 ((uint8_t*)dest)[2*i2+1]= Y1;\
873 ((uint8_t*)dest)[2*i2+2]= V;\
874 ((uint8_t*)dest)[2*i2+3]= Y2;\
875 } \
876 break;\
877 case PIX_FMT_GRAY16BE:\
878 func_g16\
879 ((uint8_t*)dest)[2*i2+0]= Y1>>8;\
880 ((uint8_t*)dest)[2*i2+1]= Y1;\
881 ((uint8_t*)dest)[2*i2+2]= Y2>>8;\
882 ((uint8_t*)dest)[2*i2+3]= Y2;\
883 } \
884 break;\
885 case PIX_FMT_GRAY16LE:\
886 func_g16\
887 ((uint8_t*)dest)[2*i2+0]= Y1;\
888 ((uint8_t*)dest)[2*i2+1]= Y1>>8;\
889 ((uint8_t*)dest)[2*i2+2]= Y2;\
890 ((uint8_t*)dest)[2*i2+3]= Y2>>8;\
891 } \
892 break;\
893 }\
894
895
896 static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
897 int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
898 uint8_t *dest, int dstW, int y)
899 {
900 int i;
901 YSCALE_YUV_2_ANYRGB_C(YSCALE_YUV_2_RGBX_C, YSCALE_YUV_2_PACKEDX_C(void), YSCALE_YUV_2_GRAY16_C, YSCALE_YUV_2_MONOX_C)
902 }
903
904 static inline void yuv2rgbXinC_full(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
905 int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
906 uint8_t *dest, int dstW, int y)
907 {
908 int i;
909 int step= fmt_depth(c->dstFormat)/8;
910 int aidx= 3;
911
912 switch(c->dstFormat){
913 case PIX_FMT_ARGB:
914 dest++;
915 aidx= 0;
916 case PIX_FMT_RGB24:
917 aidx--;
918 case PIX_FMT_RGBA:
919 YSCALE_YUV_2_RGBX_FULL_C(1<<21)
920 dest[aidx]= 0;
921 dest[0]= R>>22;
922 dest[1]= G>>22;
923 dest[2]= B>>22;
924 dest+= step;
925 }
926 break;
927 case PIX_FMT_ABGR:
928 dest++;
929 aidx= 0;
930 case PIX_FMT_BGR24:
931 aidx--;
932 case PIX_FMT_BGRA:
933 YSCALE_YUV_2_RGBX_FULL_C(1<<21)
934 dest[aidx]= 0;
935 dest[0]= B>>22;
936 dest[1]= G>>22;
937 dest[2]= R>>22;
938 dest+= step;
939 }
940 break;
941 default:
942 assert(0);
943 }
944 }
945
946 //Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
947 //Plain C versions
948 #if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT) || !defined(CONFIG_GPL)
949 #define COMPILE_C
950 #endif
951
952 #ifdef ARCH_POWERPC
953 #if (defined (HAVE_ALTIVEC) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
954 #define COMPILE_ALTIVEC
955 #endif //HAVE_ALTIVEC
956 #endif //ARCH_POWERPC
957
958 #if defined(ARCH_X86)
959
960 #if ((defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
961 #define COMPILE_MMX
962 #endif
963
964 #if (defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
965 #define COMPILE_MMX2
966 #endif
967
968 #if ((defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
969 #define COMPILE_3DNOW
970 #endif
971 #endif //ARCH_X86 || ARCH_X86_64
972
973 #undef HAVE_MMX
974 #undef HAVE_MMX2
975 #undef HAVE_3DNOW
976
977 #ifdef COMPILE_C
978 #undef HAVE_MMX
979 #undef HAVE_MMX2
980 #undef HAVE_3DNOW
981 #undef HAVE_ALTIVEC
982 #define RENAME(a) a ## _C
983 #include "swscale_template.c"
984 #endif
985
986 #ifdef COMPILE_ALTIVEC
987 #undef RENAME
988 #define HAVE_ALTIVEC
989 #define RENAME(a) a ## _altivec
990 #include "swscale_template.c"
991 #endif
992
993 #if defined(ARCH_X86)
994
995 //X86 versions
996 /*
997 #undef RENAME
998 #undef HAVE_MMX
999 #undef HAVE_MMX2
1000 #undef HAVE_3DNOW
1001 #define ARCH_X86
1002 #define RENAME(a) a ## _X86
1003 #include "swscale_template.c"
1004 */
1005 //MMX versions
1006 #ifdef COMPILE_MMX
1007 #undef RENAME
1008 #define HAVE_MMX
1009 #undef HAVE_MMX2
1010 #undef HAVE_3DNOW
1011 #define RENAME(a) a ## _MMX
1012 #include "swscale_template.c"
1013 #endif
1014
1015 //MMX2 versions
1016 #ifdef COMPILE_MMX2
1017 #undef RENAME
1018 #define HAVE_MMX
1019 #define HAVE_MMX2
1020 #undef HAVE_3DNOW
1021 #define RENAME(a) a ## _MMX2
1022 #include "swscale_template.c"
1023 #endif
1024
1025 //3DNOW versions
1026 #ifdef COMPILE_3DNOW
1027 #undef RENAME
1028 #define HAVE_MMX
1029 #undef HAVE_MMX2
1030 #define HAVE_3DNOW
1031 #define RENAME(a) a ## _3DNow
1032 #include "swscale_template.c"
1033 #endif
1034
1035 #endif //ARCH_X86 || ARCH_X86_64
1036
1037 // minor note: the HAVE_xyz is messed up after that line so don't use it
1038
1039 static double getSplineCoeff(double a, double b, double c, double d, double dist)
1040 {
1041 // printf("%f %f %f %f %f\n", a,b,c,d,dist);
1042 if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
1043 else return getSplineCoeff( 0.0,
1044 b+ 2.0*c + 3.0*d,
1045 c + 3.0*d,
1046 -b- 3.0*c - 6.0*d,
1047 dist-1.0);
1048 }
1049
1050 static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
1051 int srcW, int dstW, int filterAlign, int one, int flags,
1052 SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
1053 {
1054 int i;
1055 int filterSize;
1056 int filter2Size;
1057 int minFilterSize;
1058 int64_t *filter=NULL;
1059 int64_t *filter2=NULL;
1060 const int64_t fone= 1LL<<54;
1061 int ret= -1;
1062 #if defined(ARCH_X86)
1063 if (flags & SWS_CPU_CAPS_MMX)
1064 __asm__ volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
1065 #endif
1066
1067 // Note the +1 is for the MMXscaler which reads over the end
1068 *filterPos = av_malloc((dstW+1)*sizeof(int16_t));
1069
1070 if (FFABS(xInc - 0x10000) <10) // unscaled
1071 {
1072 int i;
1073 filterSize= 1;
1074 filter= av_mallocz(dstW*sizeof(*filter)*filterSize);
1075
1076 for (i=0; i<dstW; i++)
1077 {
1078 filter[i*filterSize]= fone;
1079 (*filterPos)[i]=i;
1080 }
1081
1082 }
1083 else if (flags&SWS_POINT) // lame looking point sampling mode
1084 {
1085 int i;
1086 int xDstInSrc;
1087 filterSize= 1;
1088 filter= av_malloc(dstW*sizeof(*filter)*filterSize);
1089
1090 xDstInSrc= xInc/2 - 0x8000;
1091 for (i=0; i<dstW; i++)
1092 {
1093 int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
1094
1095 (*filterPos)[i]= xx;
1096 filter[i]= fone;
1097 xDstInSrc+= xInc;
1098 }
1099 }
1100 else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
1101 {
1102 int i;
1103 int xDstInSrc;
1104 if (flags&SWS_BICUBIC) filterSize= 4;
1105 else if (flags&SWS_X ) filterSize= 4;
1106 else filterSize= 2; // SWS_BILINEAR / SWS_AREA
1107 filter= av_malloc(dstW*sizeof(*filter)*filterSize);
1108
1109 xDstInSrc= xInc/2 - 0x8000;
1110 for (i=0; i<dstW; i++)
1111 {
1112 int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
1113 int j;
1114
1115 (*filterPos)[i]= xx;
1116 //Bilinear upscale / linear interpolate / Area averaging
1117 for (j=0; j<filterSize; j++)
1118 {
1119 int64_t coeff= fone - FFABS((xx<<16) - xDstInSrc)*(fone>>16);
1120 if (coeff<0) coeff=0;
1121 filter[i*filterSize + j]= coeff;
1122 xx++;
1123 }
1124 xDstInSrc+= xInc;
1125 }
1126 }
1127 else
1128 {
1129 int xDstInSrc;
1130 int sizeFactor;
1131
1132 if (flags&SWS_BICUBIC) sizeFactor= 4;
1133 else if (flags&SWS_X) sizeFactor= 8;
1134 else if (flags&SWS_AREA) sizeFactor= 1; //downscale only, for upscale it is bilinear
1135 else if (flags&SWS_GAUSS) sizeFactor= 8; // infinite ;)
1136 else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6;
1137 else if (flags&SWS_SINC) sizeFactor= 20; // infinite ;)
1138 else if (flags&SWS_SPLINE) sizeFactor= 20; // infinite ;)
1139 else if (flags&SWS_BILINEAR) sizeFactor= 2;
1140 else {
1141 sizeFactor= 0; //GCC warning killer
1142 assert(0);
1143 }
1144
1145 if (xInc <= 1<<16) filterSize= 1 + sizeFactor; // upscale
1146 else filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;
1147
1148 if (filterSize > srcW-2) filterSize=srcW-2;
1149
1150 filter= av_malloc(dstW*sizeof(*filter)*filterSize);
1151
1152 xDstInSrc= xInc - 0x10000;
1153 for (i=0; i<dstW; i++)
1154 {
1155 int xx= (xDstInSrc - ((filterSize-2)<<16)) / (1<<17);
1156 int j;
1157 (*filterPos)[i]= xx;
1158 for (j=0; j<filterSize; j++)
1159 {
1160 int64_t d= ((int64_t)FFABS((xx<<17) - xDstInSrc))<<13;
1161 double floatd;
1162 int64_t coeff;
1163
1164 if (xInc > 1<<16)
1165 d= d*dstW/srcW;
1166 floatd= d * (1.0/(1<<30));
1167
1168 if (flags & SWS_BICUBIC)
1169 {
1170 int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1<<24);
1171 int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24);
1172 int64_t dd = ( d*d)>>30;
1173 int64_t ddd= (dd*d)>>30;
1174
1175 if (d < 1LL<<30)
1176 coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30);
1177 else if (d < 1LL<<31)
1178 coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30);
1179 else
1180 coeff=0.0;
1181 coeff *= fone>>(30+24);
1182 }
1183 /* else if (flags & SWS_X)
1184 {
1185 double p= param ? param*0.01 : 0.3;
1186 coeff = d ? sin(d*PI)/(d*PI) : 1.0;
1187 coeff*= pow(2.0, - p*d*d);
1188 }*/
1189 else if (flags & SWS_X)
1190 {
1191 double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
1192 double c;
1193
1194 if (floatd<1.0)
1195 c = cos(floatd*PI);
1196 else
1197 c=-1.0;
1198 if (c<0.0) c= -pow(-c, A);
1199 else c= pow( c, A);
1200 coeff= (c*0.5 + 0.5)*fone;
1201 }
1202 else if (flags & SWS_AREA)
1203 {
1204 int64_t d2= d - (1<<29);
1205 if (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16));
1206 else if (d2*xInc < (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16));
1207 else coeff=0.0;
1208 coeff *= fone>>(30+16);
1209 }
1210 else if (flags & SWS_GAUSS)
1211 {
1212 double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
1213 coeff = (pow(2.0, - p*floatd*floatd))*fone;
1214 }
1215 else if (flags & SWS_SINC)
1216 {
1217 coeff = (d ? sin(floatd*PI)/(floatd*PI) : 1.0)*fone;
1218 }
1219 else if (flags & SWS_LANCZOS)
1220 {
1221 double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
1222 coeff = (d ? sin(floatd*PI)*sin(floatd*PI/p)/(floatd*floatd*PI*PI/p) : 1.0)*fone;
1223 if (floatd>p) coeff=0;
1224 }
1225 else if (flags & SWS_BILINEAR)
1226 {
1227 coeff= (1<<30) - d;
1228 if (coeff<0) coeff=0;
1229 coeff *= fone >> 30;
1230 }
1231 else if (flags & SWS_SPLINE)
1232 {
1233 double p=-2.196152422706632;
1234 coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone;
1235 }
1236 else {
1237 coeff= 0.0; //GCC warning killer
1238 assert(0);
1239 }
1240
1241 filter[i*filterSize + j]= coeff;
1242 xx++;
1243 }
1244 xDstInSrc+= 2*xInc;
1245 }
1246 }
1247
1248 /* apply src & dst Filter to filter -> filter2
1249 av_free(filter);
1250 */
1251 assert(filterSize>0);
1252 filter2Size= filterSize;
1253 if (srcFilter) filter2Size+= srcFilter->length - 1;
1254 if (dstFilter) filter2Size+= dstFilter->length - 1;
1255 assert(filter2Size>0);
1256 filter2= av_mallocz(filter2Size*dstW*sizeof(*filter2));
1257
1258 for (i=0; i<dstW; i++)
1259 {
1260 int j, k;
1261
1262 if(srcFilter){
1263 for (k=0; k<srcFilter->length; k++){
1264 for (j=0; j<filterSize; j++)
1265 filter2[i*filter2Size + k + j] += srcFilter->coeff[k]*filter[i*filterSize + j];
1266 }
1267 }else{
1268 for (j=0; j<filterSize; j++)
1269 filter2[i*filter2Size + j]= filter[i*filterSize + j];
1270 }
1271 //FIXME dstFilter
1272
1273 (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
1274 }
1275 av_freep(&filter);
1276
1277 /* try to reduce the filter-size (step1 find size and shift left) */
1278 // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
1279 minFilterSize= 0;
1280 for (i=dstW-1; i>=0; i--)
1281 {
1282 int min= filter2Size;
1283 int j;
1284 int64_t cutOff=0.0;
1285
1286 /* get rid off near zero elements on the left by shifting left */
1287 for (j=0; j<filter2Size; j++)
1288 {
1289 int k;
1290 cutOff += FFABS(filter2[i*filter2Size]);
1291
1292 if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
1293
1294 /* preserve monotonicity because the core can't handle the filter otherwise */
1295 if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
1296
1297 // Move filter coeffs left
1298 for (k=1; k<filter2Size; k++)
1299 filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
1300 filter2[i*filter2Size + k - 1]= 0;
1301 (*filterPos)[i]++;
1302 }
1303
1304 cutOff=0;
1305 /* count near zeros on the right */
1306 for (j=filter2Size-1; j>0; j--)
1307 {
1308 cutOff += FFABS(filter2[i*filter2Size + j]);
1309
1310 if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
1311 min--;
1312 }
1313
1314 if (min>minFilterSize) minFilterSize= min;
1315 }
1316
1317 if (flags & SWS_CPU_CAPS_ALTIVEC) {
1318 // we can handle the special case 4,
1319 // so we don't want to go to the full 8
1320 if (minFilterSize < 5)
1321 filterAlign = 4;
1322
1323 // we really don't want to waste our time
1324 // doing useless computation, so fall-back on
1325 // the scalar C code for very small filter.
1326 // vectorizing is worth it only if you have
1327 // decent-sized vector.
1328 if (minFilterSize < 3)
1329 filterAlign = 1;
1330 }
1331
1332 if (flags & SWS_CPU_CAPS_MMX) {
1333 // special case for unscaled vertical filtering
1334 if (minFilterSize == 1 && filterAlign == 2)
1335 filterAlign= 1;
1336 }
1337
1338 assert(minFilterSize > 0);
1339 filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
1340 assert(filterSize > 0);
1341 filter= av_malloc(filterSize*dstW*sizeof(*filter));
1342 if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
1343 goto error;
1344 *outFilterSize= filterSize;
1345
1346 if (flags&SWS_PRINT_INFO)
1347 av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
1348 /* try to reduce the filter-size (step2 reduce it) */
1349 for (i=0; i<dstW; i++)
1350 {
1351 int j;
1352
1353 for (j=0; j<filterSize; j++)
1354 {
1355 if (j>=filter2Size) filter[i*filterSize + j]= 0;
1356 else filter[i*filterSize + j]= filter2[i*filter2Size + j];
1357 if((flags & SWS_BITEXACT) && j>=minFilterSize)
1358 filter[i*filterSize + j]= 0;
1359 }
1360 }
1361
1362
1363 //FIXME try to align filterpos if possible
1364
1365 //fix borders
1366 for (i=0; i<dstW; i++)
1367 {
1368 int j;
1369 if ((*filterPos)[i] < 0)
1370 {
1371 // Move filter coeffs left to compensate for filterPos
1372 for (j=1; j<filterSize; j++)
1373 {
1374 int left= FFMAX(j + (*filterPos)[i], 0);
1375 filter[i*filterSize + left] += filter[i*filterSize + j];
1376 filter[i*filterSize + j]=0;
1377 }
1378 (*filterPos)[i]= 0;
1379 }
1380
1381 if ((*filterPos)[i] + filterSize > srcW)
1382 {
1383 int shift= (*filterPos)[i] + filterSize - srcW;
1384 // Move filter coeffs right to compensate for filterPos
1385 for (j=filterSize-2; j>=0; j--)
1386 {
1387 int right= FFMIN(j + shift, filterSize-1);
1388 filter[i*filterSize +right] += filter[i*filterSize +j];
1389 filter[i*filterSize +j]=0;
1390 }
1391 (*filterPos)[i]= srcW - filterSize;
1392 }
1393 }
1394
1395 // Note the +1 is for the MMXscaler which reads over the end
1396 /* align at 16 for AltiVec (needed by hScale_altivec_real) */
1397 *outFilter= av_mallocz(*outFilterSize*(dstW+1)*sizeof(int16_t));
1398
1399 /* Normalize & Store in outFilter */
1400 for (i=0; i<dstW; i++)
1401 {
1402 int j;
1403 int64_t error=0;
1404 int64_t sum=0;
1405
1406 for (j=0; j<filterSize; j++)
1407 {
1408 sum+= filter[i*filterSize + j];
1409 }
1410 sum= (sum + one/2)/ one;
1411 for (j=0; j<*outFilterSize; j++)
1412 {
1413 int64_t v= filter[i*filterSize + j] + error;
1414 int intV= ROUNDED_DIV(v, sum);
1415 (*outFilter)[i*(*outFilterSize) + j]= intV;
1416 error= v - intV*sum;
1417 }
1418 }
1419
1420 (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
1421 for (i=0; i<*outFilterSize; i++)
1422 {
1423 int j= dstW*(*outFilterSize);
1424 (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
1425 }
1426
1427 ret=0;
1428 error:
1429 av_free(filter);
1430 av_free(filter2);
1431 return ret;
1432 }
1433
1434 #ifdef COMPILE_MMX2
1435 static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
1436 {
1437 uint8_t *fragmentA;
1438 long imm8OfPShufW1A;
1439 long imm8OfPShufW2A;
1440 long fragmentLengthA;
1441 uint8_t *fragmentB;
1442 long imm8OfPShufW1B;
1443 long imm8OfPShufW2B;
1444 long fragmentLengthB;
1445 int fragmentPos;
1446
1447 int xpos, i;
1448
1449 // create an optimized horizontal scaling routine
1450
1451 //code fragment
1452
1453 __asm__ volatile(
1454 "jmp 9f \n\t"
1455 // Begin
1456 "0: \n\t"
1457 "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
1458 "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
1459 "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
1460 "punpcklbw %%mm7, %%mm1 \n\t"
1461 "punpcklbw %%mm7, %%mm0 \n\t"
1462 "pshufw $0xFF, %%mm1, %%mm1 \n\t"
1463 "1: \n\t"
1464 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
1465 "2: \n\t"
1466 "psubw %%mm1, %%mm0 \n\t"
1467 "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
1468 "pmullw %%mm3, %%mm0 \n\t"
1469 "psllw $7, %%mm1 \n\t"
1470 "paddw %%mm1, %%mm0 \n\t"
1471
1472 "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
1473
1474 "add $8, %%"REG_a" \n\t"
1475 // End
1476 "9: \n\t"
1477 // "int $3 \n\t"
1478 "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
1479 "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
1480 "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
1481 "dec %1 \n\t"
1482 "dec %2 \n\t"
1483 "sub %0, %1 \n\t"
1484 "sub %0, %2 \n\t"
1485 "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
1486 "sub %0, %3 \n\t"
1487
1488
1489 :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
1490 "=r" (fragmentLengthA)
1491 );
1492
1493 __asm__ volatile(
1494 "jmp 9f \n\t"
1495 // Begin
1496 "0: \n\t"
1497 "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
1498 "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
1499 "punpcklbw %%mm7, %%mm0 \n\t"
1500 "pshufw $0xFF, %%mm0, %%mm1 \n\t"
1501 "1: \n\t"
1502 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
1503 "2: \n\t"
1504 "psubw %%mm1, %%mm0 \n\t"
1505 "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
1506 "pmullw %%mm3, %%mm0 \n\t"
1507 "psllw $7, %%mm1 \n\t"
1508 "paddw %%mm1, %%mm0 \n\t"
1509
1510 "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
1511
1512 "add $8, %%"REG_a" \n\t"
1513 // End
1514 "9: \n\t"
1515 // "int $3 \n\t"
1516 "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
1517 "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
1518 "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
1519 "dec %1 \n\t"
1520 "dec %2 \n\t"
1521 "sub %0, %1 \n\t"
1522 "sub %0, %2 \n\t"
1523 "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
1524 "sub %0, %3 \n\t"
1525
1526
1527 :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
1528 "=r" (fragmentLengthB)
1529 );
1530
1531 xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
1532 fragmentPos=0;
1533
1534 for (i=0; i<dstW/numSplits; i++)
1535 {
1536 int xx=xpos>>16;
1537
1538 if ((i&3) == 0)
1539 {
1540 int a=0;
1541 int b=((xpos+xInc)>>16) - xx;
1542 int c=((xpos+xInc*2)>>16) - xx;
1543 int d=((xpos+xInc*3)>>16) - xx;
1544
1545 filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
1546 filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
1547 filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
1548 filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
1549 filterPos[i/2]= xx;
1550
1551 if (d+1<4)
1552 {
1553 int maxShift= 3-(d+1);
1554 int shift=0;
1555
1556 memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
1557
1558 funnyCode[fragmentPos + imm8OfPShufW1B]=
1559 (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
1560 funnyCode[fragmentPos + imm8OfPShufW2B]=
1561 a | (b<<2) | (c<<4) | (d<<6);
1562
1563 if (i+3>=dstW) shift=maxShift; //avoid overread
1564 else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
1565
1566 if (shift && i>=shift)
1567 {
1568 funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
1569 funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
1570 filterPos[i/2]-=shift;
1571 }
1572
1573 fragmentPos+= fragmentLengthB;
1574 }
1575 else
1576 {
1577 int maxShift= 3-d;
1578 int shift=0;
1579
1580 memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
1581
1582 funnyCode[fragmentPos + imm8OfPShufW1A]=
1583 funnyCode[fragmentPos + imm8OfPShufW2A]=
1584 a | (b<<2) | (c<<4) | (d<<6);
1585
1586 if (i+4>=dstW) shift=maxShift; //avoid overread
1587 else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
1588
1589 if (shift && i>=shift)
1590 {
1591 funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
1592 funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
1593 filterPos[i/2]-=shift;
1594 }
1595
1596 fragmentPos+= fragmentLengthA;
1597 }
1598
1599 funnyCode[fragmentPos]= RET;
1600 }
1601 xpos+=xInc;
1602 }
1603 filterPos[i/2]= xpos>>16; // needed to jump to the next part
1604 }
1605 #endif /* COMPILE_MMX2 */
1606
1607 static void globalInit(void){
1608 // generating tables:
1609 int i;
1610 for (i=0; i<768; i++){
1611 int c= av_clip_uint8(i-256);
1612 clip_table[i]=c;
1613 }
1614 }
1615
1616 static SwsFunc getSwsFunc(int flags){
1617
1618 #if defined(RUNTIME_CPUDETECT) && defined (CONFIG_GPL)
1619 #if defined(ARCH_X86)
1620 // ordered per speed fastest first
1621 if (flags & SWS_CPU_CAPS_MMX2)
1622 return swScale_MMX2;
1623 else if (flags & SWS_CPU_CAPS_3DNOW)
1624 return swScale_3DNow;
1625 else if (flags & SWS_CPU_CAPS_MMX)
1626 return swScale_MMX;
1627 else
1628 return swScale_C;
1629
1630 #else
1631 #ifdef ARCH_POWERPC
1632 if (flags & SWS_CPU_CAPS_ALTIVEC)
1633 return swScale_altivec;
1634 else
1635 return swScale_C;
1636 #endif
1637 return swScale_C;
1638 #endif /* defined(ARCH_X86) */
1639 #else //RUNTIME_CPUDETECT
1640 #ifdef HAVE_MMX2
1641 return swScale_MMX2;
1642 #elif defined (HAVE_3DNOW)
1643 return swScale_3DNow;
1644 #elif defined (HAVE_MMX)
1645 return swScale_MMX;
1646 #elif defined (HAVE_ALTIVEC)
1647 return swScale_altivec;
1648 #else
1649 return swScale_C;
1650 #endif
1651 #endif //!RUNTIME_CPUDETECT
1652 }
1653
1654 static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1655 int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1656 uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1657 /* Copy Y plane */
1658 if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
1659 memcpy(dst, src[0], srcSliceH*dstStride[0]);
1660 else
1661 {
1662 int i;
1663 uint8_t *srcPtr= src[0];
1664 uint8_t *dstPtr= dst;
1665 for (i=0; i<srcSliceH; i++)
1666 {
1667 memcpy(dstPtr, srcPtr, c->srcW);
1668 srcPtr+= srcStride[0];
1669 dstPtr+= dstStride[0];
1670 }
1671 }
1672 dst = dstParam[1] + dstStride[1]*srcSliceY/2;
1673 if (c->dstFormat == PIX_FMT_NV12)
1674 interleaveBytes(src[1], src[2], dst, c->srcW/2, srcSliceH/2, srcStride[1], srcStride[2], dstStride[0]);
1675 else
1676 interleaveBytes(src[2], src[1], dst, c->srcW/2, srcSliceH/2, srcStride[2], srcStride[1], dstStride[0]);
1677
1678 return srcSliceH;
1679 }
1680
1681 static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1682 int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1683 uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1684
1685 yv12toyuy2(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
1686
1687 return srcSliceH;
1688 }
1689
1690 static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1691 int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1692 uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1693
1694 yv12touyvy(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
1695
1696 return srcSliceH;
1697 }
1698
1699 static int YUV422PToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1700 int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1701 uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1702
1703 yuv422ptoyuy2(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);
1704
1705 return srcSliceH;
1706 }
1707
1708 static int YUV422PToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1709 int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1710 uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1711
1712 yuv422ptouyvy(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);
1713
1714 return srcSliceH;
1715 }
1716
1717 static int pal2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1718 int srcSliceH, uint8_t* dst[], int dstStride[]){
1719 const enum PixelFormat srcFormat= c->srcFormat;
1720 const enum PixelFormat dstFormat= c->dstFormat;
1721 void (*conv)(const uint8_t *src, uint8_t *dst, long num_pixels,
1722 const uint8_t *palette)=NULL;
1723 int i;
1724 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1725 uint8_t *srcPtr= src[0];
1726
1727 if (!usePal(srcFormat))
1728 av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
1729 sws_format_name(srcFormat), sws_format_name(dstFormat));
1730
1731 switch(dstFormat){
1732 case PIX_FMT_RGB32 : conv = palette8topacked32; break;
1733 case PIX_FMT_BGR32 : conv = palette8topacked32; break;
1734 case PIX_FMT_BGR32_1: conv = palette8topacked32; break;
1735 case PIX_FMT_RGB32_1: conv = palette8topacked32; break;
1736 case PIX_FMT_RGB24 : conv = palette8topacked24; break;
1737 case PIX_FMT_BGR24 : conv = palette8topacked24; break;
1738 default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
1739 sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
1740 }
1741
1742
1743 for (i=0; i<srcSliceH; i++) {
1744 conv(srcPtr, dstPtr, c->srcW, c->pal_rgb);
1745 srcPtr+= srcStride[0];
1746 dstPtr+= dstStride[0];
1747 }
1748
1749 return srcSliceH;
1750 }
1751
1752 /* {RGB,BGR}{15,16,24,32,32_1} -> {RGB,BGR}{15,16,24,32} */
1753 static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1754 int srcSliceH, uint8_t* dst[], int dstStride[]){
1755 const enum PixelFormat srcFormat= c->srcFormat;
1756 const enum PixelFormat dstFormat= c->dstFormat;
1757 const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
1758 const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
1759 const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
1760 const int dstId= fmt_depth(dstFormat) >> 2;
1761 void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
1762
1763 /* BGR -> BGR */
1764 if ( (isBGR(srcFormat) && isBGR(dstFormat))
1765 || (isRGB(srcFormat) && isRGB(dstFormat))){
1766 switch(srcId | (dstId<<4)){
1767 case 0x34: conv= rgb16to15; break;
1768 case 0x36: conv= rgb24to15; break;
1769 case 0x38: conv= rgb32to15; break;
1770 case 0x43: conv= rgb15to16; break;
1771 case 0x46: conv= rgb24to16; break;
1772 case 0x48: conv= rgb32to16; break;
1773 case 0x63: conv= rgb15to24; break;
1774 case 0x64: conv= rgb16to24; break;
1775 case 0x68: conv= rgb32to24; break;
1776 case 0x83: conv= rgb15to32; break;
1777 case 0x84: conv= rgb16to32; break;
1778 case 0x86: conv= rgb24to32; break;
1779 default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
1780 sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
1781 }
1782 }else if ( (isBGR(srcFormat) && isRGB(dstFormat))
1783 || (isRGB(srcFormat) && isBGR(dstFormat))){
1784 switch(srcId | (dstId<<4)){
1785 case 0x33: conv= rgb15tobgr15; break;
1786 case 0x34: conv= rgb16tobgr15; break;
1787 case 0x36: conv= rgb24tobgr15; break;
1788 case 0x38: conv= rgb32tobgr15; break;
1789 case 0x43: conv= rgb15tobgr16; break;
1790 case 0x44: conv= rgb16tobgr16; break;
1791 case 0x46: conv= rgb24tobgr16; break;
1792 case 0x48: conv= rgb32tobgr16; break;
1793 case 0x63: conv= rgb15tobgr24; break;
1794 case 0x64: conv= rgb16tobgr24; break;
1795 case 0x66: conv= rgb24tobgr24; break;
1796 case 0x68: conv= rgb32tobgr24; break;
1797 case 0x83: conv= rgb15tobgr32; break;
1798 case 0x84: conv= rgb16tobgr32; break;
1799 case 0x86: conv= rgb24tobgr32; break;
1800 case 0x88: conv= rgb32tobgr32; break;
1801 default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
1802 sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
1803 }
1804 }else{
1805 av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
1806 sws_format_name(srcFormat), sws_format_name(dstFormat));
1807 }
1808
1809 if(conv)
1810 {
1811 uint8_t *srcPtr= src[0];
1812 if(srcFormat == PIX_FMT_RGB32_1 || srcFormat == PIX_FMT_BGR32_1)
1813 srcPtr += ALT32_CORR;
1814
1815 if (dstStride[0]*srcBpp == srcStride[0]*dstBpp && srcStride[0] > 0)
1816 conv(srcPtr, dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
1817 else
1818 {
1819 int i;
1820 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1821
1822 for (i=0; i<srcSliceH; i++)
1823 {
1824 conv(srcPtr, dstPtr, c->srcW*srcBpp);
1825 srcPtr+= srcStride[0];
1826 dstPtr+= dstStride[0];
1827 }
1828 }
1829 }
1830 return srcSliceH;
1831 }
1832
1833 static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1834 int srcSliceH, uint8_t* dst[], int dstStride[]){
1835
1836 rgb24toyv12(
1837 src[0],
1838 dst[0]+ srcSliceY *dstStride[0],
1839 dst[1]+(srcSliceY>>1)*dstStride[1],
1840 dst[2]+(srcSliceY>>1)*dstStride[2],
1841 c->srcW, srcSliceH,
1842 dstStride[0], dstStride[1], srcStride[0]);
1843 return srcSliceH;
1844 }
1845
1846 static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1847 int srcSliceH, uint8_t* dst[], int dstStride[]){
1848 int i;
1849
1850 /* copy Y */
1851 if (srcStride[0]==dstStride[0] && srcStride[0] > 0)
1852 memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
1853 else{
1854 uint8_t *srcPtr= src[0];
1855 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1856
1857 for (i=0; i<srcSliceH; i++)
1858 {
1859 memcpy(dstPtr, srcPtr, c->srcW);
1860 srcPtr+= srcStride[0];
1861 dstPtr+= dstStride[0];
1862 }
1863 }
1864
1865 if (c->dstFormat==PIX_FMT_YUV420P){
1866 planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
1867 planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
1868 }else{
1869 planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
1870 planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
1871 }
1872 return srcSliceH;
1873 }
1874
1875 /* unscaled copy like stuff (assumes nearly identical formats) */
1876 static int packedCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1877 int srcSliceH, uint8_t* dst[], int dstStride[])
1878 {
1879 if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
1880 memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
1881 else
1882 {
1883 int i;
1884 uint8_t *srcPtr= src[0];
1885 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1886 int length=0;
1887
1888 /* universal length finder */
1889 while(length+c->srcW <= FFABS(dstStride[0])
1890 && length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW;
1891 assert(length!=0);
1892
1893 for (i=0; i<srcSliceH; i++)
1894 {
1895 memcpy(dstPtr, srcPtr, length);
1896 srcPtr+= srcStride[0];
1897 dstPtr+= dstStride[0];
1898 }
1899 }
1900 return srcSliceH;
1901 }
1902
1903 static int planarCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1904 int srcSliceH, uint8_t* dst[], int dstStride[])
1905 {
1906 int plane;
1907 for (plane=0; plane<3; plane++)
1908 {
1909 int length= plane==0 ? c->srcW : -((-c->srcW )>>c->chrDstHSubSample);
1910 int y= plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
1911 int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
1912
1913 if ((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
1914 {
1915 if (!isGray(c->dstFormat))
1916 memset(dst[plane], 128, dstStride[plane]*height);
1917 }
1918 else
1919 {
1920 if (dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
1921 memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
1922 else
1923 {
1924 int i;
1925 uint8_t *srcPtr= src[plane];
1926 uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
1927 for (i=0; i<height; i++)
1928 {
1929 memcpy(dstPtr, srcPtr, length);
1930 srcPtr+= srcStride[plane];
1931 dstPtr+= dstStride[plane];
1932 }
1933 }
1934 }
1935 }
1936 return srcSliceH;
1937 }
1938
1939 static int gray16togray(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1940 int srcSliceH, uint8_t* dst[], int dstStride[]){
1941
1942 int length= c->srcW;
1943 int y= srcSliceY;
1944 int height= srcSliceH;
1945 int i, j;
1946 uint8_t *srcPtr= src[0];
1947 uint8_t *dstPtr= dst[0] + dstStride[0]*y;
1948
1949 if (!isGray(c->dstFormat)){
1950 int height= -((-srcSliceH)>>c->chrDstVSubSample);
1951 memset(dst[1], 128, dstStride[1]*height);
1952 memset(dst[2], 128, dstStride[2]*height);
1953 }
1954 if (c->srcFormat == PIX_FMT_GRAY16LE) srcPtr++;
1955 for (i=0; i<height; i++)
1956 {
1957 for (j=0; j<length; j++) dstPtr[j] = srcPtr[j<<1];
1958 srcPtr+= srcStride[0];
1959 dstPtr+= dstStride[0];
1960 }
1961 return srcSliceH;
1962 }
1963
1964 static int graytogray16(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1965 int srcSliceH, uint8_t* dst[], int dstStride[]){
1966
1967 int length= c->srcW;
1968 int y= srcSliceY;
1969 int height= srcSliceH;
1970 int i, j;
1971 uint8_t *srcPtr= src[0];
1972 uint8_t *dstPtr= dst[0] + dstStride[0]*y;
1973 for (i=0; i<height; i++)
1974 {
1975 for (j=0; j<length; j++)
1976 {
1977 dstPtr[j<<1] = srcPtr[j];
1978 dstPtr[(j<<1)+1] = srcPtr[j];
1979 }
1980 srcPtr+= srcStride[0];
1981 dstPtr+= dstStride[0];
1982 }
1983 return srcSliceH;
1984 }
1985
1986 static int gray16swap(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1987 int srcSliceH, uint8_t* dst[], int dstStride[]){
1988
1989 int length= c->srcW;
1990 int y= srcSliceY;
1991 int height= srcSliceH;
1992 int i, j;
1993 uint16_t *srcPtr= (uint16_t*)src[0];
1994 uint16_t *dstPtr= (uint16_t*)(dst[0] + dstStride[0]*y/2);
1995 for (i=0; i<height; i++)
1996 {
1997 for (j=0; j<length; j++) dstPtr[j] = bswap_16(srcPtr[j]);
1998 srcPtr+= srcStride[0]/2;
1999 dstPtr+= dstStride[0]/2;
2000 }
2001 return srcSliceH;
2002 }
2003
2004
2005 static void getSubSampleFactors(int *h, int *v, int format){
2006 switch(format){
2007 case PIX_FMT_UYVY422:
2008 case PIX_FMT_YUYV422:
2009 *h=1;
2010 *v=0;
2011 break;
2012 case PIX_FMT_YUV420P:
2013 case PIX_FMT_YUVA420P:
2014 case PIX_FMT_GRAY16BE:
2015 case PIX_FMT_GRAY16LE:
2016 case PIX_FMT_GRAY8: //FIXME remove after different subsamplings are fully implemented
2017 case PIX_FMT_NV12:
2018 case PIX_FMT_NV21:
2019 *h=1;
2020 *v=1;
2021 break;
2022 case PIX_FMT_YUV440P:
2023 *h=0;
2024 *v=1;
2025 break;
2026 case PIX_FMT_YUV410P:
2027 *h=2;
2028 *v=2;
2029 break;
2030 case PIX_FMT_YUV444P:
2031 *h=0;
2032 *v=0;
2033 break;
2034 case PIX_FMT_YUV422P:
2035 *h=1;
2036 *v=0;
2037 break;
2038 case PIX_FMT_YUV411P:
2039 *h=2;
2040 *v=0;
2041 break;
2042 default:
2043 *h=0;
2044 *v=0;
2045 break;
2046 }
2047 }
2048
2049 static uint16_t roundToInt16(int64_t f){
2050 int r= (f + (1<<15))>>16;
2051 if (r<-0x7FFF) return 0x8000;
2052 else if (r> 0x7FFF) return 0x7FFF;
2053 else return r;
2054 }
2055
2056 /**
2057 * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
2058 * @param fullRange if 1 then the luma range is 0..255 if 0 it is 16..235
2059 * @return -1 if not supported
2060 */
2061 int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
2062 int64_t crv = inv_table[0];
2063 int64_t cbu = inv_table[1];
2064 int64_t cgu = -inv_table[2];
2065 int64_t cgv = -inv_table[3];
2066 int64_t cy = 1<<16;
2067 int64_t oy = 0;
2068
2069 memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
2070 memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
2071
2072 c->brightness= brightness;
2073 c->contrast = contrast;
2074 c->saturation= saturation;
2075 c->srcRange = srcRange;
2076 c->dstRange = dstRange;
2077 if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return 0;
2078
2079 c->uOffset= 0x0400040004000400LL;
2080 c->vOffset= 0x0400040004000400LL;
2081
2082 if (!srcRange){
2083 cy= (cy*255) / 219;
2084 oy= 16<<16;
2085 }else{
2086 crv= (crv*224) / 255;
2087 cbu= (cbu*224) / 255;
2088 cgu= (cgu*224) / 255;
2089 cgv= (cgv*224) / 255;
2090 }
2091
2092 cy = (cy *contrast )>>16;
2093 crv= (crv*contrast * saturation)>>32;
2094 cbu= (cbu*contrast * saturation)>>32;
2095 cgu= (cgu*contrast * saturation)>>32;
2096 cgv= (cgv*contrast * saturation)>>32;
2097
2098 oy -= 256*brightness;
2099
2100 c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
2101 c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
2102 c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
2103 c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
2104 c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
2105 c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
2106
2107 c->yuv2rgb_y_coeff = (int16_t)roundToInt16(cy <<13);
2108 c->yuv2rgb_y_offset = (int16_t)roundToInt16(oy << 9);
2109 c->yuv2rgb_v2r_coeff= (int16_t)roundToInt16(crv<<13);
2110 c->yuv2rgb_v2g_coeff= (int16_t)roundToInt16(cgv<<13);
2111 c->yuv2rgb_u2g_coeff= (int16_t)roundToInt16(cgu<<13);
2112 c->yuv2rgb_u2b_coeff= (int16_t)roundToInt16(cbu<<13);
2113
2114 yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
2115 //FIXME factorize
2116
2117 #ifdef COMPILE_ALTIVEC
2118 if (c->flags & SWS_CPU_CAPS_ALTIVEC)
2119 yuv2rgb_altivec_init_tables (c, inv_table, brightness, contrast, saturation);
2120 #endif
2121 return 0;
2122 }
2123
2124 /**
2125 * @return -1 if not supported
2126 */
2127 int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
2128 if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
2129
2130 *inv_table = c->srcColorspaceTable;
2131 *table = c->dstColorspaceTable;
2132 *srcRange = c->srcRange;
2133 *dstRange = c->dstRange;
2134 *brightness= c->brightness;
2135 *contrast = c->contrast;
2136 *saturation= c->saturation;
2137
2138 return 0;
2139 }
2140
2141 static int handle_jpeg(enum PixelFormat *format)
2142 {
2143 switch (*format) {
2144 case PIX_FMT_YUVJ420P:
2145 *format = PIX_FMT_YUV420P;
2146 return 1;
2147 case PIX_FMT_YUVJ422P:
2148 *format = PIX_FMT_YUV422P;
2149 return 1;
2150 case PIX_FMT_YUVJ444P:
2151 *format = PIX_FMT_YUV444P;
2152 return 1;
2153 case PIX_FMT_YUVJ440P:
2154 *format = PIX_FMT_YUV440P;
2155 return 1;
2156 default:
2157 return 0;
2158 }
2159 }
2160
2161 SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat, int dstW, int dstH, enum PixelFormat dstFormat, int flags,
2162 SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){
2163
2164 SwsContext *c;
2165 int i;
2166 int usesVFilter, usesHFilter;
2167 int unscaled, needsDither;
2168 int srcRange, dstRange;
2169 SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
2170 #if defined(ARCH_X86)
2171 if (flags & SWS_CPU_CAPS_MMX)
2172 __asm__ volatile("emms\n\t"::: "memory");
2173 #endif
2174
2175 #if !defined(RUNTIME_CPUDETECT) || !defined (CONFIG_GPL) //ensure that the flags match the compiled variant if cpudetect is off
2176 flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC|SWS_CPU_CAPS_BFIN);
2177 #ifdef HAVE_MMX2
2178 flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
2179 #elif defined (HAVE_3DNOW)
2180 flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
2181 #elif defined (HAVE_MMX)
2182 flags |= SWS_CPU_CAPS_MMX;
2183 #elif defined (HAVE_ALTIVEC)
2184 flags |= SWS_CPU_CAPS_ALTIVEC;
2185 #elif defined (ARCH_BFIN)
2186 flags |= SWS_CPU_CAPS_BFIN;
2187 #endif
2188 #endif /* RUNTIME_CPUDETECT */
2189 if (clip_table[512] != 255) globalInit();
2190 if (!rgb15to16) sws_rgb2rgb_init(flags);
2191
2192 unscaled = (srcW == dstW && srcH == dstH);
2193 needsDither= (isBGR(dstFormat) || isRGB(dstFormat))
2194 && (fmt_depth(dstFormat))<24
2195 && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
2196
2197 srcRange = handle_jpeg(&srcFormat);
2198 dstRange = handle_jpeg(&dstFormat);
2199
2200 if (!isSupportedIn(srcFormat))
2201 {
2202 av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", sws_format_name(srcFormat));
2203 return NULL;
2204 }
2205 if (!isSupportedOut(dstFormat))
2206 {
2207 av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", sws_format_name(dstFormat));
2208 return NULL;
2209 }
2210
2211 i= flags & ( SWS_POINT
2212 |SWS_AREA
2213 |SWS_BILINEAR
2214 |SWS_FAST_BILINEAR
2215 |SWS_BICUBIC
2216 |SWS_X
2217 |SWS_GAUSS
2218 |SWS_LANCZOS
2219 |SWS_SINC
2220 |SWS_SPLINE
2221 |SWS_BICUBLIN);
2222 if(!i || (i & (i-1)))
2223 {
2224 av_log(NULL, AV_LOG_ERROR, "swScaler: Exactly one scaler algorithm must be choosen\n");
2225 return NULL;
2226 }
2227
2228 /* sanity check */
2229 if (srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
2230 {
2231 av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
2232 srcW, srcH, dstW, dstH);
2233 return NULL;
2234 }
2235 if(srcW > VOFW || dstW > VOFW){
2236 av_log(NULL, AV_LOG_ERROR, "swScaler: Compile time max width is "AV_STRINGIFY(VOFW)" change VOF/VOFW and recompile\n");
2237 return NULL;
2238 }
2239
2240 if (!dstFilter) dstFilter= &dummyFilter;
2241 if (!srcFilter) srcFilter= &dummyFilter;
2242
2243 c= av_mallocz(sizeof(SwsContext));
2244
2245 c->av_class = &sws_context_class;
2246 c->srcW= srcW;
2247 c->srcH= srcH;
2248 c->dstW= dstW;
2249 c->dstH= dstH;
2250 c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
2251 c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
2252 c->flags= flags;
2253 c->dstFormat= dstFormat;
2254 c->srcFormat= srcFormat;
2255 c->vRounder= 4* 0x0001000100010001ULL;
2256
2257 usesHFilter= usesVFilter= 0;
2258 if (dstFilter->lumV && dstFilter->lumV->length>1) usesVFilter=1;
2259 if (dstFilter->lumH && dstFilter->lumH->length>1) usesHFilter=1;
2260 if (dstFilter->chrV && dstFilter->chrV->length>1) usesVFilter=1;
2261 if (dstFilter->chrH && dstFilter->chrH->length>1) usesHFilter=1;
2262 if (srcFilter->lumV && srcFilter->lumV->length>1) usesVFilter=1;
2263 if (srcFilter->lumH && srcFilter->lumH->length>1) usesHFilter=1;
2264 if (srcFilter->chrV && srcFilter->chrV->length>1) usesVFilter=1;
2265 if (srcFilter->chrH && srcFilter->chrH->length>1) usesHFilter=1;
2266
2267 getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
2268 getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
2269
2270 // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
2271 if ((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
2272
2273 // drop some chroma lines if the user wants it
2274 c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
2275 c->chrSrcVSubSample+= c->vChrDrop;
2276
2277 // drop every 2. pixel for chroma calculation unless user wants full chroma
2278 if ((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)
2279 && srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
2280 && srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
2281 && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
2282 && ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&(SWS_FAST_BILINEAR|SWS_POINT))))
2283 c->chrSrcHSubSample=1;
2284
2285 if (param){
2286 c->param[0] = param[0];
2287 c->param[1] = param[1];
2288 }else{
2289 c->param[0] =
2290 c->param[1] = SWS_PARAM_DEFAULT;
2291 }
2292
2293 c->chrIntHSubSample= c->chrDstHSubSample;
2294 c->chrIntVSubSample= c->chrSrcVSubSample;
2295
2296 // Note the -((-x)>>y) is so that we always round toward +inf.
2297 c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
2298 c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
2299 c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
2300 c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
2301
2302 sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], srcRange, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
2303
2304 /* unscaled special Cases */
2305 if (unscaled && !usesHFilter && !usesVFilter && (srcRange == dstRange || isBGR(dstFormat) || isRGB(dstFormat)))
2306 {
2307 /* yv12_to_nv12 */
2308 if (srcFormat == PIX_FMT_YUV420P && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21))
2309 {
2310 c->swScale= PlanarToNV12Wrapper;
2311 }
2312 #ifdef CONFIG_GPL
2313 /* yuv2bgr */
2314 if ((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P) && (isBGR(dstFormat) || isRGB(dstFormat))
2315 && !(flags & SWS_ACCURATE_RND) && !(dstH&1))
2316 {
2317 c->swScale= yuv2rgb_get_func_ptr(c);
2318 }
2319 #endif
2320
2321 if (srcFormat==PIX_FMT_YUV410P && dstFormat==PIX_FMT_YUV420P && !(flags & SWS_BITEXACT))
2322 {
2323 c->swScale= yvu9toyv12Wrapper;
2324 }
2325
2326 /* bgr24toYV12 */
2327 if (srcFormat==PIX_FMT_BGR24 && dstFormat==PIX_FMT_YUV420P && !(flags & SWS_ACCURATE_RND))
2328 c->swScale= bgr24toyv12Wrapper;
2329
2330 /* rgb/bgr -> rgb/bgr (no dither needed forms) */
2331 if ( (isBGR(srcFormat) || isRGB(srcFormat))
2332 && (isBGR(dstFormat) || isRGB(dstFormat))
2333 && srcFormat != PIX_FMT_BGR8 && dstFormat != PIX_FMT_BGR8
2334 && srcFormat != PIX_FMT_RGB8 && dstFormat != PIX_FMT_RGB8
2335 && srcFormat != PIX_FMT_BGR4 && dstFormat != PIX_FMT_BGR4
2336 && srcFormat != PIX_FMT_RGB4 && dstFormat != PIX_FMT_RGB4
2337 && srcFormat != PIX_FMT_BGR4_BYTE && dstFormat != PIX_FMT_BGR4_BYTE
2338 && srcFormat != PIX_FMT_RGB4_BYTE && dstFormat != PIX_FMT_RGB4_BYTE
2339 && srcFormat != PIX_FMT_MONOBLACK && dstFormat != PIX_FMT_MONOBLACK
2340 && srcFormat != PIX_FMT_MONOWHITE && dstFormat != PIX_FMT_MONOWHITE
2341 && dstFormat != PIX_FMT_RGB32_1
2342 && dstFormat != PIX_FMT_BGR32_1
2343 && (!needsDither || (c->flags&(SWS_FAST_BILINEAR|SWS_POINT))))
2344 c->swScale= rgb2rgbWrapper;
2345
2346 if ((usePal(srcFormat) && (
2347 dstFormat == PIX_FMT_RGB32 ||
2348 dstFormat == PIX_FMT_RGB32_1 ||
2349 dstFormat == PIX_FMT_RGB24 ||
2350 dstFormat == PIX_FMT_BGR32 ||
2351 dstFormat == PIX_FMT_BGR32_1 ||
2352 dstFormat == PIX_FMT_BGR24)))
2353 c->swScale= pal2rgbWrapper;
2354
2355 if (srcFormat == PIX_FMT_YUV422P)
2356 {
2357 if (dstFormat == PIX_FMT_YUYV422)
2358 c->swScale= YUV422PToYuy2Wrapper;
2359 else if (dstFormat == PIX_FMT_UYVY422)
2360 c->swScale= YUV422PToUyvyWrapper;
2361 }
2362
2363 /* LQ converters if -sws 0 or -sws 4*/
2364 if (c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
2365 /* yv12_to_yuy2 */
2366 if (srcFormat == PIX_FMT_YUV420P)
2367 {
2368 if (dstFormat == PIX_FMT_YUYV422)
2369 c->swScale= PlanarToYuy2Wrapper;
2370 else if (dstFormat == PIX_FMT_UYVY422)
2371 c->swScale= PlanarToUyvyWrapper;
2372 }
2373 }
2374
2375 #ifdef COMPILE_ALTIVEC
2376 if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
2377 srcFormat == PIX_FMT_YUV420P) {
2378 // unscaled YV12 -> packed YUV, we want speed
2379 if (dstFormat == PIX_FMT_YUYV422)
2380 c->swScale= yv12toyuy2_unscaled_altivec;
2381 else if (dstFormat == PIX_FMT_UYVY422)
2382 c->swScale= yv12touyvy_unscaled_altivec;
2383 }
2384 #endif
2385
2386 /* simple copy */
2387 if ( srcFormat == dstFormat
2388 || (isPlanarYUV(srcFormat) && isGray(dstFormat))
2389 || (isPlanarYUV(dstFormat) && isGray(srcFormat)))
2390 {
2391 if (isPacked(c->srcFormat))
2392 c->swScale= packedCopy;
2393 else /* Planar YUV or gray */
2394 c->swScale= planarCopy;
2395 }
2396
2397 /* gray16{le,be} conversions */
2398 if (isGray16(srcFormat) && (isPlanarYUV(dstFormat) || (dstFormat == PIX_FMT_GRAY8)))
2399 {
2400 c->swScale= gray16togray;
2401 }
2402 if ((isPlanarYUV(srcFormat) || (srcFormat == PIX_FMT_GRAY8)) && isGray16(dstFormat))
2403 {
2404 c->swScale= graytogray16;
2405 }
2406 if (srcFormat != dstFormat && isGray16(srcFormat) && isGray16(dstFormat))
2407 {
2408 c->swScale= gray16swap;
2409 }
2410
2411 #ifdef ARCH_BFIN
2412 if (flags & SWS_CPU_CAPS_BFIN)
2413 ff_bfin_get_unscaled_swscale (c);
2414 #endif
2415
2416 if (c->swScale){
2417 if (flags&SWS_PRINT_INFO)
2418 av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
2419 sws_format_name(srcFormat), sws_format_name(dstFormat));
2420 return c;
2421 }
2422 }
2423
2424 if (flags & SWS_CPU_CAPS_MMX2)
2425 {
2426 c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
2427 if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
2428 {
2429 if (flags&SWS_PRINT_INFO)
2430 av_log(c, AV_LOG_INFO, "output Width is not a multiple of 32 -> no MMX2 scaler\n");
2431 }
2432 if (usesHFilter) c->canMMX2BeUsed=0;
2433 }
2434 else
2435 c->canMMX2BeUsed=0;
2436
2437 c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
2438 c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
2439
2440 // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
2441 // but only for the FAST_BILINEAR mode otherwise do correct scaling
2442 // n-2 is the last chrominance sample available
2443 // this is not perfect, but no one should notice the difference, the more correct variant
2444 // would be like the vertical one, but that would require some special code for the
2445 // first and last pixel
2446 if (flags&SWS_FAST_BILINEAR)
2447 {
2448 if (c->canMMX2BeUsed)
2449 {
2450 c->lumXInc+= 20;
2451 c->chrXInc+= 20;
2452 }
2453 //we don't use the x86asm scaler if mmx is available
2454 else if (flags & SWS_CPU_CAPS_MMX)
2455 {
2456 c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
2457 c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
2458 }
2459 }
2460
2461 /* precalculate horizontal scaler filter coefficients */
2462 {
2463 const int filterAlign=
2464 (flags & SWS_CPU_CAPS_MMX) ? 4 :
2465 (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2466 1;
2467
2468 initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
2469 srcW , dstW, filterAlign, 1<<14,
2470 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
2471 srcFilter->lumH, dstFilter->lumH, c->param);
2472 initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
2473 c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
2474 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2475 srcFilter->chrH, dstFilter->chrH, c->param);
2476
2477 #define MAX_FUNNY_CODE_SIZE 10000
2478 #if defined(COMPILE_MMX2)
2479 // can't downscale !!!
2480 if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
2481 {
2482 #ifdef MAP_ANONYMOUS
2483 c->funnyYCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2484 c->funnyUVCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2485 #else
2486 c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
2487 c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
2488 #endif
2489
2490 c->lumMmx2Filter = av_malloc((dstW /8+8)*sizeof(int16_t));
2491 c->chrMmx2Filter = av_malloc((c->chrDstW /4+8)*sizeof(int16_t));
2492 c->lumMmx2FilterPos= av_malloc((dstW /2/8+8)*sizeof(int32_t));
2493 c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));
2494
2495 initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
2496 initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
2497 }
2498 #endif /* defined(COMPILE_MMX2) */
2499 } // Init Horizontal stuff
2500
2501
2502
2503 /* precalculate vertical scaler filter coefficients */
2504 {
2505 const int filterAlign=
2506 (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
2507 (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2508 1;
2509
2510 initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
2511 srcH , dstH, filterAlign, (1<<12),
2512 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
2513 srcFilter->lumV, dstFilter->lumV, c->param);
2514 initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
2515 c->chrSrcH, c->chrDstH, filterAlign, (1<<12),
2516 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2517 srcFilter->chrV, dstFilter->chrV, c->param);
2518
2519 #ifdef HAVE_ALTIVEC
2520 c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
2521 c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
2522
2523 for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
2524 int j;
2525 short *p = (short *)&c->vYCoeffsBank[i];
2526 for (j=0;j<8;j++)
2527 p[j] = c->vLumFilter[i];
2528 }
2529
2530 for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
2531 int j;
2532 short *p = (short *)&c->vCCoeffsBank[i];
2533 for (j=0;j<8;j++)
2534 p[j] = c->vChrFilter[i];
2535 }
2536 #endif
2537 }
2538
2539 // Calculate Buffer Sizes so that they won't run out while handling these damn slices
2540 c->vLumBufSize= c->vLumFilterSize;
2541 c->vChrBufSize= c->vChrFilterSize;
2542 for (i=0; i<dstH; i++)
2543 {
2544 int chrI= i*c->chrDstH / dstH;
2545 int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
2546 ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
2547
2548 nextSlice>>= c->chrSrcVSubSample;
2549 nextSlice<<= c->chrSrcVSubSample;
2550 if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
2551 c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
2552 if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
2553 c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
2554 }
2555
2556 // allocate pixbufs (we use dynamic allocation because otherwise we would need to
2557 c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
2558 c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
2559 //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
2560 /* align at 16 bytes for AltiVec */
2561 for (i=0; i<c->vLumBufSize; i++)
2562 c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_mallocz(VOF+1);
2563 for (i=0; i<c->vChrBufSize; i++)
2564 c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc((VOF+1)*2);
2565
2566 //try to avoid drawing green stuff between the right end and the stride end
2567 for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, (VOF+1)*2);
2568
2569 assert(2*VOFW == VOF);
2570
2571 assert(c->chrDstH <= dstH);
2572
2573 if (flags&SWS_PRINT_INFO)
2574 {
2575 #ifdef DITHER1XBPP
2576 const char *dither= " dithered";
2577 #else
2578 const char *dither= "";
2579 #endif
2580 if (flags&SWS_FAST_BILINEAR)
2581 av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
2582 else if (flags&SWS_BILINEAR)
2583 av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
2584 else if (flags&SWS_BICUBIC)
2585 av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
2586 else if (flags&SWS_X)
2587 av_log(c, AV_LOG_INFO, "Experimental scaler, ");
2588 else if (flags&SWS_POINT)
2589 av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
2590 else if (flags&SWS_AREA)
2591 av_log(c, AV_LOG_INFO, "Area Averageing scaler, ");
2592 else if (flags&SWS_BICUBLIN)
2593 av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
2594 else if (flags&SWS_GAUSS)
2595 av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
2596 else if (flags&SWS_SINC)
2597 av_log(c, AV_LOG_INFO, "Sinc scaler, ");
2598 else if (flags&SWS_LANCZOS)
2599 av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
2600 else if (flags&SWS_SPLINE)
2601 av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
2602 else
2603 av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
2604
2605 if (dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565)
2606 av_log(c, AV_LOG_INFO, "from %s to%s %s ",
2607 sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
2608 else
2609 av_log(c, AV_LOG_INFO, "from %s to %s ",
2610 sws_format_name(srcFormat), sws_format_name(dstFormat));
2611
2612 if (flags & SWS_CPU_CAPS_MMX2)
2613 av_log(c, AV_LOG_INFO, "using MMX2\n");
2614 else if (flags & SWS_CPU_CAPS_3DNOW)
2615 av_log(c, AV_LOG_INFO, "using 3DNOW\n");
2616 else if (flags & SWS_CPU_CAPS_MMX)
2617 av_log(c, AV_LOG_INFO, "using MMX\n");
2618 else if (flags & SWS_CPU_CAPS_ALTIVEC)
2619 av_log(c, AV_LOG_INFO, "using AltiVec\n");
2620 else
2621 av_log(c, AV_LOG_INFO, "using C\n");
2622 }
2623
2624 if (flags & SWS_PRINT_INFO)
2625 {
2626 if (flags & SWS_CPU_CAPS_MMX)
2627 {
2628 if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
2629 av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
2630 else
2631 {
2632 if (c->hLumFilterSize==4)
2633 av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
2634 else if (c->hLumFilterSize==8)
2635 av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
2636 else
2637 av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");
2638
2639 if (c->hChrFilterSize==4)
2640 av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
2641 else if (c->hChrFilterSize==8)
2642 av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
2643 else
2644 av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
2645 }
2646 }
2647 else
2648 {
2649 #if defined(ARCH_X86)
2650 av_log(c, AV_LOG_VERBOSE, "using X86-Asm scaler for horizontal scaling\n");
2651 #else
2652 if (flags & SWS_FAST_BILINEAR)
2653 av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
2654 else
2655 av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
2656 #endif
2657 }
2658 if (isPlanarYUV(dstFormat))
2659 {
2660 if (c->vLumFilterSize==1)
2661 av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2662 else
2663 av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2664 }
2665 else
2666 {
2667 if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
2668 av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
2669 " 2-tap scaler for vertical chrominance scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2670 else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
2671 av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2672 else
2673 av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2674 }
2675
2676 if (dstFormat==PIX_FMT_BGR24)
2677 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 Converter\n",
2678 (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
2679 else if (dstFormat==PIX_FMT_RGB32)
2680 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2681 else if (dstFormat==PIX_FMT_BGR565)
2682 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2683 else if (dstFormat==PIX_FMT_BGR555)
2684 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2685
2686 av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
2687 }
2688 if (flags & SWS_PRINT_INFO)
2689 {
2690 av_log(c, AV_LOG_DEBUG, "Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2691 c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
2692 av_log(c, AV_LOG_DEBUG, "Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2693 c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
2694 }
2695
2696 c->swScale= getSwsFunc(flags);
2697 return c;
2698 }
2699
2700 /**
2701 * swscale wrapper, so we don't need to export the SwsContext.
2702 * assumes planar YUV to be in YUV order instead of YVU
2703 */
2704 int sws_scale(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
2705 int srcSliceH, uint8_t* dst[], int dstStride[]){
2706 int i;
2707 uint8_t* src2[4]= {src[0], src[1], src[2]};
2708
2709 if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
2710 av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n");
2711 return 0;
2712 }
2713 if (c->sliceDir == 0) {
2714 if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
2715 }
2716
2717 if (usePal(c->srcFormat)){
2718 for (i=0; i<256; i++){
2719 int p, r, g, b,y,u,v;
2720 if(c->srcFormat == PIX_FMT_PAL8){
2721 p=((uint32_t*)(src[1]))[i];
2722 r= (p>>16)&0xFF;
2723 g= (p>> 8)&0xFF;
2724 b= p &0xFF;
2725 }else if(c->srcFormat == PIX_FMT_RGB8){
2726 r= (i>>5 )*36;
2727 g= ((i>>2)&7)*36;
2728 b= (i&3 )*85;
2729 }else if(c->srcFormat == PIX_FMT_BGR8){
2730 b= (i>>6 )*85;
2731 g= ((i>>3)&7)*36;
2732 r= (i&7 )*36;
2733 }else if(c->srcFormat == PIX_FMT_RGB4_BYTE){
2734 r= (i>>3 )*255;
2735 g= ((i>>1)&3)*85;
2736 b= (i&1 )*255;
2737 }else if(c->srcFormat == PIX_FMT_BGR4_BYTE){
2738 b= (i>>3 )*255;
2739 g= ((i>>1)&3)*85;
2740 r= (i&1 )*255;
2741 }
2742 y= av_clip_uint8((RY*r + GY*g + BY*b + ( 33<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
2743 u= av_clip_uint8((RU*r + GU*g + BU*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
2744 v= av_clip_uint8((RV*r + GV*g + BV*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
2745 c->pal_yuv[i]= y + (u<<8) + (v<<16);
2746
2747
2748 switch(c->dstFormat) {
2749 case PIX_FMT_BGR32:
2750 #ifndef WORDS_BIGENDIAN
2751 case PIX_FMT_RGB24:
2752 #endif
2753 c->pal_rgb[i]= r + (g<<8) + (b<<16);
2754 break;
2755 case PIX_FMT_BGR32_1:
2756 #ifdef WORDS_BIGENDIAN
2757 case PIX_FMT_BGR24:
2758 #endif
2759 c->pal_rgb[i]= (r + (g<<8) + (b<<16)) << 8;
2760 break;
2761 case PIX_FMT_RGB32_1:
2762 #ifdef WORDS_BIGENDIAN
2763 case PIX_FMT_RGB24:
2764 #endif
2765 c->pal_rgb[i]= (b + (g<<8) + (r<<16)) << 8;
2766 break;
2767 case PIX_FMT_RGB32:
2768 #ifndef WORDS_BIGENDIAN
2769 case PIX_FMT_BGR24:
2770 #endif
2771 default:
2772 c->pal_rgb[i]= b + (g<<8) + (r<<16);
2773 }
2774 }
2775 }
2776
2777 // copy strides, so they can safely be modified
2778 if (c->sliceDir == 1) {
2779 // slices go from top to bottom
2780 int srcStride2[4]= {srcStride[0], srcStride[1], srcStride[2]};
2781 int dstStride2[4]= {dstStride[0], dstStride[1], dstStride[2]};
2782 return c->swScale(c, src2, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
2783 } else {
2784 // slices go from bottom to top => we flip the image internally
2785 uint8_t* dst2[4]= {dst[0] + (c->dstH-1)*dstStride[0],
2786 dst[1] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1],
2787 dst[2] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2]};
2788 int srcStride2[4]= {-srcStride[0], -srcStride[1], -srcStride[2]};
2789 int dstStride2[4]= {-dstStride[0], -dstStride[1], -dstStride[2]};
2790
2791 src2[0] += (srcSliceH-1)*srcStride[0];
2792 if (!usePal(c->srcFormat))
2793 src2[1] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1];
2794 src2[2] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2];
2795
2796 return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
2797 }
2798 }
2799
2800 /**
2801 * swscale wrapper, so we don't need to export the SwsContext
2802 */
2803 int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
2804 int srcSliceH, uint8_t* dst[], int dstStride[]){
2805 return sws_scale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
2806 }
2807
2808 SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
2809 float lumaSharpen, float chromaSharpen,
2810 float chromaHShift, float chromaVShift,
2811 int verbose)
2812 {
2813 SwsFilter *filter= av_malloc(sizeof(SwsFilter));
2814
2815 if (lumaGBlur!=0.0){
2816 filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
2817 filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
2818 }else{
2819 filter->lumH= sws_getIdentityVec();
2820 filter->lumV= sws_getIdentityVec();
2821 }
2822
2823 if (chromaGBlur!=0.0){
2824 filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
2825 filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
2826 }else{
2827 filter->chrH= sws_getIdentityVec();
2828 filter->chrV= sws_getIdentityVec();
2829 }
2830
2831 if (chromaSharpen!=0.0){
2832 SwsVector *id= sws_getIdentityVec();
2833 sws_scaleVec(filter->chrH, -chromaSharpen);
2834 sws_scaleVec(filter->chrV, -chromaSharpen);
2835 sws_addVec(filter->chrH, id);
2836 sws_addVec(filter->chrV, id);
2837 sws_freeVec(id);
2838 }
2839
2840 if (lumaSharpen!=0.0){
2841 SwsVector *id= sws_getIdentityVec();
2842 sws_scaleVec(filter->lumH, -lumaSharpen);
2843 sws_scaleVec(filter->lumV, -lumaSharpen);
2844 sws_addVec(filter->lumH, id);
2845 sws_addVec(filter->lumV, id);
2846 sws_freeVec(id);
2847 }
2848
2849 if (chromaHShift != 0.0)
2850 sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
2851
2852 if (chromaVShift != 0.0)
2853 sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
2854
2855 sws_normalizeVec(filter->chrH, 1.0);
2856 sws_normalizeVec(filter->chrV, 1.0);
2857 sws_normalizeVec(filter->lumH, 1.0);
2858 sws_normalizeVec(filter->lumV, 1.0);
2859
2860 if (verbose) sws_printVec(filter->chrH);
2861 if (verbose) sws_printVec(filter->lumH);
2862
2863 return filter;
2864 }
2865
2866 /**
2867 * returns a normalized gaussian curve used to filter stuff
2868 * quality=3 is high quality, lowwer is lowwer quality
2869 */
2870 SwsVector *sws_getGaussianVec(double variance, double quality){
2871 const int length= (int)(variance*quality + 0.5) | 1;
2872 int i;
2873 double *coeff= av_malloc(length*sizeof(double));
2874 double middle= (length-1)*0.5;
2875 SwsVector *vec= av_malloc(sizeof(SwsVector));
2876
2877 vec->coeff= coeff;
2878 vec->length= length;
2879
2880 for (i=0; i<length; i++)
2881 {
2882 double dist= i-middle;
2883 coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*PI);
2884 }
2885
2886 sws_normalizeVec(vec, 1.0);
2887
2888 return vec;
2889 }
2890
2891 SwsVector *sws_getConstVec(double c, int length){
2892 int i;
2893 double *coeff= av_malloc(length*sizeof(double));
2894 SwsVector *vec= av_malloc(sizeof(SwsVector));
2895
2896 vec->coeff= coeff;
2897 vec->length= length;
2898
2899 for (i=0; i<length; i++)
2900 coeff[i]= c;
2901
2902 return vec;
2903 }
2904
2905
2906 SwsVector *sws_getIdentityVec(void){
2907 return sws_getConstVec(1.0, 1);
2908 }
2909
2910 double sws_dcVec(SwsVector *a){
2911 int i;
2912 double sum=0;
2913
2914 for (i=0; i<a->length; i++)
2915 sum+= a->coeff[i];
2916
2917 return sum;
2918 }
2919
2920 void sws_scaleVec(SwsVector *a, double scalar){
2921 int i;
2922
2923 for (i=0; i<a->length; i++)
2924 a->coeff[i]*= scalar;
2925 }
2926
2927 void sws_normalizeVec(SwsVector *a, double height){
2928 sws_scaleVec(a, height/sws_dcVec(a));
2929 }
2930
2931 static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
2932 int length= a->length + b->length - 1;
2933 double *coeff= av_malloc(length*sizeof(double));
2934 int i, j;
2935 SwsVector *vec= av_malloc(sizeof(SwsVector));
2936
2937 vec->coeff= coeff;
2938 vec->length= length;
2939
2940 for (i=0; i<length; i++) coeff[i]= 0.0;
2941
2942 for (i=0; i<a->length; i++)
2943 {
2944 for (j=0; j<b->length; j++)
2945 {
2946 coeff[i+j]+= a->coeff[i]*b->coeff[j];
2947 }
2948 }
2949
2950 return vec;
2951 }
2952
2953 static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
2954 int length= FFMAX(a->length, b->length);
2955 double *coeff= av_malloc(length*sizeof(double));
2956 int i;
2957 SwsVector *vec= av_malloc(sizeof(SwsVector));
2958
2959 vec->coeff= coeff;
2960 vec->length= length;
2961
2962 for (i=0; i<length; i++) coeff[i]= 0.0;
2963
2964 for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2965 for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
2966
2967 return vec;
2968 }
2969
2970 static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
2971 int length= FFMAX(a->length, b->length);
2972 double *coeff= av_malloc(length*sizeof(double));
2973 int i;
2974 SwsVector *vec= av_malloc(sizeof(SwsVector));
2975
2976 vec->coeff= coeff;
2977 vec->length= length;