Move array specifiers outside DECLARE_ALIGNED() invocations
[libav.git] / libswscale / swscale.c
1 /*
2 * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 * the C code (not assembly, mmx, ...) of this file can be used
21 * under the LGPL license too
22 */
23
24 /*
25 supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR32_1, BGR24, BGR16, BGR15, RGB32, RGB32_1, RGB24, Y8/Y800, YVU9/IF09, PAL8
26 supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
27 {BGR,RGB}{1,4,8,15,16} support dithering
28
29 unscaled special converters (YV12=I420=IYUV, Y800=Y8)
30 YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
31 x -> x
32 YUV9 -> YV12
33 YUV9/YV12 -> Y800
34 Y800 -> YUV9/YV12
35 BGR24 -> BGR32 & RGB24 -> RGB32
36 BGR32 -> BGR24 & RGB32 -> RGB24
37 BGR15 -> BGR16
38 */
39
40 /*
41 tested special converters (most are tested actually, but I did not write it down ...)
42 YV12 -> BGR16
43 YV12 -> YV12
44 BGR15 -> BGR16
45 BGR16 -> BGR16
46 YVU9 -> YV12
47
48 untested special converters
49 YV12/I420 -> BGR15/BGR24/BGR32 (it is the yuv2rgb stuff, so it should be OK)
50 YV12/I420 -> YV12/I420
51 YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
52 BGR24 -> BGR32 & RGB24 -> RGB32
53 BGR32 -> BGR24 & RGB32 -> RGB24
54 BGR24 -> YV12
55 */
56
57 #define _SVID_SOURCE //needed for MAP_ANONYMOUS
58 #include <inttypes.h>
59 #include <string.h>
60 #include <math.h>
61 #include <stdio.h>
62 #include "config.h"
63 #include <assert.h>
64 #if HAVE_SYS_MMAN_H
65 #include <sys/mman.h>
66 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
67 #define MAP_ANONYMOUS MAP_ANON
68 #endif
69 #endif
70 #if HAVE_VIRTUALALLOC
71 #define WIN32_LEAN_AND_MEAN
72 #include <windows.h>
73 #endif
74 #include "swscale.h"
75 #include "swscale_internal.h"
76 #include "rgb2rgb.h"
77 #include "libavutil/intreadwrite.h"
78 #include "libavutil/x86_cpu.h"
79 #include "libavutil/avutil.h"
80 #include "libavutil/bswap.h"
81 #include "libavutil/pixdesc.h"
82
83 unsigned swscale_version(void)
84 {
85 return LIBSWSCALE_VERSION_INT;
86 }
87
88 const char *swscale_configuration(void)
89 {
90 return FFMPEG_CONFIGURATION;
91 }
92
93 const char *swscale_license(void)
94 {
95 #define LICENSE_PREFIX "libswscale license: "
96 return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
97 }
98
99 #undef MOVNTQ
100 #undef PAVGB
101
102 //#undef HAVE_MMX2
103 //#define HAVE_AMD3DNOW
104 //#undef HAVE_MMX
105 //#undef ARCH_X86
106 #define DITHER1XBPP
107
108 #define FAST_BGR2YV12 // use 7 bit coefficients instead of 15 bit
109
110 #define RET 0xC3 //near return opcode for x86
111
112 #ifdef M_PI
113 #define PI M_PI
114 #else
115 #define PI 3.14159265358979323846
116 #endif
117
118 #define isSupportedIn(x) ( \
119 (x)==PIX_FMT_YUV420P \
120 || (x)==PIX_FMT_YUVA420P \
121 || (x)==PIX_FMT_YUYV422 \
122 || (x)==PIX_FMT_UYVY422 \
123 || (x)==PIX_FMT_RGB48BE \
124 || (x)==PIX_FMT_RGB48LE \
125 || (x)==PIX_FMT_RGB32 \
126 || (x)==PIX_FMT_RGB32_1 \
127 || (x)==PIX_FMT_BGR24 \
128 || (x)==PIX_FMT_BGR565 \
129 || (x)==PIX_FMT_BGR555 \
130 || (x)==PIX_FMT_BGR32 \
131 || (x)==PIX_FMT_BGR32_1 \
132 || (x)==PIX_FMT_RGB24 \
133 || (x)==PIX_FMT_RGB565 \
134 || (x)==PIX_FMT_RGB555 \
135 || (x)==PIX_FMT_GRAY8 \
136 || (x)==PIX_FMT_YUV410P \
137 || (x)==PIX_FMT_YUV440P \
138 || (x)==PIX_FMT_NV12 \
139 || (x)==PIX_FMT_NV21 \
140 || (x)==PIX_FMT_GRAY16BE \
141 || (x)==PIX_FMT_GRAY16LE \
142 || (x)==PIX_FMT_YUV444P \
143 || (x)==PIX_FMT_YUV422P \
144 || (x)==PIX_FMT_YUV411P \
145 || (x)==PIX_FMT_PAL8 \
146 || (x)==PIX_FMT_BGR8 \
147 || (x)==PIX_FMT_RGB8 \
148 || (x)==PIX_FMT_BGR4_BYTE \
149 || (x)==PIX_FMT_RGB4_BYTE \
150 || (x)==PIX_FMT_YUV440P \
151 || (x)==PIX_FMT_MONOWHITE \
152 || (x)==PIX_FMT_MONOBLACK \
153 || (x)==PIX_FMT_YUV420P16LE \
154 || (x)==PIX_FMT_YUV422P16LE \
155 || (x)==PIX_FMT_YUV444P16LE \
156 || (x)==PIX_FMT_YUV420P16BE \
157 || (x)==PIX_FMT_YUV422P16BE \
158 || (x)==PIX_FMT_YUV444P16BE \
159 )
160
161 int sws_isSupportedInput(enum PixelFormat pix_fmt)
162 {
163 return isSupportedIn(pix_fmt);
164 }
165
166 #define isSupportedOut(x) ( \
167 (x)==PIX_FMT_YUV420P \
168 || (x)==PIX_FMT_YUVA420P \
169 || (x)==PIX_FMT_YUYV422 \
170 || (x)==PIX_FMT_UYVY422 \
171 || (x)==PIX_FMT_YUV444P \
172 || (x)==PIX_FMT_YUV422P \
173 || (x)==PIX_FMT_YUV411P \
174 || isRGB(x) \
175 || isBGR(x) \
176 || (x)==PIX_FMT_NV12 \
177 || (x)==PIX_FMT_NV21 \
178 || (x)==PIX_FMT_GRAY16BE \
179 || (x)==PIX_FMT_GRAY16LE \
180 || (x)==PIX_FMT_GRAY8 \
181 || (x)==PIX_FMT_YUV410P \
182 || (x)==PIX_FMT_YUV440P \
183 || (x)==PIX_FMT_YUV420P16LE \
184 || (x)==PIX_FMT_YUV422P16LE \
185 || (x)==PIX_FMT_YUV444P16LE \
186 || (x)==PIX_FMT_YUV420P16BE \
187 || (x)==PIX_FMT_YUV422P16BE \
188 || (x)==PIX_FMT_YUV444P16BE \
189 )
190
191 int sws_isSupportedOutput(enum PixelFormat pix_fmt)
192 {
193 return isSupportedOut(pix_fmt);
194 }
195
196 #define isPacked(x) ( \
197 (x)==PIX_FMT_PAL8 \
198 || (x)==PIX_FMT_YUYV422 \
199 || (x)==PIX_FMT_UYVY422 \
200 || isRGB(x) \
201 || isBGR(x) \
202 )
203 #define usePal(x) (av_pix_fmt_descriptors[x].flags & PIX_FMT_PAL)
204
205 #define RGB2YUV_SHIFT 15
206 #define BY ( (int)(0.114*219/255*(1<<RGB2YUV_SHIFT)+0.5))
207 #define BV (-(int)(0.081*224/255*(1<<RGB2YUV_SHIFT)+0.5))
208 #define BU ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
209 #define GY ( (int)(0.587*219/255*(1<<RGB2YUV_SHIFT)+0.5))
210 #define GV (-(int)(0.419*224/255*(1<<RGB2YUV_SHIFT)+0.5))
211 #define GU (-(int)(0.331*224/255*(1<<RGB2YUV_SHIFT)+0.5))
212 #define RY ( (int)(0.299*219/255*(1<<RGB2YUV_SHIFT)+0.5))
213 #define RV ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
214 #define RU (-(int)(0.169*224/255*(1<<RGB2YUV_SHIFT)+0.5))
215
216 extern const int32_t ff_yuv2rgb_coeffs[8][4];
217
218 static const double rgb2yuv_table[8][9]={
219 {0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
220 {0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
221 {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
222 {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
223 {0.59 , 0.11 , 0.30 , -0.331, 0.5, -0.169, -0.421, -0.079, 0.5}, //FCC
224 {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
225 {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5}, //SMPTE 170M
226 {0.701 , 0.087 , 0.212 , -0.384, 0.5 -0.116, -0.445, -0.055, 0.5}, //SMPTE 240M
227 };
228
229 /*
230 NOTES
231 Special versions: fast Y 1:1 scaling (no interpolation in y direction)
232
233 TODO
234 more intelligent misalignment avoidance for the horizontal scaler
235 write special vertical cubic upscale version
236 optimize C code (YV12 / minmax)
237 add support for packed pixel YUV input & output
238 add support for Y8 output
239 optimize BGR24 & BGR32
240 add BGR4 output support
241 write special BGR->BGR scaler
242 */
243
244 #if ARCH_X86 && CONFIG_GPL
245 DECLARE_ASM_CONST(8, uint64_t, bF8)= 0xF8F8F8F8F8F8F8F8LL;
246 DECLARE_ASM_CONST(8, uint64_t, bFC)= 0xFCFCFCFCFCFCFCFCLL;
247 DECLARE_ASM_CONST(8, uint64_t, w10)= 0x0010001000100010LL;
248 DECLARE_ASM_CONST(8, uint64_t, w02)= 0x0002000200020002LL;
249 DECLARE_ASM_CONST(8, uint64_t, bm00001111)=0x00000000FFFFFFFFLL;
250 DECLARE_ASM_CONST(8, uint64_t, bm00000111)=0x0000000000FFFFFFLL;
251 DECLARE_ASM_CONST(8, uint64_t, bm11111000)=0xFFFFFFFFFF000000LL;
252 DECLARE_ASM_CONST(8, uint64_t, bm01010101)=0x00FF00FF00FF00FFLL;
253
254 const DECLARE_ALIGNED(8, uint64_t, ff_dither4)[2] = {
255 0x0103010301030103LL,
256 0x0200020002000200LL,};
257
258 const DECLARE_ALIGNED(8, uint64_t, ff_dither8)[2] = {
259 0x0602060206020602LL,
260 0x0004000400040004LL,};
261
262 DECLARE_ASM_CONST(8, uint64_t, b16Mask)= 0x001F001F001F001FLL;
263 DECLARE_ASM_CONST(8, uint64_t, g16Mask)= 0x07E007E007E007E0LL;
264 DECLARE_ASM_CONST(8, uint64_t, r16Mask)= 0xF800F800F800F800LL;
265 DECLARE_ASM_CONST(8, uint64_t, b15Mask)= 0x001F001F001F001FLL;
266 DECLARE_ASM_CONST(8, uint64_t, g15Mask)= 0x03E003E003E003E0LL;
267 DECLARE_ASM_CONST(8, uint64_t, r15Mask)= 0x7C007C007C007C00LL;
268
269 DECLARE_ALIGNED(8, const uint64_t, ff_M24A) = 0x00FF0000FF0000FFLL;
270 DECLARE_ALIGNED(8, const uint64_t, ff_M24B) = 0xFF0000FF0000FF00LL;
271 DECLARE_ALIGNED(8, const uint64_t, ff_M24C) = 0x0000FF0000FF0000LL;
272
273 #ifdef FAST_BGR2YV12
274 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000000210041000DULL;
275 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000FFEEFFDC0038ULL;
276 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00000038FFD2FFF8ULL;
277 #else
278 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000020E540830C8BULL;
279 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000ED0FDAC23831ULL;
280 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00003831D0E6F6EAULL;
281 #endif /* FAST_BGR2YV12 */
282 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YOffset) = 0x1010101010101010ULL;
283 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UVOffset) = 0x8080808080808080ULL;
284 DECLARE_ALIGNED(8, const uint64_t, ff_w1111) = 0x0001000100010001ULL;
285
286 DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toY1Coeff) = 0x0C88000040870C88ULL;
287 DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toY2Coeff) = 0x20DE4087000020DEULL;
288 DECLARE_ASM_CONST(8, uint64_t, ff_rgb24toY1Coeff) = 0x20DE0000408720DEULL;
289 DECLARE_ASM_CONST(8, uint64_t, ff_rgb24toY2Coeff) = 0x0C88408700000C88ULL;
290 DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toYOffset) = 0x0008400000084000ULL;
291
292 DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toUV)[2][4] = {
293 {0x38380000DAC83838ULL, 0xECFFDAC80000ECFFULL, 0xF6E40000D0E3F6E4ULL, 0x3838D0E300003838ULL},
294 {0xECFF0000DAC8ECFFULL, 0x3838DAC800003838ULL, 0x38380000D0E33838ULL, 0xF6E4D0E30000F6E4ULL},
295 };
296
297 DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toUVOffset)= 0x0040400000404000ULL;
298
299 #endif /* ARCH_X86 && CONFIG_GPL */
300
301 DECLARE_ALIGNED(8, static const uint8_t, dither_2x2_4)[2][8]={
302 { 1, 3, 1, 3, 1, 3, 1, 3, },
303 { 2, 0, 2, 0, 2, 0, 2, 0, },
304 };
305
306 DECLARE_ALIGNED(8, static const uint8_t, dither_2x2_8)[2][8]={
307 { 6, 2, 6, 2, 6, 2, 6, 2, },
308 { 0, 4, 0, 4, 0, 4, 0, 4, },
309 };
310
311 DECLARE_ALIGNED(8, const uint8_t, dither_8x8_32)[8][8]={
312 { 17, 9, 23, 15, 16, 8, 22, 14, },
313 { 5, 29, 3, 27, 4, 28, 2, 26, },
314 { 21, 13, 19, 11, 20, 12, 18, 10, },
315 { 0, 24, 6, 30, 1, 25, 7, 31, },
316 { 16, 8, 22, 14, 17, 9, 23, 15, },
317 { 4, 28, 2, 26, 5, 29, 3, 27, },
318 { 20, 12, 18, 10, 21, 13, 19, 11, },
319 { 1, 25, 7, 31, 0, 24, 6, 30, },
320 };
321
322 DECLARE_ALIGNED(8, const uint8_t, dither_8x8_73)[8][8]={
323 { 0, 55, 14, 68, 3, 58, 17, 72, },
324 { 37, 18, 50, 32, 40, 22, 54, 35, },
325 { 9, 64, 5, 59, 13, 67, 8, 63, },
326 { 46, 27, 41, 23, 49, 31, 44, 26, },
327 { 2, 57, 16, 71, 1, 56, 15, 70, },
328 { 39, 21, 52, 34, 38, 19, 51, 33, },
329 { 11, 66, 7, 62, 10, 65, 6, 60, },
330 { 48, 30, 43, 25, 47, 29, 42, 24, },
331 };
332
333 #if 1
334 DECLARE_ALIGNED(8, const uint8_t, dither_8x8_220)[8][8]={
335 {117, 62, 158, 103, 113, 58, 155, 100, },
336 { 34, 199, 21, 186, 31, 196, 17, 182, },
337 {144, 89, 131, 76, 141, 86, 127, 72, },
338 { 0, 165, 41, 206, 10, 175, 52, 217, },
339 {110, 55, 151, 96, 120, 65, 162, 107, },
340 { 28, 193, 14, 179, 38, 203, 24, 189, },
341 {138, 83, 124, 69, 148, 93, 134, 79, },
342 { 7, 172, 48, 213, 3, 168, 45, 210, },
343 };
344 #elif 1
345 // tries to correct a gamma of 1.5
346 DECLARE_ALIGNED(8, const uint8_t, dither_8x8_220)[8][8]={
347 { 0, 143, 18, 200, 2, 156, 25, 215, },
348 { 78, 28, 125, 64, 89, 36, 138, 74, },
349 { 10, 180, 3, 161, 16, 195, 8, 175, },
350 {109, 51, 93, 38, 121, 60, 105, 47, },
351 { 1, 152, 23, 210, 0, 147, 20, 205, },
352 { 85, 33, 134, 71, 81, 30, 130, 67, },
353 { 14, 190, 6, 171, 12, 185, 5, 166, },
354 {117, 57, 101, 44, 113, 54, 97, 41, },
355 };
356 #elif 1
357 // tries to correct a gamma of 2.0
358 DECLARE_ALIGNED(8, const uint8_t, dither_8x8_220)[8][8]={
359 { 0, 124, 8, 193, 0, 140, 12, 213, },
360 { 55, 14, 104, 42, 66, 19, 119, 52, },
361 { 3, 168, 1, 145, 6, 187, 3, 162, },
362 { 86, 31, 70, 21, 99, 39, 82, 28, },
363 { 0, 134, 11, 206, 0, 129, 9, 200, },
364 { 62, 17, 114, 48, 58, 16, 109, 45, },
365 { 5, 181, 2, 157, 4, 175, 1, 151, },
366 { 95, 36, 78, 26, 90, 34, 74, 24, },
367 };
368 #else
369 // tries to correct a gamma of 2.5
370 DECLARE_ALIGNED(8, const uint8_t, dither_8x8_220)[8][8]={
371 { 0, 107, 3, 187, 0, 125, 6, 212, },
372 { 39, 7, 86, 28, 49, 11, 102, 36, },
373 { 1, 158, 0, 131, 3, 180, 1, 151, },
374 { 68, 19, 52, 12, 81, 25, 64, 17, },
375 { 0, 119, 5, 203, 0, 113, 4, 195, },
376 { 45, 9, 96, 33, 42, 8, 91, 30, },
377 { 2, 172, 1, 144, 2, 165, 0, 137, },
378 { 77, 23, 60, 15, 72, 21, 56, 14, },
379 };
380 #endif
381
382 const char *sws_format_name(enum PixelFormat format)
383 {
384 if ((unsigned)format < PIX_FMT_NB && av_pix_fmt_descriptors[format].name)
385 return av_pix_fmt_descriptors[format].name;
386 else
387 return "Unknown format";
388 }
389
390 static av_always_inline void yuv2yuvX16inC_template(const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
391 const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
392 const int16_t **alpSrc, uint16_t *dest, uint16_t *uDest, uint16_t *vDest, uint16_t *aDest,
393 int dstW, int chrDstW, int big_endian)
394 {
395 //FIXME Optimize (just quickly written not optimized..)
396 int i;
397
398 for (i = 0; i < dstW; i++) {
399 int val = 1 << 10;
400 int j;
401
402 for (j = 0; j < lumFilterSize; j++)
403 val += lumSrc[j][i] * lumFilter[j];
404
405 if (big_endian) {
406 AV_WB16(&dest[i], av_clip_uint16(val >> 11));
407 } else {
408 AV_WL16(&dest[i], av_clip_uint16(val >> 11));
409 }
410 }
411
412 if (uDest) {
413 for (i = 0; i < chrDstW; i++) {
414 int u = 1 << 10;
415 int v = 1 << 10;
416 int j;
417
418 for (j = 0; j < chrFilterSize; j++) {
419 u += chrSrc[j][i ] * chrFilter[j];
420 v += chrSrc[j][i + VOFW] * chrFilter[j];
421 }
422
423 if (big_endian) {
424 AV_WB16(&uDest[i], av_clip_uint16(u >> 11));
425 AV_WB16(&vDest[i], av_clip_uint16(v >> 11));
426 } else {
427 AV_WL16(&uDest[i], av_clip_uint16(u >> 11));
428 AV_WL16(&vDest[i], av_clip_uint16(v >> 11));
429 }
430 }
431 }
432
433 if (CONFIG_SWSCALE_ALPHA && aDest) {
434 for (i = 0; i < dstW; i++) {
435 int val = 1 << 10;
436 int j;
437
438 for (j = 0; j < lumFilterSize; j++)
439 val += alpSrc[j][i] * lumFilter[j];
440
441 if (big_endian) {
442 AV_WB16(&aDest[i], av_clip_uint16(val >> 11));
443 } else {
444 AV_WL16(&aDest[i], av_clip_uint16(val >> 11));
445 }
446 }
447 }
448 }
449
450 static inline void yuv2yuvX16inC(const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
451 const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
452 const int16_t **alpSrc, uint16_t *dest, uint16_t *uDest, uint16_t *vDest, uint16_t *aDest, int dstW, int chrDstW,
453 enum PixelFormat dstFormat)
454 {
455 if (isBE(dstFormat)) {
456 yuv2yuvX16inC_template(lumFilter, lumSrc, lumFilterSize,
457 chrFilter, chrSrc, chrFilterSize,
458 alpSrc,
459 dest, uDest, vDest, aDest,
460 dstW, chrDstW, 1);
461 } else {
462 yuv2yuvX16inC_template(lumFilter, lumSrc, lumFilterSize,
463 chrFilter, chrSrc, chrFilterSize,
464 alpSrc,
465 dest, uDest, vDest, aDest,
466 dstW, chrDstW, 0);
467 }
468 }
469
470 static inline void yuv2yuvXinC(const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
471 const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
472 const int16_t **alpSrc, uint8_t *dest, uint8_t *uDest, uint8_t *vDest, uint8_t *aDest, int dstW, int chrDstW)
473 {
474 //FIXME Optimize (just quickly written not optimized..)
475 int i;
476 for (i=0; i<dstW; i++) {
477 int val=1<<18;
478 int j;
479 for (j=0; j<lumFilterSize; j++)
480 val += lumSrc[j][i] * lumFilter[j];
481
482 dest[i]= av_clip_uint8(val>>19);
483 }
484
485 if (uDest)
486 for (i=0; i<chrDstW; i++) {
487 int u=1<<18;
488 int v=1<<18;
489 int j;
490 for (j=0; j<chrFilterSize; j++) {
491 u += chrSrc[j][i] * chrFilter[j];
492 v += chrSrc[j][i + VOFW] * chrFilter[j];
493 }
494
495 uDest[i]= av_clip_uint8(u>>19);
496 vDest[i]= av_clip_uint8(v>>19);
497 }
498
499 if (CONFIG_SWSCALE_ALPHA && aDest)
500 for (i=0; i<dstW; i++) {
501 int val=1<<18;
502 int j;
503 for (j=0; j<lumFilterSize; j++)
504 val += alpSrc[j][i] * lumFilter[j];
505
506 aDest[i]= av_clip_uint8(val>>19);
507 }
508
509 }
510
511 static inline void yuv2nv12XinC(const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
512 const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
513 uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
514 {
515 //FIXME Optimize (just quickly written not optimized..)
516 int i;
517 for (i=0; i<dstW; i++) {
518 int val=1<<18;
519 int j;
520 for (j=0; j<lumFilterSize; j++)
521 val += lumSrc[j][i] * lumFilter[j];
522
523 dest[i]= av_clip_uint8(val>>19);
524 }
525
526 if (!uDest)
527 return;
528
529 if (dstFormat == PIX_FMT_NV12)
530 for (i=0; i<chrDstW; i++) {
531 int u=1<<18;
532 int v=1<<18;
533 int j;
534 for (j=0; j<chrFilterSize; j++) {
535 u += chrSrc[j][i] * chrFilter[j];
536 v += chrSrc[j][i + VOFW] * chrFilter[j];
537 }
538
539 uDest[2*i]= av_clip_uint8(u>>19);
540 uDest[2*i+1]= av_clip_uint8(v>>19);
541 }
542 else
543 for (i=0; i<chrDstW; i++) {
544 int u=1<<18;
545 int v=1<<18;
546 int j;
547 for (j=0; j<chrFilterSize; j++) {
548 u += chrSrc[j][i] * chrFilter[j];
549 v += chrSrc[j][i + VOFW] * chrFilter[j];
550 }
551
552 uDest[2*i]= av_clip_uint8(v>>19);
553 uDest[2*i+1]= av_clip_uint8(u>>19);
554 }
555 }
556
557 #define YSCALE_YUV_2_PACKEDX_NOCLIP_C(type,alpha) \
558 for (i=0; i<(dstW>>1); i++) {\
559 int j;\
560 int Y1 = 1<<18;\
561 int Y2 = 1<<18;\
562 int U = 1<<18;\
563 int V = 1<<18;\
564 int av_unused A1, A2;\
565 type av_unused *r, *b, *g;\
566 const int i2= 2*i;\
567 \
568 for (j=0; j<lumFilterSize; j++) {\
569 Y1 += lumSrc[j][i2] * lumFilter[j];\
570 Y2 += lumSrc[j][i2+1] * lumFilter[j];\
571 }\
572 for (j=0; j<chrFilterSize; j++) {\
573 U += chrSrc[j][i] * chrFilter[j];\
574 V += chrSrc[j][i+VOFW] * chrFilter[j];\
575 }\
576 Y1>>=19;\
577 Y2>>=19;\
578 U >>=19;\
579 V >>=19;\
580 if (alpha) {\
581 A1 = 1<<18;\
582 A2 = 1<<18;\
583 for (j=0; j<lumFilterSize; j++) {\
584 A1 += alpSrc[j][i2 ] * lumFilter[j];\
585 A2 += alpSrc[j][i2+1] * lumFilter[j];\
586 }\
587 A1>>=19;\
588 A2>>=19;\
589 }
590
591 #define YSCALE_YUV_2_PACKEDX_C(type,alpha) \
592 YSCALE_YUV_2_PACKEDX_NOCLIP_C(type,alpha)\
593 if ((Y1|Y2|U|V)&256) {\
594 if (Y1>255) Y1=255; \
595 else if (Y1<0)Y1=0; \
596 if (Y2>255) Y2=255; \
597 else if (Y2<0)Y2=0; \
598 if (U>255) U=255; \
599 else if (U<0) U=0; \
600 if (V>255) V=255; \
601 else if (V<0) V=0; \
602 }\
603 if (alpha && ((A1|A2)&256)) {\
604 A1=av_clip_uint8(A1);\
605 A2=av_clip_uint8(A2);\
606 }
607
608 #define YSCALE_YUV_2_PACKEDX_FULL_C(rnd,alpha) \
609 for (i=0; i<dstW; i++) {\
610 int j;\
611 int Y = 0;\
612 int U = -128<<19;\
613 int V = -128<<19;\
614 int av_unused A;\
615 int R,G,B;\
616 \
617 for (j=0; j<lumFilterSize; j++) {\
618 Y += lumSrc[j][i ] * lumFilter[j];\
619 }\
620 for (j=0; j<chrFilterSize; j++) {\
621 U += chrSrc[j][i ] * chrFilter[j];\
622 V += chrSrc[j][i+VOFW] * chrFilter[j];\
623 }\
624 Y >>=10;\
625 U >>=10;\
626 V >>=10;\
627 if (alpha) {\
628 A = rnd;\
629 for (j=0; j<lumFilterSize; j++)\
630 A += alpSrc[j][i ] * lumFilter[j];\
631 A >>=19;\
632 if (A&256)\
633 A = av_clip_uint8(A);\
634 }
635
636 #define YSCALE_YUV_2_RGBX_FULL_C(rnd,alpha) \
637 YSCALE_YUV_2_PACKEDX_FULL_C(rnd>>3,alpha)\
638 Y-= c->yuv2rgb_y_offset;\
639 Y*= c->yuv2rgb_y_coeff;\
640 Y+= rnd;\
641 R= Y + V*c->yuv2rgb_v2r_coeff;\
642 G= Y + V*c->yuv2rgb_v2g_coeff + U*c->yuv2rgb_u2g_coeff;\
643 B= Y + U*c->yuv2rgb_u2b_coeff;\
644 if ((R|G|B)&(0xC0000000)) {\
645 if (R>=(256<<22)) R=(256<<22)-1; \
646 else if (R<0)R=0; \
647 if (G>=(256<<22)) G=(256<<22)-1; \
648 else if (G<0)G=0; \
649 if (B>=(256<<22)) B=(256<<22)-1; \
650 else if (B<0)B=0; \
651 }
652
653 #define YSCALE_YUV_2_GRAY16_C \
654 for (i=0; i<(dstW>>1); i++) {\
655 int j;\
656 int Y1 = 1<<18;\
657 int Y2 = 1<<18;\
658 int U = 1<<18;\
659 int V = 1<<18;\
660 \
661 const int i2= 2*i;\
662 \
663 for (j=0; j<lumFilterSize; j++) {\
664 Y1 += lumSrc[j][i2] * lumFilter[j];\
665 Y2 += lumSrc[j][i2+1] * lumFilter[j];\
666 }\
667 Y1>>=11;\
668 Y2>>=11;\
669 if ((Y1|Y2|U|V)&65536) {\
670 if (Y1>65535) Y1=65535; \
671 else if (Y1<0)Y1=0; \
672 if (Y2>65535) Y2=65535; \
673 else if (Y2<0)Y2=0; \
674 }
675
676 #define YSCALE_YUV_2_RGBX_C(type,alpha) \
677 YSCALE_YUV_2_PACKEDX_C(type,alpha) /* FIXME fix tables so that clipping is not needed and then use _NOCLIP*/\
678 r = (type *)c->table_rV[V]; \
679 g = (type *)(c->table_gU[U] + c->table_gV[V]); \
680 b = (type *)c->table_bU[U];
681
682 #define YSCALE_YUV_2_PACKED2_C(type,alpha) \
683 for (i=0; i<(dstW>>1); i++) { \
684 const int i2= 2*i; \
685 int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19; \
686 int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19; \
687 int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19; \
688 int V= (uvbuf0[i+VOFW]*uvalpha1+uvbuf1[i+VOFW]*uvalpha)>>19; \
689 type av_unused *r, *b, *g; \
690 int av_unused A1, A2; \
691 if (alpha) {\
692 A1= (abuf0[i2 ]*yalpha1+abuf1[i2 ]*yalpha)>>19; \
693 A2= (abuf0[i2+1]*yalpha1+abuf1[i2+1]*yalpha)>>19; \
694 }
695
696 #define YSCALE_YUV_2_GRAY16_2_C \
697 for (i=0; i<(dstW>>1); i++) { \
698 const int i2= 2*i; \
699 int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>11; \
700 int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>11;
701
702 #define YSCALE_YUV_2_RGB2_C(type,alpha) \
703 YSCALE_YUV_2_PACKED2_C(type,alpha)\
704 r = (type *)c->table_rV[V];\
705 g = (type *)(c->table_gU[U] + c->table_gV[V]);\
706 b = (type *)c->table_bU[U];
707
708 #define YSCALE_YUV_2_PACKED1_C(type,alpha) \
709 for (i=0; i<(dstW>>1); i++) {\
710 const int i2= 2*i;\
711 int Y1= buf0[i2 ]>>7;\
712 int Y2= buf0[i2+1]>>7;\
713 int U= (uvbuf1[i ])>>7;\
714 int V= (uvbuf1[i+VOFW])>>7;\
715 type av_unused *r, *b, *g;\
716 int av_unused A1, A2;\
717 if (alpha) {\
718 A1= abuf0[i2 ]>>7;\
719 A2= abuf0[i2+1]>>7;\
720 }
721
722 #define YSCALE_YUV_2_GRAY16_1_C \
723 for (i=0; i<(dstW>>1); i++) {\
724 const int i2= 2*i;\
725 int Y1= buf0[i2 ]<<1;\
726 int Y2= buf0[i2+1]<<1;
727
728 #define YSCALE_YUV_2_RGB1_C(type,alpha) \
729 YSCALE_YUV_2_PACKED1_C(type,alpha)\
730 r = (type *)c->table_rV[V];\
731 g = (type *)(c->table_gU[U] + c->table_gV[V]);\
732 b = (type *)c->table_bU[U];
733
734 #define YSCALE_YUV_2_PACKED1B_C(type,alpha) \
735 for (i=0; i<(dstW>>1); i++) {\
736 const int i2= 2*i;\
737 int Y1= buf0[i2 ]>>7;\
738 int Y2= buf0[i2+1]>>7;\
739 int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\
740 int V= (uvbuf0[i+VOFW] + uvbuf1[i+VOFW])>>8;\
741 type av_unused *r, *b, *g;\
742 int av_unused A1, A2;\
743 if (alpha) {\
744 A1= abuf0[i2 ]>>7;\
745 A2= abuf0[i2+1]>>7;\
746 }
747
748 #define YSCALE_YUV_2_RGB1B_C(type,alpha) \
749 YSCALE_YUV_2_PACKED1B_C(type,alpha)\
750 r = (type *)c->table_rV[V];\
751 g = (type *)(c->table_gU[U] + c->table_gV[V]);\
752 b = (type *)c->table_bU[U];
753
754 #define YSCALE_YUV_2_MONO2_C \
755 const uint8_t * const d128=dither_8x8_220[y&7];\
756 uint8_t *g= c->table_gU[128] + c->table_gV[128];\
757 for (i=0; i<dstW-7; i+=8) {\
758 int acc;\
759 acc = g[((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19) + d128[0]];\
760 acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
761 acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
762 acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
763 acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
764 acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
765 acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
766 acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
767 ((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\
768 dest++;\
769 }
770
771 #define YSCALE_YUV_2_MONOX_C \
772 const uint8_t * const d128=dither_8x8_220[y&7];\
773 uint8_t *g= c->table_gU[128] + c->table_gV[128];\
774 int acc=0;\
775 for (i=0; i<dstW-1; i+=2) {\
776 int j;\
777 int Y1=1<<18;\
778 int Y2=1<<18;\
779 \
780 for (j=0; j<lumFilterSize; j++) {\
781 Y1 += lumSrc[j][i] * lumFilter[j];\
782 Y2 += lumSrc[j][i+1] * lumFilter[j];\
783 }\
784 Y1>>=19;\
785 Y2>>=19;\
786 if ((Y1|Y2)&256) {\
787 if (Y1>255) Y1=255;\
788 else if (Y1<0)Y1=0;\
789 if (Y2>255) Y2=255;\
790 else if (Y2<0)Y2=0;\
791 }\
792 acc+= acc + g[Y1+d128[(i+0)&7]];\
793 acc+= acc + g[Y2+d128[(i+1)&7]];\
794 if ((i&7)==6) {\
795 ((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\
796 dest++;\
797 }\
798 }
799
800 #define YSCALE_YUV_2_ANYRGB_C(func, func2, func_g16, func_monoblack)\
801 switch(c->dstFormat) {\
802 case PIX_FMT_RGB48BE:\
803 case PIX_FMT_RGB48LE:\
804 func(uint8_t,0)\
805 ((uint8_t*)dest)[ 0]= r[Y1];\
806 ((uint8_t*)dest)[ 1]= r[Y1];\
807 ((uint8_t*)dest)[ 2]= g[Y1];\
808 ((uint8_t*)dest)[ 3]= g[Y1];\
809 ((uint8_t*)dest)[ 4]= b[Y1];\
810 ((uint8_t*)dest)[ 5]= b[Y1];\
811 ((uint8_t*)dest)[ 6]= r[Y2];\
812 ((uint8_t*)dest)[ 7]= r[Y2];\
813 ((uint8_t*)dest)[ 8]= g[Y2];\
814 ((uint8_t*)dest)[ 9]= g[Y2];\
815 ((uint8_t*)dest)[10]= b[Y2];\
816 ((uint8_t*)dest)[11]= b[Y2];\
817 dest+=12;\
818 }\
819 break;\
820 case PIX_FMT_RGBA:\
821 case PIX_FMT_BGRA:\
822 if (CONFIG_SMALL) {\
823 int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;\
824 func(uint32_t,needAlpha)\
825 ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + (needAlpha ? (A1<<24) : 0);\
826 ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + (needAlpha ? (A2<<24) : 0);\
827 }\
828 } else {\
829 if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {\
830 func(uint32_t,1)\
831 ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + (A1<<24);\
832 ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + (A2<<24);\
833 }\
834 } else {\
835 func(uint32_t,0)\
836 ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
837 ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
838 }\
839 }\
840 }\
841 break;\
842 case PIX_FMT_ARGB:\
843 case PIX_FMT_ABGR:\
844 if (CONFIG_SMALL) {\
845 int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;\
846 func(uint32_t,needAlpha)\
847 ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + (needAlpha ? A1 : 0);\
848 ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + (needAlpha ? A2 : 0);\
849 }\
850 } else {\
851 if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {\
852 func(uint32_t,1)\
853 ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + A1;\
854 ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + A2;\
855 }\
856 } else {\
857 func(uint32_t,0)\
858 ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
859 ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
860 }\
861 }\
862 } \
863 break;\
864 case PIX_FMT_RGB24:\
865 func(uint8_t,0)\
866 ((uint8_t*)dest)[0]= r[Y1];\
867 ((uint8_t*)dest)[1]= g[Y1];\
868 ((uint8_t*)dest)[2]= b[Y1];\
869 ((uint8_t*)dest)[3]= r[Y2];\
870 ((uint8_t*)dest)[4]= g[Y2];\
871 ((uint8_t*)dest)[5]= b[Y2];\
872 dest+=6;\
873 }\
874 break;\
875 case PIX_FMT_BGR24:\
876 func(uint8_t,0)\
877 ((uint8_t*)dest)[0]= b[Y1];\
878 ((uint8_t*)dest)[1]= g[Y1];\
879 ((uint8_t*)dest)[2]= r[Y1];\
880 ((uint8_t*)dest)[3]= b[Y2];\
881 ((uint8_t*)dest)[4]= g[Y2];\
882 ((uint8_t*)dest)[5]= r[Y2];\
883 dest+=6;\
884 }\
885 break;\
886 case PIX_FMT_RGB565:\
887 case PIX_FMT_BGR565:\
888 {\
889 const int dr1= dither_2x2_8[y&1 ][0];\
890 const int dg1= dither_2x2_4[y&1 ][0];\
891 const int db1= dither_2x2_8[(y&1)^1][0];\
892 const int dr2= dither_2x2_8[y&1 ][1];\
893 const int dg2= dither_2x2_4[y&1 ][1];\
894 const int db2= dither_2x2_8[(y&1)^1][1];\
895 func(uint16_t,0)\
896 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
897 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
898 }\
899 }\
900 break;\
901 case PIX_FMT_RGB555:\
902 case PIX_FMT_BGR555:\
903 {\
904 const int dr1= dither_2x2_8[y&1 ][0];\
905 const int dg1= dither_2x2_8[y&1 ][1];\
906 const int db1= dither_2x2_8[(y&1)^1][0];\
907 const int dr2= dither_2x2_8[y&1 ][1];\
908 const int dg2= dither_2x2_8[y&1 ][0];\
909 const int db2= dither_2x2_8[(y&1)^1][1];\
910 func(uint16_t,0)\
911 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
912 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
913 }\
914 }\
915 break;\
916 case PIX_FMT_RGB8:\
917 case PIX_FMT_BGR8:\
918 {\
919 const uint8_t * const d64= dither_8x8_73[y&7];\
920 const uint8_t * const d32= dither_8x8_32[y&7];\
921 func(uint8_t,0)\
922 ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
923 ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
924 }\
925 }\
926 break;\
927 case PIX_FMT_RGB4:\
928 case PIX_FMT_BGR4:\
929 {\
930 const uint8_t * const d64= dither_8x8_73 [y&7];\
931 const uint8_t * const d128=dither_8x8_220[y&7];\
932 func(uint8_t,0)\
933 ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
934 + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
935 }\
936 }\
937 break;\
938 case PIX_FMT_RGB4_BYTE:\
939 case PIX_FMT_BGR4_BYTE:\
940 {\
941 const uint8_t * const d64= dither_8x8_73 [y&7];\
942 const uint8_t * const d128=dither_8x8_220[y&7];\
943 func(uint8_t,0)\
944 ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
945 ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
946 }\
947 }\
948 break;\
949 case PIX_FMT_MONOBLACK:\
950 case PIX_FMT_MONOWHITE:\
951 {\
952 func_monoblack\
953 }\
954 break;\
955 case PIX_FMT_YUYV422:\
956 func2\
957 ((uint8_t*)dest)[2*i2+0]= Y1;\
958 ((uint8_t*)dest)[2*i2+1]= U;\
959 ((uint8_t*)dest)[2*i2+2]= Y2;\
960 ((uint8_t*)dest)[2*i2+3]= V;\
961 } \
962 break;\
963 case PIX_FMT_UYVY422:\
964 func2\
965 ((uint8_t*)dest)[2*i2+0]= U;\
966 ((uint8_t*)dest)[2*i2+1]= Y1;\
967 ((uint8_t*)dest)[2*i2+2]= V;\
968 ((uint8_t*)dest)[2*i2+3]= Y2;\
969 } \
970 break;\
971 case PIX_FMT_GRAY16BE:\
972 func_g16\
973 ((uint8_t*)dest)[2*i2+0]= Y1>>8;\
974 ((uint8_t*)dest)[2*i2+1]= Y1;\
975 ((uint8_t*)dest)[2*i2+2]= Y2>>8;\
976 ((uint8_t*)dest)[2*i2+3]= Y2;\
977 } \
978 break;\
979 case PIX_FMT_GRAY16LE:\
980 func_g16\
981 ((uint8_t*)dest)[2*i2+0]= Y1;\
982 ((uint8_t*)dest)[2*i2+1]= Y1>>8;\
983 ((uint8_t*)dest)[2*i2+2]= Y2;\
984 ((uint8_t*)dest)[2*i2+3]= Y2>>8;\
985 } \
986 break;\
987 }
988
989 static inline void yuv2packedXinC(SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
990 const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
991 const int16_t **alpSrc, uint8_t *dest, int dstW, int y)
992 {
993 int i;
994 YSCALE_YUV_2_ANYRGB_C(YSCALE_YUV_2_RGBX_C, YSCALE_YUV_2_PACKEDX_C(void,0), YSCALE_YUV_2_GRAY16_C, YSCALE_YUV_2_MONOX_C)
995 }
996
997 static inline void yuv2rgbXinC_full(SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
998 const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
999 const int16_t **alpSrc, uint8_t *dest, int dstW, int y)
1000 {
1001 int i;
1002 int step= fmt_depth(c->dstFormat)/8;
1003 int aidx= 3;
1004
1005 switch(c->dstFormat) {
1006 case PIX_FMT_ARGB:
1007 dest++;
1008 aidx= 0;
1009 case PIX_FMT_RGB24:
1010 aidx--;
1011 case PIX_FMT_RGBA:
1012 if (CONFIG_SMALL) {
1013 int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;
1014 YSCALE_YUV_2_RGBX_FULL_C(1<<21, needAlpha)
1015 dest[aidx]= needAlpha ? A : 255;
1016 dest[0]= R>>22;
1017 dest[1]= G>>22;
1018 dest[2]= B>>22;
1019 dest+= step;
1020 }
1021 } else {
1022 if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
1023 YSCALE_YUV_2_RGBX_FULL_C(1<<21, 1)
1024 dest[aidx]= A;
1025 dest[0]= R>>22;
1026 dest[1]= G>>22;
1027 dest[2]= B>>22;
1028 dest+= step;
1029 }
1030 } else {
1031 YSCALE_YUV_2_RGBX_FULL_C(1<<21, 0)
1032 dest[aidx]= 255;
1033 dest[0]= R>>22;
1034 dest[1]= G>>22;
1035 dest[2]= B>>22;
1036 dest+= step;
1037 }
1038 }
1039 }
1040 break;
1041 case PIX_FMT_ABGR:
1042 dest++;
1043 aidx= 0;
1044 case PIX_FMT_BGR24:
1045 aidx--;
1046 case PIX_FMT_BGRA:
1047 if (CONFIG_SMALL) {
1048 int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;
1049 YSCALE_YUV_2_RGBX_FULL_C(1<<21, needAlpha)
1050 dest[aidx]= needAlpha ? A : 255;
1051 dest[0]= B>>22;
1052 dest[1]= G>>22;
1053 dest[2]= R>>22;
1054 dest+= step;
1055 }
1056 } else {
1057 if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
1058 YSCALE_YUV_2_RGBX_FULL_C(1<<21, 1)
1059 dest[aidx]= A;
1060 dest[0]= B>>22;
1061 dest[1]= G>>22;
1062 dest[2]= R>>22;
1063 dest+= step;
1064 }
1065 } else {
1066 YSCALE_YUV_2_RGBX_FULL_C(1<<21, 0)
1067 dest[aidx]= 255;
1068 dest[0]= B>>22;
1069 dest[1]= G>>22;
1070 dest[2]= R>>22;
1071 dest+= step;
1072 }
1073 }
1074 }
1075 break;
1076 default:
1077 assert(0);
1078 }
1079 }
1080
1081 static void fillPlane(uint8_t* plane, int stride, int width, int height, int y, uint8_t val)
1082 {
1083 int i;
1084 uint8_t *ptr = plane + stride*y;
1085 for (i=0; i<height; i++) {
1086 memset(ptr, val, width);
1087 ptr += stride;
1088 }
1089 }
1090
1091 static inline void rgb48ToY(uint8_t *dst, const uint8_t *src, int width,
1092 uint32_t *unused)
1093 {
1094 int i;
1095 for (i = 0; i < width; i++) {
1096 int r = src[i*6+0];
1097 int g = src[i*6+2];
1098 int b = src[i*6+4];
1099
1100 dst[i] = (RY*r + GY*g + BY*b + (33<<(RGB2YUV_SHIFT-1))) >> RGB2YUV_SHIFT;
1101 }
1102 }
1103
1104 static inline void rgb48ToUV(uint8_t *dstU, uint8_t *dstV,
1105 const uint8_t *src1, const uint8_t *src2,
1106 int width, uint32_t *unused)
1107 {
1108 int i;
1109 assert(src1==src2);
1110 for (i = 0; i < width; i++) {
1111 int r = src1[6*i + 0];
1112 int g = src1[6*i + 2];
1113 int b = src1[6*i + 4];
1114
1115 dstU[i] = (RU*r + GU*g + BU*b + (257<<(RGB2YUV_SHIFT-1))) >> RGB2YUV_SHIFT;
1116 dstV[i] = (RV*r + GV*g + BV*b + (257<<(RGB2YUV_SHIFT-1))) >> RGB2YUV_SHIFT;
1117 }
1118 }
1119
1120 static inline void rgb48ToUV_half(uint8_t *dstU, uint8_t *dstV,
1121 const uint8_t *src1, const uint8_t *src2,
1122 int width, uint32_t *unused)
1123 {
1124 int i;
1125 assert(src1==src2);
1126 for (i = 0; i < width; i++) {
1127 int r= src1[12*i + 0] + src1[12*i + 6];
1128 int g= src1[12*i + 2] + src1[12*i + 8];
1129 int b= src1[12*i + 4] + src1[12*i + 10];
1130
1131 dstU[i]= (RU*r + GU*g + BU*b + (257<<RGB2YUV_SHIFT)) >> (RGB2YUV_SHIFT+1);
1132 dstV[i]= (RV*r + GV*g + BV*b + (257<<RGB2YUV_SHIFT)) >> (RGB2YUV_SHIFT+1);
1133 }
1134 }
1135
1136 #define BGR2Y(type, name, shr, shg, shb, maskr, maskg, maskb, RY, GY, BY, S)\
1137 static inline void name(uint8_t *dst, const uint8_t *src, long width, uint32_t *unused)\
1138 {\
1139 int i;\
1140 for (i=0; i<width; i++) {\
1141 int b= (((const type*)src)[i]>>shb)&maskb;\
1142 int g= (((const type*)src)[i]>>shg)&maskg;\
1143 int r= (((const type*)src)[i]>>shr)&maskr;\
1144 \
1145 dst[i]= (((RY)*r + (GY)*g + (BY)*b + (33<<((S)-1)))>>(S));\
1146 }\
1147 }
1148
1149 BGR2Y(uint32_t, bgr32ToY,16, 0, 0, 0x00FF, 0xFF00, 0x00FF, RY<< 8, GY , BY<< 8, RGB2YUV_SHIFT+8)
1150 BGR2Y(uint32_t, rgb32ToY, 0, 0,16, 0x00FF, 0xFF00, 0x00FF, RY<< 8, GY , BY<< 8, RGB2YUV_SHIFT+8)
1151 BGR2Y(uint16_t, bgr16ToY, 0, 0, 0, 0x001F, 0x07E0, 0xF800, RY<<11, GY<<5, BY , RGB2YUV_SHIFT+8)
1152 BGR2Y(uint16_t, bgr15ToY, 0, 0, 0, 0x001F, 0x03E0, 0x7C00, RY<<10, GY<<5, BY , RGB2YUV_SHIFT+7)
1153 BGR2Y(uint16_t, rgb16ToY, 0, 0, 0, 0xF800, 0x07E0, 0x001F, RY , GY<<5, BY<<11, RGB2YUV_SHIFT+8)
1154 BGR2Y(uint16_t, rgb15ToY, 0, 0, 0, 0x7C00, 0x03E0, 0x001F, RY , GY<<5, BY<<10, RGB2YUV_SHIFT+7)
1155
1156 static inline void abgrToA(uint8_t *dst, const uint8_t *src, long width, uint32_t *unused)
1157 {
1158 int i;
1159 for (i=0; i<width; i++) {
1160 dst[i]= src[4*i];
1161 }
1162 }
1163
1164 #define BGR2UV(type, name, shr, shg, shb, maska, maskr, maskg, maskb, RU, GU, BU, RV, GV, BV, S)\
1165 static inline void name(uint8_t *dstU, uint8_t *dstV, const uint8_t *src, const uint8_t *dummy, long width, uint32_t *unused)\
1166 {\
1167 int i;\
1168 for (i=0; i<width; i++) {\
1169 int b= (((const type*)src)[i]&maskb)>>shb;\
1170 int g= (((const type*)src)[i]&maskg)>>shg;\
1171 int r= (((const type*)src)[i]&maskr)>>shr;\
1172 \
1173 dstU[i]= ((RU)*r + (GU)*g + (BU)*b + (257<<((S)-1)))>>(S);\
1174 dstV[i]= ((RV)*r + (GV)*g + (BV)*b + (257<<((S)-1)))>>(S);\
1175 }\
1176 }\
1177 static inline void name ## _half(uint8_t *dstU, uint8_t *dstV, const uint8_t *src, const uint8_t *dummy, long width, uint32_t *unused)\
1178 {\
1179 int i;\
1180 for (i=0; i<width; i++) {\
1181 int pix0= ((const type*)src)[2*i+0];\
1182 int pix1= ((const type*)src)[2*i+1];\
1183 int g= (pix0&~(maskr|maskb))+(pix1&~(maskr|maskb));\
1184 int b= ((pix0+pix1-g)&(maskb|(2*maskb)))>>shb;\
1185 int r= ((pix0+pix1-g)&(maskr|(2*maskr)))>>shr;\
1186 g&= maskg|(2*maskg);\
1187 \
1188 g>>=shg;\
1189 \
1190 dstU[i]= ((RU)*r + (GU)*g + (BU)*b + (257<<(S)))>>((S)+1);\
1191 dstV[i]= ((RV)*r + (GV)*g + (BV)*b + (257<<(S)))>>((S)+1);\
1192 }\
1193 }
1194
1195 BGR2UV(uint32_t, bgr32ToUV,16, 0, 0, 0xFF000000, 0xFF0000, 0xFF00, 0x00FF, RU<< 8, GU , BU<< 8, RV<< 8, GV , BV<< 8, RGB2YUV_SHIFT+8)
1196 BGR2UV(uint32_t, rgb32ToUV, 0, 0,16, 0xFF000000, 0x00FF, 0xFF00, 0xFF0000, RU<< 8, GU , BU<< 8, RV<< 8, GV , BV<< 8, RGB2YUV_SHIFT+8)
1197 BGR2UV(uint16_t, bgr16ToUV, 0, 0, 0, 0, 0x001F, 0x07E0, 0xF800, RU<<11, GU<<5, BU , RV<<11, GV<<5, BV , RGB2YUV_SHIFT+8)
1198 BGR2UV(uint16_t, bgr15ToUV, 0, 0, 0, 0, 0x001F, 0x03E0, 0x7C00, RU<<10, GU<<5, BU , RV<<10, GV<<5, BV , RGB2YUV_SHIFT+7)
1199 BGR2UV(uint16_t, rgb16ToUV, 0, 0, 0, 0, 0xF800, 0x07E0, 0x001F, RU , GU<<5, BU<<11, RV , GV<<5, BV<<11, RGB2YUV_SHIFT+8)
1200 BGR2UV(uint16_t, rgb15ToUV, 0, 0, 0, 0, 0x7C00, 0x03E0, 0x001F, RU , GU<<5, BU<<10, RV , GV<<5, BV<<10, RGB2YUV_SHIFT+7)
1201
1202 static inline void palToY(uint8_t *dst, const uint8_t *src, long width, uint32_t *pal)
1203 {
1204 int i;
1205 for (i=0; i<width; i++) {
1206 int d= src[i];
1207
1208 dst[i]= pal[d] & 0xFF;
1209 }
1210 }
1211
1212 static inline void palToUV(uint8_t *dstU, uint8_t *dstV,
1213 const uint8_t *src1, const uint8_t *src2,
1214 long width, uint32_t *pal)
1215 {
1216 int i;
1217 assert(src1 == src2);
1218 for (i=0; i<width; i++) {
1219 int p= pal[src1[i]];
1220
1221 dstU[i]= p>>8;
1222 dstV[i]= p>>16;
1223 }
1224 }
1225
1226 static inline void monowhite2Y(uint8_t *dst, const uint8_t *src, long width, uint32_t *unused)
1227 {
1228 int i, j;
1229 for (i=0; i<width/8; i++) {
1230 int d= ~src[i];
1231 for(j=0; j<8; j++)
1232 dst[8*i+j]= ((d>>(7-j))&1)*255;
1233 }
1234 }
1235
1236 static inline void monoblack2Y(uint8_t *dst, const uint8_t *src, long width, uint32_t *unused)
1237 {
1238 int i, j;
1239 for (i=0; i<width/8; i++) {
1240 int d= src[i];
1241 for(j=0; j<8; j++)
1242 dst[8*i+j]= ((d>>(7-j))&1)*255;
1243 }
1244 }
1245
1246 //Note: we have C, MMX, MMX2, 3DNOW versions, there is no 3DNOW+MMX2 one
1247 //Plain C versions
1248 #if ((!HAVE_MMX || !CONFIG_GPL) && !HAVE_ALTIVEC) || CONFIG_RUNTIME_CPUDETECT
1249 #define COMPILE_C
1250 #endif
1251
1252 #if ARCH_PPC
1253 #if HAVE_ALTIVEC || CONFIG_RUNTIME_CPUDETECT
1254 #define COMPILE_ALTIVEC
1255 #endif
1256 #endif //ARCH_PPC
1257
1258 #if ARCH_X86
1259
1260 #if ((HAVE_MMX && !HAVE_AMD3DNOW && !HAVE_MMX2) || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
1261 #define COMPILE_MMX
1262 #endif
1263
1264 #if (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
1265 #define COMPILE_MMX2
1266 #endif
1267
1268 #if ((HAVE_AMD3DNOW && !HAVE_MMX2) || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
1269 #define COMPILE_3DNOW
1270 #endif
1271 #endif //ARCH_X86
1272
1273 #define COMPILE_TEMPLATE_MMX 0
1274 #define COMPILE_TEMPLATE_MMX2 0
1275 #define COMPILE_TEMPLATE_AMD3DNOW 0
1276 #define COMPILE_TEMPLATE_ALTIVEC 0
1277
1278 #ifdef COMPILE_C
1279 #define RENAME(a) a ## _C
1280 #include "swscale_template.c"
1281 #endif
1282
1283 #ifdef COMPILE_ALTIVEC
1284 #undef RENAME
1285 #undef COMPILE_TEMPLATE_ALTIVEC
1286 #define COMPILE_TEMPLATE_ALTIVEC 1
1287 #define RENAME(a) a ## _altivec
1288 #include "swscale_template.c"
1289 #endif
1290
1291 #if ARCH_X86
1292
1293 //MMX versions
1294 #ifdef COMPILE_MMX
1295 #undef RENAME
1296 #undef COMPILE_TEMPLATE_MMX
1297 #undef COMPILE_TEMPLATE_MMX2
1298 #undef COMPILE_TEMPLATE_AMD3DNOW
1299 #define COMPILE_TEMPLATE_MMX 1
1300 #define COMPILE_TEMPLATE_MMX2 0
1301 #define COMPILE_TEMPLATE_AMD3DNOW 0
1302 #define RENAME(a) a ## _MMX
1303 #include "swscale_template.c"
1304 #endif
1305
1306 //MMX2 versions
1307 #ifdef COMPILE_MMX2
1308 #undef RENAME
1309 #undef COMPILE_TEMPLATE_MMX
1310 #undef COMPILE_TEMPLATE_MMX2
1311 #undef COMPILE_TEMPLATE_AMD3DNOW
1312 #define COMPILE_TEMPLATE_MMX 1
1313 #define COMPILE_TEMPLATE_MMX2 1
1314 #define COMPILE_TEMPLATE_AMD3DNOW 0
1315 #define RENAME(a) a ## _MMX2
1316 #include "swscale_template.c"
1317 #endif
1318
1319 //3DNOW versions
1320 #ifdef COMPILE_3DNOW
1321 #undef RENAME
1322 #undef COMPILE_TEMPLATE_MMX
1323 #undef COMPILE_TEMPLATE_MMX2
1324 #undef COMPILE_TEMPLATE_AMD3DNOW
1325 #define COMPILE_TEMPLATE_MMX 1
1326 #define COMPILE_TEMPLATE_MMX2 0
1327 #define COMPILE_TEMPLATE_AMD3DNOW 1
1328 #define RENAME(a) a ## _3DNow
1329 #include "swscale_template.c"
1330 #endif
1331
1332 #endif //ARCH_X86
1333
1334 static double getSplineCoeff(double a, double b, double c, double d, double dist)
1335 {
1336 // printf("%f %f %f %f %f\n", a,b,c,d,dist);
1337 if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
1338 else return getSplineCoeff( 0.0,
1339 b+ 2.0*c + 3.0*d,
1340 c + 3.0*d,
1341 -b- 3.0*c - 6.0*d,
1342 dist-1.0);
1343 }
1344
1345 static int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
1346 int srcW, int dstW, int filterAlign, int one, int flags,
1347 SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
1348 {
1349 int i;
1350 int filterSize;
1351 int filter2Size;
1352 int minFilterSize;
1353 int64_t *filter=NULL;
1354 int64_t *filter2=NULL;
1355 const int64_t fone= 1LL<<54;
1356 int ret= -1;
1357 #if ARCH_X86
1358 if (flags & SWS_CPU_CAPS_MMX)
1359 __asm__ volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
1360 #endif
1361
1362 // NOTE: the +1 is for the MMX scaler which reads over the end
1363 FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW+1)*sizeof(int16_t), fail);
1364
1365 if (FFABS(xInc - 0x10000) <10) { // unscaled
1366 int i;
1367 filterSize= 1;
1368 FF_ALLOCZ_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
1369
1370 for (i=0; i<dstW; i++) {
1371 filter[i*filterSize]= fone;
1372 (*filterPos)[i]=i;
1373 }
1374
1375 } else if (flags&SWS_POINT) { // lame looking point sampling mode
1376 int i;
1377 int xDstInSrc;
1378 filterSize= 1;
1379 FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
1380
1381 xDstInSrc= xInc/2 - 0x8000;
1382 for (i=0; i<dstW; i++) {
1383 int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
1384
1385 (*filterPos)[i]= xx;
1386 filter[i]= fone;
1387 xDstInSrc+= xInc;
1388 }
1389 } else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) { // bilinear upscale
1390 int i;
1391 int xDstInSrc;
1392 filterSize= 2;
1393 FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
1394
1395 xDstInSrc= xInc/2 - 0x8000;
1396 for (i=0; i<dstW; i++) {
1397 int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
1398 int j;
1399
1400 (*filterPos)[i]= xx;
1401 //bilinear upscale / linear interpolate / area averaging
1402 for (j=0; j<filterSize; j++) {
1403 int64_t coeff= fone - FFABS((xx<<16) - xDstInSrc)*(fone>>16);
1404 if (coeff<0) coeff=0;
1405 filter[i*filterSize + j]= coeff;
1406 xx++;
1407 }
1408 xDstInSrc+= xInc;
1409 }
1410 } else {
1411 int xDstInSrc;
1412 int sizeFactor;
1413
1414 if (flags&SWS_BICUBIC) sizeFactor= 4;
1415 else if (flags&SWS_X) sizeFactor= 8;
1416 else if (flags&SWS_AREA) sizeFactor= 1; //downscale only, for upscale it is bilinear
1417 else if (flags&SWS_GAUSS) sizeFactor= 8; // infinite ;)
1418 else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6;
1419 else if (flags&SWS_SINC) sizeFactor= 20; // infinite ;)
1420 else if (flags&SWS_SPLINE) sizeFactor= 20; // infinite ;)
1421 else if (flags&SWS_BILINEAR) sizeFactor= 2;
1422 else {
1423 sizeFactor= 0; //GCC warning killer
1424 assert(0);
1425 }
1426
1427 if (xInc <= 1<<16) filterSize= 1 + sizeFactor; // upscale
1428 else filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;
1429
1430 if (filterSize > srcW-2) filterSize=srcW-2;
1431
1432 FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
1433
1434 xDstInSrc= xInc - 0x10000;
1435 for (i=0; i<dstW; i++) {
1436 int xx= (xDstInSrc - ((filterSize-2)<<16)) / (1<<17);
1437 int j;
1438 (*filterPos)[i]= xx;
1439 for (j=0; j<filterSize; j++) {
1440 int64_t d= ((int64_t)FFABS((xx<<17) - xDstInSrc))<<13;
1441 double floatd;
1442 int64_t coeff;
1443
1444 if (xInc > 1<<16)
1445 d= d*dstW/srcW;
1446 floatd= d * (1.0/(1<<30));
1447
1448 if (flags & SWS_BICUBIC) {
1449 int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1<<24);
1450 int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24);
1451 int64_t dd = ( d*d)>>30;
1452 int64_t ddd= (dd*d)>>30;
1453
1454 if (d < 1LL<<30)
1455 coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30);
1456 else if (d < 1LL<<31)
1457 coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30);
1458 else
1459 coeff=0.0;
1460 coeff *= fone>>(30+24);
1461 }
1462 /* else if (flags & SWS_X) {
1463 double p= param ? param*0.01 : 0.3;
1464 coeff = d ? sin(d*PI)/(d*PI) : 1.0;
1465 coeff*= pow(2.0, - p*d*d);
1466 }*/
1467 else if (flags & SWS_X) {
1468 double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
1469 double c;
1470
1471 if (floatd<1.0)
1472 c = cos(floatd*PI);
1473 else
1474 c=-1.0;
1475 if (c<0.0) c= -pow(-c, A);
1476 else c= pow( c, A);
1477 coeff= (c*0.5 + 0.5)*fone;
1478 } else if (flags & SWS_AREA) {
1479 int64_t d2= d - (1<<29);
1480 if (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16));
1481 else if (d2*xInc < (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16));
1482 else coeff=0.0;
1483 coeff *= fone>>(30+16);
1484 } else if (flags & SWS_GAUSS) {
1485 double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
1486 coeff = (pow(2.0, - p*floatd*floatd))*fone;
1487 } else if (flags & SWS_SINC) {
1488 coeff = (d ? sin(floatd*PI)/(floatd*PI) : 1.0)*fone;
1489 } else if (flags & SWS_LANCZOS) {
1490 double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
1491 coeff = (d ? sin(floatd*PI)*sin(floatd*PI/p)/(floatd*floatd*PI*PI/p) : 1.0)*fone;
1492 if (floatd>p) coeff=0;
1493 } else if (flags & SWS_BILINEAR) {
1494 coeff= (1<<30) - d;
1495 if (coeff<0) coeff=0;
1496 coeff *= fone >> 30;
1497 } else if (flags & SWS_SPLINE) {
1498 double p=-2.196152422706632;
1499 coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone;
1500 } else {
1501 coeff= 0.0; //GCC warning killer
1502 assert(0);
1503 }
1504
1505 filter[i*filterSize + j]= coeff;
1506 xx++;
1507 }
1508 xDstInSrc+= 2*xInc;
1509 }
1510 }
1511
1512 /* apply src & dst Filter to filter -> filter2
1513 av_free(filter);
1514 */
1515 assert(filterSize>0);
1516 filter2Size= filterSize;
1517 if (srcFilter) filter2Size+= srcFilter->length - 1;
1518 if (dstFilter) filter2Size+= dstFilter->length - 1;
1519 assert(filter2Size>0);
1520 FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size*dstW*sizeof(*filter2), fail);
1521
1522 for (i=0; i<dstW; i++) {
1523 int j, k;
1524
1525 if(srcFilter) {
1526 for (k=0; k<srcFilter->length; k++) {
1527 for (j=0; j<filterSize; j++)
1528 filter2[i*filter2Size + k + j] += srcFilter->coeff[k]*filter[i*filterSize + j];
1529 }
1530 } else {
1531 for (j=0; j<filterSize; j++)
1532 filter2[i*filter2Size + j]= filter[i*filterSize + j];
1533 }
1534 //FIXME dstFilter
1535
1536 (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
1537 }
1538 av_freep(&filter);
1539
1540 /* try to reduce the filter-size (step1 find size and shift left) */
1541 // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
1542 minFilterSize= 0;
1543 for (i=dstW-1; i>=0; i--) {
1544 int min= filter2Size;
1545 int j;
1546 int64_t cutOff=0.0;
1547
1548 /* get rid of near zero elements on the left by shifting left */
1549 for (j=0; j<filter2Size; j++) {
1550 int k;
1551 cutOff += FFABS(filter2[i*filter2Size]);
1552
1553 if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
1554
1555 /* preserve monotonicity because the core can't handle the filter otherwise */
1556 if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
1557
1558 // move filter coefficients left
1559 for (k=1; k<filter2Size; k++)
1560 filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
1561 filter2[i*filter2Size + k - 1]= 0;
1562 (*filterPos)[i]++;
1563 }
1564
1565 cutOff=0;
1566 /* count near zeros on the right */
1567 for (j=filter2Size-1; j>0; j--) {
1568 cutOff += FFABS(filter2[i*filter2Size + j]);
1569
1570 if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
1571 min--;
1572 }
1573
1574 if (min>minFilterSize) minFilterSize= min;
1575 }
1576
1577 if (flags & SWS_CPU_CAPS_ALTIVEC) {
1578 // we can handle the special case 4,
1579 // so we don't want to go to the full 8
1580 if (minFilterSize < 5)
1581 filterAlign = 4;
1582
1583 // We really don't want to waste our time
1584 // doing useless computation, so fall back on
1585 // the scalar C code for very small filters.
1586 // Vectorizing is worth it only if you have a
1587 // decent-sized vector.
1588 if (minFilterSize < 3)
1589 filterAlign = 1;
1590 }
1591
1592 if (flags & SWS_CPU_CAPS_MMX) {
1593 // special case for unscaled vertical filtering
1594 if (minFilterSize == 1 && filterAlign == 2)
1595 filterAlign= 1;
1596 }
1597
1598 assert(minFilterSize > 0);
1599 filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
1600 assert(filterSize > 0);
1601 filter= av_malloc(filterSize*dstW*sizeof(*filter));
1602 if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
1603 goto fail;
1604 *outFilterSize= filterSize;
1605
1606 if (flags&SWS_PRINT_INFO)
1607 av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
1608 /* try to reduce the filter-size (step2 reduce it) */
1609 for (i=0; i<dstW; i++) {
1610 int j;
1611
1612 for (j=0; j<filterSize; j++) {
1613 if (j>=filter2Size) filter[i*filterSize + j]= 0;
1614 else filter[i*filterSize + j]= filter2[i*filter2Size + j];
1615 if((flags & SWS_BITEXACT) && j>=minFilterSize)
1616 filter[i*filterSize + j]= 0;
1617 }
1618 }
1619
1620 //FIXME try to align filterPos if possible
1621
1622 //fix borders
1623 for (i=0; i<dstW; i++) {
1624 int j;
1625 if ((*filterPos)[i] < 0) {
1626 // move filter coefficients left to compensate for filterPos
1627 for (j=1; j<filterSize; j++) {
1628 int left= FFMAX(j + (*filterPos)[i], 0);
1629 filter[i*filterSize + left] += filter[i*filterSize + j];
1630 filter[i*filterSize + j]=0;
1631 }
1632 (*filterPos)[i]= 0;
1633 }
1634
1635 if ((*filterPos)[i] + filterSize > srcW) {
1636 int shift= (*filterPos)[i] + filterSize - srcW;
1637 // move filter coefficients right to compensate for filterPos
1638 for (j=filterSize-2; j>=0; j--) {
1639 int right= FFMIN(j + shift, filterSize-1);
1640 filter[i*filterSize +right] += filter[i*filterSize +j];
1641 filter[i*filterSize +j]=0;
1642 }
1643 (*filterPos)[i]= srcW - filterSize;
1644 }
1645 }
1646
1647 // Note the +1 is for the MMX scaler which reads over the end
1648 /* align at 16 for AltiVec (needed by hScale_altivec_real) */
1649 FF_ALLOCZ_OR_GOTO(NULL, *outFilter, *outFilterSize*(dstW+1)*sizeof(int16_t), fail);
1650
1651 /* normalize & store in outFilter */
1652 for (i=0; i<dstW; i++) {
1653 int j;
1654 int64_t error=0;
1655 int64_t sum=0;
1656
1657 for (j=0; j<filterSize; j++) {
1658 sum+= filter[i*filterSize + j];
1659 }
1660 sum= (sum + one/2)/ one;
1661 for (j=0; j<*outFilterSize; j++) {
1662 int64_t v= filter[i*filterSize + j] + error;
1663 int intV= ROUNDED_DIV(v, sum);
1664 (*outFilter)[i*(*outFilterSize) + j]= intV;
1665 error= v - intV*sum;
1666 }
1667 }
1668
1669 (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
1670 for (i=0; i<*outFilterSize; i++) {
1671 int j= dstW*(*outFilterSize);
1672 (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
1673 }
1674
1675 ret=0;
1676 fail:
1677 av_free(filter);
1678 av_free(filter2);
1679 return ret;
1680 }
1681
1682 #ifdef COMPILE_MMX2
1683 static int initMMX2HScaler(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits)
1684 {
1685 uint8_t *fragmentA;
1686 x86_reg imm8OfPShufW1A;
1687 x86_reg imm8OfPShufW2A;
1688 x86_reg fragmentLengthA;
1689 uint8_t *fragmentB;
1690 x86_reg imm8OfPShufW1B;
1691 x86_reg imm8OfPShufW2B;
1692 x86_reg fragmentLengthB;
1693 int fragmentPos;
1694
1695 int xpos, i;
1696
1697 // create an optimized horizontal scaling routine
1698 /* This scaler is made of runtime-generated MMX2 code using specially
1699 * tuned pshufw instructions. For every four output pixels, if four
1700 * input pixels are enough for the fast bilinear scaling, then a chunk
1701 * of fragmentB is used. If five input pixels are needed, then a chunk
1702 * of fragmentA is used.
1703 */
1704
1705 //code fragment
1706
1707 __asm__ volatile(
1708 "jmp 9f \n\t"
1709 // Begin
1710 "0: \n\t"
1711 "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
1712 "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
1713 "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
1714 "punpcklbw %%mm7, %%mm1 \n\t"
1715 "punpcklbw %%mm7, %%mm0 \n\t"
1716 "pshufw $0xFF, %%mm1, %%mm1 \n\t"
1717 "1: \n\t"
1718 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
1719 "2: \n\t"
1720 "psubw %%mm1, %%mm0 \n\t"
1721 "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
1722 "pmullw %%mm3, %%mm0 \n\t"
1723 "psllw $7, %%mm1 \n\t"
1724 "paddw %%mm1, %%mm0 \n\t"
1725
1726 "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
1727
1728 "add $8, %%"REG_a" \n\t"
1729 // End
1730 "9: \n\t"
1731 // "int $3 \n\t"
1732 "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
1733 "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
1734 "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
1735 "dec %1 \n\t"
1736 "dec %2 \n\t"
1737 "sub %0, %1 \n\t"
1738 "sub %0, %2 \n\t"
1739 "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
1740 "sub %0, %3 \n\t"
1741
1742
1743 :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
1744 "=r" (fragmentLengthA)
1745 );
1746
1747 __asm__ volatile(
1748 "jmp 9f \n\t"
1749 // Begin
1750 "0: \n\t"
1751 "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
1752 "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
1753 "punpcklbw %%mm7, %%mm0 \n\t"
1754 "pshufw $0xFF, %%mm0, %%mm1 \n\t"
1755 "1: \n\t"
1756 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
1757 "2: \n\t"
1758 "psubw %%mm1, %%mm0 \n\t"
1759 "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
1760 "pmullw %%mm3, %%mm0 \n\t"
1761 "psllw $7, %%mm1 \n\t"
1762 "paddw %%mm1, %%mm0 \n\t"
1763
1764 "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
1765
1766 "add $8, %%"REG_a" \n\t"
1767 // End
1768 "9: \n\t"
1769 // "int $3 \n\t"
1770 "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
1771 "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
1772 "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
1773 "dec %1 \n\t"
1774 "dec %2 \n\t"
1775 "sub %0, %1 \n\t"
1776 "sub %0, %2 \n\t"
1777 "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
1778 "sub %0, %3 \n\t"
1779
1780
1781 :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
1782 "=r" (fragmentLengthB)
1783 );
1784
1785 xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
1786 fragmentPos=0;
1787
1788 for (i=0; i<dstW/numSplits; i++) {
1789 int xx=xpos>>16;
1790
1791 if ((i&3) == 0) {
1792 int a=0;
1793 int b=((xpos+xInc)>>16) - xx;
1794 int c=((xpos+xInc*2)>>16) - xx;
1795 int d=((xpos+xInc*3)>>16) - xx;
1796 int inc = (d+1<4);
1797 uint8_t *fragment = (d+1<4) ? fragmentB : fragmentA;
1798 x86_reg imm8OfPShufW1 = (d+1<4) ? imm8OfPShufW1B : imm8OfPShufW1A;
1799 x86_reg imm8OfPShufW2 = (d+1<4) ? imm8OfPShufW2B : imm8OfPShufW2A;
1800 x86_reg fragmentLength = (d+1<4) ? fragmentLengthB : fragmentLengthA;
1801 int maxShift= 3-(d+inc);
1802 int shift=0;
1803
1804 if (filterCode) {
1805 filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
1806 filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
1807 filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
1808 filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
1809 filterPos[i/2]= xx;
1810
1811 memcpy(filterCode + fragmentPos, fragment, fragmentLength);
1812
1813 filterCode[fragmentPos + imm8OfPShufW1]=
1814 (a+inc) | ((b+inc)<<2) | ((c+inc)<<4) | ((d+inc)<<6);
1815 filterCode[fragmentPos + imm8OfPShufW2]=
1816 a | (b<<2) | (c<<4) | (d<<6);
1817
1818 if (i+4-inc>=dstW) shift=maxShift; //avoid overread
1819 else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
1820
1821 if (shift && i>=shift) {
1822 filterCode[fragmentPos + imm8OfPShufW1]+= 0x55*shift;
1823 filterCode[fragmentPos + imm8OfPShufW2]+= 0x55*shift;
1824 filterPos[i/2]-=shift;
1825 }
1826 }
1827
1828 fragmentPos+= fragmentLength;
1829
1830 if (filterCode)
1831 filterCode[fragmentPos]= RET;
1832 }
1833 xpos+=xInc;
1834 }
1835 if (filterCode)
1836 filterPos[((i/2)+1)&(~1)]= xpos>>16; // needed to jump to the next part
1837
1838 return fragmentPos + 1;
1839 }
1840 #endif /* COMPILE_MMX2 */
1841
1842 static SwsFunc getSwsFunc(SwsContext *c)
1843 {
1844 #if CONFIG_RUNTIME_CPUDETECT
1845 int flags = c->flags;
1846
1847 #if ARCH_X86 && CONFIG_GPL
1848 // ordered per speed fastest first
1849 if (flags & SWS_CPU_CAPS_MMX2) {
1850 sws_init_swScale_MMX2(c);
1851 return swScale_MMX2;
1852 } else if (flags & SWS_CPU_CAPS_3DNOW) {
1853 sws_init_swScale_3DNow(c);
1854 return swScale_3DNow;
1855 } else if (flags & SWS_CPU_CAPS_MMX) {
1856 sws_init_swScale_MMX(c);
1857 return swScale_MMX;
1858 } else {
1859 sws_init_swScale_C(c);
1860 return swScale_C;
1861 }
1862
1863 #else
1864 #if ARCH_PPC
1865 if (flags & SWS_CPU_CAPS_ALTIVEC) {
1866 sws_init_swScale_altivec(c);
1867 return swScale_altivec;
1868 } else {
1869 sws_init_swScale_C(c);
1870 return swScale_C;
1871 }
1872 #endif
1873 sws_init_swScale_C(c);
1874 return swScale_C;
1875 #endif /* ARCH_X86 && CONFIG_GPL */
1876 #else //CONFIG_RUNTIME_CPUDETECT
1877 #if COMPILE_TEMPLATE_MMX2
1878 sws_init_swScale_MMX2(c);
1879 return swScale_MMX2;
1880 #elif COMPILE_TEMPLATE_AMD3DNOW
1881 sws_init_swScale_3DNow(c);
1882 return swScale_3DNow;
1883 #elif COMPILE_TEMPLATE_MMX
1884 sws_init_swScale_MMX(c);
1885 return swScale_MMX;
1886 #elif COMPILE_TEMPLATE_ALTIVEC
1887 sws_init_swScale_altivec(c);
1888 return swScale_altivec;
1889 #else
1890 sws_init_swScale_C(c);
1891 return swScale_C;
1892 #endif
1893 #endif //!CONFIG_RUNTIME_CPUDETECT
1894 }
1895
1896 static int PlanarToNV12Wrapper(SwsContext *c, const uint8_t* src[], int srcStride[], int srcSliceY,
1897 int srcSliceH, uint8_t* dstParam[], int dstStride[])
1898 {
1899 uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1900 /* Copy Y plane */
1901 if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
1902 memcpy(dst, src[0], srcSliceH*dstStride[0]);
1903 else {
1904 int i;
1905 const uint8_t *srcPtr= src[0];
1906 uint8_t *dstPtr= dst;
1907 for (i=0; i<srcSliceH; i++) {
1908 memcpy(dstPtr, srcPtr, c->srcW);
1909 srcPtr+= srcStride[0];
1910 dstPtr+= dstStride[0];
1911 }
1912 }
1913 dst = dstParam[1] + dstStride[1]*srcSliceY/2;
1914 if (c->dstFormat == PIX_FMT_NV12)
1915 interleaveBytes(src[1], src[2], dst, c->srcW/2, srcSliceH/2, srcStride[1], srcStride[2], dstStride[0]);
1916 else
1917 interleaveBytes(src[2], src[1], dst, c->srcW/2, srcSliceH/2, srcStride[2], srcStride[1], dstStride[0]);
1918
1919 return srcSliceH;
1920 }
1921
1922 static int PlanarToYuy2Wrapper(SwsContext *c, const uint8_t* src[], int srcStride[], int srcSliceY,
1923 int srcSliceH, uint8_t* dstParam[], int dstStride[])
1924 {
1925 uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1926
1927 yv12toyuy2(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
1928
1929 return srcSliceH;
1930 }
1931
1932 static int PlanarToUyvyWrapper(SwsContext *c, const uint8_t* src[], int srcStride[], int srcSliceY,
1933 int srcSliceH, uint8_t* dstParam[], int dstStride[])
1934 {
1935 uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1936
1937 yv12touyvy(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
1938
1939 return srcSliceH;
1940 }
1941
1942 static int YUV422PToYuy2Wrapper(SwsContext *c, const uint8_t* src[], int srcStride[], int srcSliceY,
1943 int srcSliceH, uint8_t* dstParam[], int dstStride[])
1944 {
1945 uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1946
1947 yuv422ptoyuy2(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);
1948
1949 return srcSliceH;
1950 }
1951
1952 static int YUV422PToUyvyWrapper(SwsContext *c, const uint8_t* src[], int srcStride[], int srcSliceY,
1953 int srcSliceH, uint8_t* dstParam[], int dstStride[])
1954 {
1955 uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1956
1957 yuv422ptouyvy(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);
1958
1959 return srcSliceH;
1960 }
1961
1962 static int YUYV2YUV420Wrapper(SwsContext *c, const uint8_t* src[], int srcStride[], int srcSliceY,
1963 int srcSliceH, uint8_t* dstParam[], int dstStride[])
1964 {
1965 uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
1966 uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY/2;
1967 uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY/2;
1968
1969 yuyvtoyuv420(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
1970
1971 if (dstParam[3])
1972 fillPlane(dstParam[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
1973
1974 return srcSliceH;
1975 }
1976
1977 static int YUYV2YUV422Wrapper(SwsContext *c, const uint8_t* src[], int srcStride[], int srcSliceY,
1978 int srcSliceH, uint8_t* dstParam[], int dstStride[])
1979 {
1980 uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
1981 uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY;
1982 uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY;
1983
1984 yuyvtoyuv422(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
1985
1986 return srcSliceH;
1987 }
1988
1989 static int UYVY2YUV420Wrapper(SwsContext *c, const uint8_t* src[], int srcStride[], int srcSliceY,
1990 int srcSliceH, uint8_t* dstParam[], int dstStride[])
1991 {
1992 uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
1993 uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY/2;
1994 uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY/2;
1995
1996 uyvytoyuv420(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
1997
1998 if (dstParam[3])
1999 fillPlane(dstParam[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
2000
2001 return srcSliceH;
2002 }
2003
2004 static int UYVY2YUV422Wrapper(SwsContext *c, const uint8_t* src[], int srcStride[], int srcSliceY,
2005 int srcSliceH, uint8_t* dstParam[], int dstStride[])
2006 {
2007 uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
2008 uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY;
2009 uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY;
2010
2011 uyvytoyuv422(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
2012
2013 return srcSliceH;
2014 }
2015
2016 static int pal2rgbWrapper(SwsContext *c, const uint8_t* src[], int srcStride[], int srcSliceY,
2017 int srcSliceH, uint8_t* dst[], int dstStride[])
2018 {
2019 const enum PixelFormat srcFormat= c->srcFormat;
2020 const enum PixelFormat dstFormat= c->dstFormat;
2021 void (*conv)(const uint8_t *src, uint8_t *dst, long num_pixels,
2022 const uint8_t *palette)=NULL;
2023 int i;
2024 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
2025 const uint8_t *srcPtr= src[0];
2026
2027 if (usePal(srcFormat)) {
2028 switch (dstFormat) {
2029 case PIX_FMT_RGB32 : conv = palette8topacked32; break;
2030 case PIX_FMT_BGR32 : conv = palette8topacked32; break;
2031 case PIX_FMT_BGR32_1: conv = palette8topacked32; break;
2032 case PIX_FMT_RGB32_1: conv = palette8topacked32; break;
2033 case PIX_FMT_RGB24 : conv = palette8topacked24; break;
2034 case PIX_FMT_BGR24 : conv = palette8topacked24; break;
2035 }
2036 }
2037
2038 if (!conv)
2039 av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
2040 sws_format_name(srcFormat), sws_format_name(dstFormat));
2041 else {
2042 for (i=0; i<srcSliceH; i++) {
2043 conv(srcPtr, dstPtr, c->srcW, (uint8_t *) c->pal_rgb);
2044 srcPtr+= srcStride[0];
2045 dstPtr+= dstStride[0];
2046 }
2047 }
2048
2049 return srcSliceH;
2050 }
2051
2052 /* {RGB,BGR}{15,16,24,32,32_1} -> {RGB,BGR}{15,16,24,32} */
2053 static int rgb2rgbWrapper(SwsContext *c, const uint8_t* src[], int srcStride[], int srcSliceY,
2054 int srcSliceH, uint8_t* dst[], int dstStride[])
2055 {
2056 const enum PixelFormat srcFormat= c->srcFormat;
2057 const enum PixelFormat dstFormat= c->dstFormat;
2058 const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
2059 const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
2060 const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
2061 const int dstId= fmt_depth(dstFormat) >> 2;
2062 void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
2063
2064 /* BGR -> BGR */
2065 if ( (isBGR(srcFormat) && isBGR(dstFormat))
2066 || (isRGB(srcFormat) && isRGB(dstFormat))) {
2067 switch(srcId | (dstId<<4)) {
2068 case 0x34: conv= rgb16to15; break;
2069 case 0x36: conv= rgb24to15; break;
2070 case 0x38: conv= rgb32to15; break;
2071 case 0x43: conv= rgb15to16; break;
2072 case 0x46: conv= rgb24to16; break;
2073 case 0x48: conv= rgb32to16; break;
2074 case 0x63: conv= rgb15to24; break;
2075 case 0x64: conv= rgb16to24; break;
2076 case 0x68: conv= rgb32to24; break;
2077 case 0x83: conv= rgb15to32; break;
2078 case 0x84: conv= rgb16to32; break;
2079 case 0x86: conv= rgb24to32; break;
2080 }
2081 } else if ( (isBGR(srcFormat) && isRGB(dstFormat))
2082 || (isRGB(srcFormat) && isBGR(dstFormat))) {
2083 switch(srcId | (dstId<<4)) {
2084 case 0x33: conv= rgb15tobgr15; break;
2085 case 0x34: conv= rgb16tobgr15; break;
2086 case 0x36: conv= rgb24tobgr15; break;
2087 case 0x38: conv= rgb32tobgr15; break;
2088 case 0x43: conv= rgb15tobgr16; break;
2089 case 0x44: conv= rgb16tobgr16; break;
2090 case 0x46: conv= rgb24tobgr16; break;
2091 case 0x48: conv= rgb32tobgr16; break;
2092 case 0x63: conv= rgb15tobgr24; break;
2093 case 0x64: conv= rgb16tobgr24; break;
2094 case 0x66: conv= rgb24tobgr24; break;
2095 case 0x68: conv= rgb32tobgr24; break;
2096 case 0x83: conv= rgb15tobgr32; break;
2097 case 0x84: conv= rgb16tobgr32; break;
2098 case 0x86: conv= rgb24tobgr32; break;
2099 case 0x88: conv= rgb32tobgr32; break;
2100 }
2101 }
2102
2103 if (!conv) {
2104 av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
2105 sws_format_name(srcFormat), sws_format_name(dstFormat));
2106 } else {
2107 const uint8_t *srcPtr= src[0];
2108 if(srcFormat == PIX_FMT_RGB32_1 || srcFormat == PIX_FMT_BGR32_1)
2109 srcPtr += ALT32_CORR;
2110
2111 if (dstStride[0]*srcBpp == srcStride[0]*dstBpp && srcStride[0] > 0)
2112 conv(srcPtr, dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
2113 else {
2114 int i;
2115 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
2116
2117 for (i=0; i<srcSliceH; i++) {
2118 conv(srcPtr, dstPtr, c->srcW*srcBpp);
2119 srcPtr+= srcStride[0];
2120 dstPtr+= dstStride[0];
2121 }
2122 }
2123 }
2124 return srcSliceH;
2125 }
2126
2127 static int bgr24toyv12Wrapper(SwsContext *c, const uint8_t* src[], int srcStride[], int srcSliceY,
2128 int srcSliceH, uint8_t* dst[], int dstStride[])
2129 {
2130 rgb24toyv12(
2131 src[0],
2132 dst[0]+ srcSliceY *dstStride[0],
2133 dst[1]+(srcSliceY>>1)*dstStride[1],
2134 dst[2]+(srcSliceY>>1)*dstStride[2],
2135 c->srcW, srcSliceH,
2136 dstStride[0], dstStride[1], srcStride[0]);
2137 if (dst[3])
2138 fillPlane(dst[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
2139 return srcSliceH;
2140 }
2141
2142 static int yvu9toyv12Wrapper(SwsContext *c, const uint8_t* src[], int srcStride[], int srcSliceY,
2143 int srcSliceH, uint8_t* dst[], int dstStride[])
2144 {
2145 int i;
2146
2147 /* copy Y */
2148 if (srcStride[0]==dstStride[0] && srcStride[0] > 0)
2149 memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
2150 else {
2151 const uint8_t *srcPtr= src[0];
2152 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
2153
2154 for (i=0; i<srcSliceH; i++) {
2155 memcpy(dstPtr, srcPtr, c->srcW);
2156 srcPtr+= srcStride[0];
2157 dstPtr+= dstStride[0];
2158 }
2159 }
2160
2161 if (c->dstFormat==PIX_FMT_YUV420P || c->dstFormat==PIX_FMT_YUVA420P) {
2162 planar2x(src[1], dst[1] + dstStride[1]*(srcSliceY >> 1), c->chrSrcW,
2163 srcSliceH >> 2, srcStride[1], dstStride[1]);
2164 planar2x(src[2], dst[2] + dstStride[2]*(srcSliceY >> 1), c->chrSrcW,
2165 srcSliceH >> 2, srcStride[2], dstStride[2]);
2166 } else {
2167 planar2x(src[1], dst[2] + dstStride[2]*(srcSliceY >> 1), c->chrSrcW,
2168 srcSliceH >> 2, srcStride[1], dstStride[2]);
2169 planar2x(src[2], dst[1] + dstStride[1]*(srcSliceY >> 1), c->chrSrcW,
2170 srcSliceH >> 2, srcStride[2], dstStride[1]);
2171 }
2172 if (dst[3])
2173 fillPlane(dst[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
2174 return srcSliceH;
2175 }
2176
2177 /* unscaled copy like stuff (assumes nearly identical formats) */
2178 static int packedCopy(SwsContext *c, const uint8_t* src[], int srcStride[], int srcSliceY,
2179 int srcSliceH, uint8_t* dst[], int dstStride[])
2180 {
2181 if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
2182 memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
2183 else {
2184 int i;
2185 const uint8_t *srcPtr= src[0];
2186 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
2187 int length=0;
2188
2189 /* universal length finder */
2190 while(length+c->srcW <= FFABS(dstStride[0])
2191 && length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW;
2192 assert(length!=0);
2193
2194 for (i=0; i<srcSliceH; i++) {
2195 memcpy(dstPtr, srcPtr, length);
2196 srcPtr+= srcStride[0];
2197 dstPtr+= dstStride[0];
2198 }
2199 }
2200 return srcSliceH;
2201 }
2202
2203 static int planarCopy(SwsContext *c, const uint8_t* src[], int srcStride[], int srcSliceY,
2204 int srcSliceH, uint8_t* dst[], int dstStride[])
2205 {
2206 int plane, i, j;
2207 for (plane=0; plane<4; plane++) {
2208 int length= (plane==0 || plane==3) ? c->srcW : -((-c->srcW )>>c->chrDstHSubSample);
2209 int y= (plane==0 || plane==3) ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
2210 int height= (plane==0 || plane==3) ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
2211 const uint8_t *srcPtr= src[plane];
2212 uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
2213
2214 if (!dst[plane]) continue;
2215 // ignore palette for GRAY8
2216 if (plane == 1 && !dst[2]) continue;
2217 if (!src[plane] || (plane == 1 && !src[2])) {
2218 if(is16BPS(c->dstFormat))
2219 length*=2;
2220 fillPlane(dst[plane], dstStride[plane], length, height, y, (plane==3) ? 255 : 128);
2221 } else {
2222 if(is16BPS(c->srcFormat) && !is16BPS(c->dstFormat)) {
2223 if (!isBE(c->srcFormat)) srcPtr++;
2224 for (i=0; i<height; i++) {
2225 for (j=0; j<length; j++) dstPtr[j] = srcPtr[j<<1];
2226 srcPtr+= srcStride[plane];
2227 dstPtr+= dstStride[plane];
2228 }
2229 } else if(!is16BPS(c->srcFormat) && is16BPS(c->dstFormat)) {
2230 for (i=0; i<height; i++) {
2231 for (j=0; j<length; j++) {
2232 dstPtr[ j<<1 ] = srcPtr[j];
2233 dstPtr[(j<<1)+1] = srcPtr[j];
2234 }
2235 srcPtr+= srcStride[plane];
2236 dstPtr+= dstStride[plane];
2237 }
2238 } else if(is16BPS(c->srcFormat) && is16BPS(c->dstFormat)
2239 && isBE(c->srcFormat) != isBE(c->dstFormat)) {
2240
2241 for (i=0; i<height; i++) {
2242 for (j=0; j<length; j++)
2243 ((uint16_t*)dstPtr)[j] = bswap_16(((const uint16_t*)srcPtr)[j]);
2244 srcPtr+= srcStride[plane];
2245 dstPtr+= dstStride[plane];
2246 }
2247 } else if (dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
2248 memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
2249 else {
2250 if(is16BPS(c->srcFormat) && is16BPS(c->dstFormat))
2251 length*=2;
2252 for (i=0; i<height; i++) {
2253 memcpy(dstPtr, srcPtr, length);
2254 srcPtr+= srcStride[plane];
2255 dstPtr+= dstStride[plane];
2256 }
2257 }
2258 }
2259 }
2260 return srcSliceH;
2261 }
2262
2263 static void getSubSampleFactors(int *h, int *v, enum PixelFormat format)
2264 {
2265 *h = av_pix_fmt_descriptors[format].log2_chroma_w;
2266 *v = av_pix_fmt_descriptors[format].log2_chroma_h;
2267 }
2268
2269 static uint16_t roundToInt16(int64_t f)
2270 {
2271 int r= (f + (1<<15))>>16;
2272 if (r<-0x7FFF) return 0x8000;
2273 else if (r> 0x7FFF) return 0x7FFF;
2274 else return r;
2275 }
2276
2277 int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation)
2278 {
2279 int64_t crv = inv_table[0];
2280 int64_t cbu = inv_table[1];
2281 int64_t cgu = -inv_table[2];
2282 int64_t cgv = -inv_table[3];
2283 int64_t cy = 1<<16;
2284 int64_t oy = 0;
2285
2286 memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
2287 memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
2288
2289 c->brightness= brightness;
2290 c->contrast = contrast;
2291 c->saturation= saturation;
2292 c->srcRange = srcRange;
2293 c->dstRange = dstRange;
2294 if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
2295
2296 c->uOffset= 0x0400040004000400LL;
2297 c->vOffset= 0x0400040004000400LL;
2298
2299 if (!srcRange) {
2300 cy= (cy*255) / 219;
2301 oy= 16<<16;
2302 } else {
2303 crv= (crv*224) / 255;
2304 cbu= (cbu*224) / 255;
2305 cgu= (cgu*224) / 255;
2306 cgv= (cgv*224) / 255;
2307 }
2308
2309 cy = (cy *contrast )>>16;
2310 crv= (crv*contrast * saturation)>>32;
2311 cbu= (cbu*contrast * saturation)>>32;
2312 cgu= (cgu*contrast * saturation)>>32;
2313 cgv= (cgv*contrast * saturation)>>32;
2314
2315 oy -= 256*brightness;
2316
2317 c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
2318 c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
2319 c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
2320 c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
2321 c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
2322 c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
2323
2324 c->yuv2rgb_y_coeff = (int16_t)roundToInt16(cy <<13);
2325 c->yuv2rgb_y_offset = (int16_t)roundToInt16(oy << 9);
2326 c->yuv2rgb_v2r_coeff= (int16_t)roundToInt16(crv<<13);
2327 c->yuv2rgb_v2g_coeff= (int16_t)roundToInt16(cgv<<13);
2328 c->yuv2rgb_u2g_coeff= (int16_t)roundToInt16(cgu<<13);
2329 c->yuv2rgb_u2b_coeff= (int16_t)roundToInt16(cbu<<13);
2330
2331 ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
2332 //FIXME factorize
2333
2334 #ifdef COMPILE_ALTIVEC
2335 if (c->flags & SWS_CPU_CAPS_ALTIVEC)
2336 ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness, contrast, saturation);
2337 #endif
2338 return 0;
2339 }
2340
2341 int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation)
2342 {
2343 if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
2344
2345 *inv_table = c->srcColorspaceTable;
2346 *table = c->dstColorspaceTable;
2347 *srcRange = c->srcRange;
2348 *dstRange = c->dstRange;
2349 *brightness= c->brightness;
2350 *contrast = c->contrast;
2351 *saturation= c->saturation;
2352
2353 return 0;
2354 }
2355
2356 static int handle_jpeg(enum PixelFormat *format)
2357 {
2358 switch (*format) {
2359 case PIX_FMT_YUVJ420P:
2360 *format = PIX_FMT_YUV420P;
2361 return 1;
2362 case PIX_FMT_YUVJ422P:
2363 *format = PIX_FMT_YUV422P;
2364 return 1;
2365 case PIX_FMT_YUVJ444P:
2366 *format = PIX_FMT_YUV444P;
2367 return 1;
2368 case PIX_FMT_YUVJ440P:
2369 *format = PIX_FMT_YUV440P;
2370 return 1;
2371 default:
2372 return 0;
2373 }
2374 }
2375
2376 SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat,
2377 int dstW, int dstH, enum PixelFormat dstFormat, int flags,
2378 SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
2379 {
2380
2381 SwsContext *c;
2382 int i;
2383 int usesVFilter, usesHFilter;
2384 int unscaled, needsDither;
2385 int srcRange, dstRange;
2386 SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
2387 #if ARCH_X86
2388 if (flags & SWS_CPU_CAPS_MMX)
2389 __asm__ volatile("emms\n\t"::: "memory");
2390 #endif
2391
2392 #if !CONFIG_RUNTIME_CPUDETECT //ensure that the flags match the compiled variant if cpudetect is off
2393 flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC|SWS_CPU_CAPS_BFIN);
2394 #if COMPILE_TEMPLATE_MMX2
2395 flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
2396 #elif COMPILE_TEMPLATE_AMD3DNOW
2397 flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
2398 #elif COMPILE_TEMPLATE_MMX
2399 flags |= SWS_CPU_CAPS_MMX;
2400 #elif COMPILE_TEMPLATE_ALTIVEC
2401 flags |= SWS_CPU_CAPS_ALTIVEC;
2402 #elif ARCH_BFIN
2403 flags |= SWS_CPU_CAPS_BFIN;
2404 #endif
2405 #endif /* CONFIG_RUNTIME_CPUDETECT */
2406 if (!rgb15to16) sws_rgb2rgb_init(flags);
2407
2408 unscaled = (srcW == dstW && srcH == dstH);
2409 needsDither= (isBGR(dstFormat) || isRGB(dstFormat))
2410 && (fmt_depth(dstFormat))<24
2411 && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
2412
2413 srcRange = handle_jpeg(&srcFormat);
2414 dstRange = handle_jpeg(&dstFormat);
2415
2416 if (!isSupportedIn(srcFormat)) {
2417 av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", sws_format_name(srcFormat));
2418 return NULL;
2419 }
2420 if (!isSupportedOut(dstFormat)) {
2421 av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", sws_format_name(dstFormat));
2422 return NULL;
2423 }
2424
2425 i= flags & ( SWS_POINT
2426 |SWS_AREA
2427 |SWS_BILINEAR
2428 |SWS_FAST_BILINEAR
2429 |SWS_BICUBIC
2430 |SWS_X
2431 |SWS_GAUSS
2432 |SWS_LANCZOS
2433 |SWS_SINC
2434 |SWS_SPLINE
2435 |SWS_BICUBLIN);
2436 if(!i || (i & (i-1))) {
2437 av_log(NULL, AV_LOG_ERROR, "swScaler: Exactly one scaler algorithm must be chosen\n");
2438 return NULL;
2439 }
2440
2441 /* sanity check */
2442 if (srcW<4 || srcH<1 || dstW<8 || dstH<1) { //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
2443 av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
2444 srcW, srcH, dstW, dstH);
2445 return NULL;
2446 }
2447 if(srcW > VOFW || dstW > VOFW) {
2448 av_log(NULL, AV_LOG_ERROR, "swScaler: Compile-time maximum width is "AV_STRINGIFY(VOFW)" change VOF/VOFW and recompile\n");
2449 return NULL;
2450 }
2451
2452 if (!dstFilter) dstFilter= &dummyFilter;
2453 if (!srcFilter) srcFilter= &dummyFilter;
2454
2455 FF_ALLOCZ_OR_GOTO(NULL, c, sizeof(SwsContext), fail);
2456
2457 c->av_class = &sws_context_class;
2458 c->srcW= srcW;
2459 c->srcH= srcH;
2460 c->dstW= dstW;
2461 c->dstH= dstH;
2462 c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
2463 c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
2464 c->flags= flags;
2465 c->dstFormat= dstFormat;
2466 c->srcFormat= srcFormat;
2467 c->vRounder= 4* 0x0001000100010001ULL;
2468
2469 usesHFilter= usesVFilter= 0;
2470 if (dstFilter->lumV && dstFilter->lumV->length>1) usesVFilter=1;
2471 if (dstFilter->lumH && dstFilter->lumH->length>1) usesHFilter=1;
2472 if (dstFilter->chrV && dstFilter->chrV->length>1) usesVFilter=1;
2473 if (dstFilter->chrH && dstFilter->chrH->length>1) usesHFilter=1;
2474 if (srcFilter->lumV && srcFilter->lumV->length>1) usesVFilter=1;
2475 if (srcFilter->lumH && srcFilter->lumH->length>1) usesHFilter=1;
2476 if (srcFilter->chrV && srcFilter->chrV->length>1) usesVFilter=1;
2477 if (srcFilter->chrH && srcFilter->chrH->length>1) usesHFilter=1;
2478
2479 getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
2480 getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
2481
2482 // reuse chroma for 2 pixels RGB/BGR unless user wants full chroma interpolation
2483 if ((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
2484
2485 // drop some chroma lines if the user wants it
2486 c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
2487 c->chrSrcVSubSample+= c->vChrDrop;
2488
2489 // drop every other pixel for chroma calculation unless user wants full chroma
2490 if ((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)
2491 && srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
2492 && srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
2493 && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
2494 && ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&(SWS_FAST_BILINEAR|SWS_POINT))))
2495 c->chrSrcHSubSample=1;
2496
2497 if (param) {
2498 c->param[0] = param[0];
2499 c->param[1] = param[1];
2500 } else {
2501 c->param[0] =
2502 c->param[1] = SWS_PARAM_DEFAULT;
2503 }
2504
2505 // Note the -((-x)>>y) is so that we always round toward +inf.
2506 c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
2507 c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
2508 c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
2509 c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
2510
2511 sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
2512
2513 /* unscaled special cases */
2514 if (unscaled && !usesHFilter && !usesVFilter && (srcRange == dstRange || isBGR(dstFormat) || isRGB(dstFormat))) {
2515 /* yv12_to_nv12 */
2516 if ((srcFormat == PIX_FMT_YUV420P || srcFormat == PIX_FMT_YUVA420P) && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21)) {
2517 c->swScale= PlanarToNV12Wrapper;
2518 }
2519 /* yuv2bgr */
2520 if ((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P || srcFormat==PIX_FMT_YUVA420P) && (isBGR(dstFormat) || isRGB(dstFormat))
2521 && !(flags & SWS_ACCURATE_RND) && !(dstH&1)) {
2522 c->swScale= ff_yuv2rgb_get_func_ptr(c);
2523 }
2524
2525 if (srcFormat==PIX_FMT_YUV410P && (dstFormat==PIX_FMT_YUV420P || dstFormat==PIX_FMT_YUVA420P) && !(flags & SWS_BITEXACT)) {
2526 c->swScale= yvu9toyv12Wrapper;
2527 }
2528
2529 /* bgr24toYV12 */
2530 if (srcFormat==PIX_FMT_BGR24 && (dstFormat==PIX_FMT_YUV420P || dstFormat==PIX_FMT_YUVA420P) && !(flags & SWS_ACCURATE_RND))
2531 c->swScale= bgr24toyv12Wrapper;
2532
2533 /* RGB/BGR -> RGB/BGR (no dither needed forms) */
2534 if ( (isBGR(srcFormat) || isRGB(srcFormat))
2535 && (isBGR(dstFormat) || isRGB(dstFormat))
2536 && srcFormat != PIX_FMT_BGR8 && dstFormat != PIX_FMT_BGR8
2537 && srcFormat != PIX_FMT_RGB8 && dstFormat != PIX_FMT_RGB8
2538 && srcFormat != PIX_FMT_BGR4 && dstFormat != PIX_FMT_BGR4
2539 && srcFormat != PIX_FMT_RGB4 && dstFormat != PIX_FMT_RGB4
2540 && srcFormat != PIX_FMT_BGR4_BYTE && dstFormat != PIX_FMT_BGR4_BYTE
2541 && srcFormat != PIX_FMT_RGB4_BYTE && dstFormat != PIX_FMT_RGB4_BYTE
2542 && srcFormat != PIX_FMT_MONOBLACK && dstFormat != PIX_FMT_MONOBLACK
2543 && srcFormat != PIX_FMT_MONOWHITE && dstFormat != PIX_FMT_MONOWHITE
2544 && dstFormat != PIX_FMT_RGB32_1
2545 && dstFormat != PIX_FMT_BGR32_1
2546 && srcFormat != PIX_FMT_RGB48LE && dstFormat != PIX_FMT_RGB48LE
2547 && srcFormat != PIX_FMT_RGB48BE && dstFormat != PIX_FMT_RGB48BE
2548 && (!needsDither || (c->flags&(SWS_FAST_BILINEAR|SWS_POINT))))
2549 c->swScale= rgb2rgbWrapper;
2550
2551 if ((usePal(srcFormat) && (
2552 dstFormat == PIX_FMT_RGB32 ||
2553 dstFormat == PIX_FMT_RGB32_1 ||
2554 dstFormat == PIX_FMT_RGB24 ||
2555 dstFormat == PIX_FMT_BGR32 ||
2556 dstFormat == PIX_FMT_BGR32_1 ||
2557 dstFormat == PIX_FMT_BGR24)))
2558 c->swScale= pal2rgbWrapper;
2559
2560 if (srcFormat == PIX_FMT_YUV422P) {
2561 if (dstFormat == PIX_FMT_YUYV422)
2562 c->swScale= YUV422PToYuy2Wrapper;
2563 else if (dstFormat == PIX_FMT_UYVY422)
2564 c->swScale= YUV422PToUyvyWrapper;
2565 }
2566
2567 /* LQ converters if -sws 0 or -sws 4*/
2568 if (c->flags&(SWS_FAST_BILINEAR|SWS_POINT)) {
2569 /* yv12_to_yuy2 */
2570 if (srcFormat == PIX_FMT_YUV420P || srcFormat == PIX_FMT_YUVA420P) {
2571 if (dstFormat == PIX_FMT_YUYV422)
2572 c->swScale= PlanarToYuy2Wrapper;
2573 else if (dstFormat == PIX_FMT_UYVY422)
2574 c->swScale= PlanarToUyvyWrapper;
2575 }
2576 }
2577 if(srcFormat == PIX_FMT_YUYV422 && (dstFormat == PIX_FMT_YUV420P || dstFormat == PIX_FMT_YUVA420P))
2578 c->swScale= YUYV2YUV420Wrapper;
2579 if(srcFormat == PIX_FMT_UYVY422 && (dstFormat == PIX_FMT_YUV420P || dstFormat == PIX_FMT_YUVA420P))
2580 c->swScale= UYVY2YUV420Wrapper;
2581 if(srcFormat == PIX_FMT_YUYV422 && dstFormat == PIX_FMT_YUV422P)
2582 c->swScale= YUYV2YUV422Wrapper;
2583 if(srcFormat == PIX_FMT_UYVY422 && dstFormat == PIX_FMT_YUV422P)
2584 c->swScale= UYVY2YUV422Wrapper;
2585
2586 #ifdef COMPILE_ALTIVEC
2587 if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
2588 !(c->flags & SWS_BITEXACT) &&
2589 srcFormat == PIX_FMT_YUV420P) {
2590 // unscaled YV12 -> packed YUV, we want speed
2591 if (dstFormat == PIX_FMT_YUYV422)
2592 c->swScale= yv12toyuy2_unscaled_altivec;
2593 else if (dstFormat == PIX_FMT_UYVY422)
2594 c->swScale= yv12touyvy_unscaled_altivec;
2595 }
2596 #endif
2597
2598 /* simple copy */
2599 if ( srcFormat == dstFormat
2600 || (srcFormat == PIX_FMT_YUVA420P && dstFormat == PIX_FMT_YUV420P)
2601 || (srcFormat == PIX_FMT_YUV420P && dstFormat == PIX_FMT_YUVA420P)
2602 || (isPlanarYUV(srcFormat) && isGray(dstFormat))
2603 || (isPlanarYUV(dstFormat) && isGray(srcFormat))
2604 || (isGray(dstFormat) && isGray(srcFormat))
2605 || (isPlanarYUV(srcFormat) && isPlanarYUV(dstFormat)
2606 && c->chrDstHSubSample == c->chrSrcHSubSample
2607 && c->chrDstVSubSample == c->chrSrcVSubSample
2608 && dstFormat != PIX_FMT_NV12 && dstFormat != PIX_FMT_NV21
2609 && srcFormat != PIX_FMT_NV12 && srcFormat != PIX_FMT_NV21))
2610 {
2611 if (isPacked(c->srcFormat))
2612 c->swScale= packedCopy;
2613 else /* Planar YUV or gray */
2614 c->swScale= planarCopy;
2615 }
2616 #if ARCH_BFIN
2617 if (flags & SWS_CPU_CAPS_BFIN)
2618 ff_bfin_get_unscaled_swscale (c);
2619 #endif
2620
2621 if (c->swScale) {
2622 if (flags&SWS_PRINT_INFO)
2623 av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
2624 sws_format_name(srcFormat), sws_format_name(dstFormat));
2625 return c;
2626 }
2627 }
2628
2629 if (flags & SWS_CPU_CAPS_MMX2) {
2630 c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
2631 if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR)) {
2632 if (flags&SWS_PRINT_INFO)
2633 av_log(c, AV_LOG_INFO, "output width is not a multiple of 32 -> no MMX2 scaler\n");
2634 }
2635 if (usesHFilter) c->canMMX2BeUsed=0;
2636 }
2637 else
2638 c->canMMX2BeUsed=0;
2639
2640 c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
2641 c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
2642
2643 // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
2644 // but only for the FAST_BILINEAR mode otherwise do correct scaling
2645 // n-2 is the last chrominance sample available
2646 // this is not perfect, but no one should notice the difference, the more correct variant
2647 // would be like the vertical one, but that would require some special code for the
2648 // first and last pixel
2649 if (flags&SWS_FAST_BILINEAR) {
2650 if (c->canMMX2BeUsed) {
2651 c->lumXInc+= 20;
2652 c->chrXInc+= 20;
2653 }
2654 //we don't use the x86 asm scaler if MMX is available
2655 else if (flags & SWS_CPU_CAPS_MMX) {
2656 c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
2657 c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
2658 }
2659 }
2660
2661 /* precalculate horizontal scaler filter coefficients */
2662 {
2663 #if defined(COMPILE_MMX2)
2664 // can't downscale !!!
2665 if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR)) {
2666 c->lumMmx2FilterCodeSize = initMMX2HScaler( dstW, c->lumXInc, NULL, NULL, NULL, 8);
2667 c->chrMmx2FilterCodeSize = initMMX2HScaler(c->chrDstW, c->chrXInc, NULL, NULL, NULL, 4);
2668
2669 #ifdef MAP_ANONYMOUS
2670 c->lumMmx2FilterCode = mmap(NULL, c->lumMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2671 c->chrMmx2FilterCode = mmap(NULL, c->chrMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2672 #elif HAVE_VIRTUALALLOC
2673 c->lumMmx2FilterCode = VirtualAlloc(NULL, c->lumMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
2674 c->chrMmx2FilterCode = VirtualAlloc(NULL, c->chrMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
2675 #else
2676 c->lumMmx2FilterCode = av_malloc(c->lumMmx2FilterCodeSize);
2677 c->chrMmx2FilterCode = av_malloc(c->chrMmx2FilterCodeSize);
2678 #endif
2679
2680 FF_ALLOCZ_OR_GOTO(c, c->hLumFilter , (dstW /8+8)*sizeof(int16_t), fail);
2681 FF_ALLOCZ_OR_GOTO(c, c->hChrFilter , (c->chrDstW /4+8)*sizeof(int16_t), fail);
2682 FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW /2/8+8)*sizeof(int32_t), fail);
2683 FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW/2/4+8)*sizeof(int32_t), fail);
2684
2685 initMMX2HScaler( dstW, c->lumXInc, c->lumMmx2FilterCode, c->hLumFilter, c->hLumFilterPos, 8);
2686 initMMX2HScaler(c->chrDstW, c->chrXInc, c->chrMmx2FilterCode, c->hChrFilter, c->hChrFilterPos, 4);
2687
2688 #ifdef MAP_ANONYMOUS
2689 mprotect(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
2690 mprotect(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
2691 #endif
2692 } else
2693 #endif /* defined(COMPILE_MMX2) */
2694 {
2695 const int filterAlign=
2696 (flags & SWS_CPU_CAPS_MMX) ? 4 :
2697 (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2698 1;
2699
2700 if (initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
2701 srcW , dstW, filterAlign, 1<<14,
2702 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
2703 srcFilter->lumH, dstFilter->lumH, c->param) < 0)
2704 goto fail;
2705 if (initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
2706 c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
2707 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2708 srcFilter->chrH, dstFilter->chrH, c->param) < 0)
2709 goto fail;
2710 }
2711 } // initialize horizontal stuff
2712
2713 /* precalculate vertical scaler filter coefficients */
2714 {
2715 const int filterAlign=
2716 (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
2717 (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2718 1;
2719
2720 if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
2721 srcH , dstH, filterAlign, (1<<12),
2722 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
2723 srcFilter->lumV, dstFilter->lumV, c->param) < 0)
2724 goto fail;
2725 if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
2726 c->chrSrcH, c->chrDstH, filterAlign, (1<<12),
2727 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2728 srcFilter->chrV, dstFilter->chrV, c->param) < 0)
2729 goto fail;
2730
2731 #ifdef COMPILE_ALTIVEC
2732 FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof (vector signed short)*c->vLumFilterSize*c->dstH, fail);
2733 FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH, fail);
2734
2735 for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
2736 int j;
2737 short *p = (short *)&c->vYCoeffsBank[i];
2738 for (j=0;j<8;j++)
2739 p[j] = c->vLumFilter[i];
2740 }
2741
2742 for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
2743 int j;
2744 short *p = (short *)&c->vCCoeffsBank[i];
2745 for (j=0;j<8;j++)
2746 p[j] = c->vChrFilter[i];
2747 }
2748 #endif
2749 }
2750
2751 // calculate buffer sizes so that they won't run out while handling these damn slices
2752 c->vLumBufSize= c->vLumFilterSize;
2753 c->vChrBufSize= c->vChrFilterSize;
2754 for (i=0; i<dstH; i++) {
2755 int chrI= i*c->chrDstH / dstH;
2756 int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
2757 ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
2758
2759 nextSlice>>= c->chrSrcVSubSample;
2760 nextSlice<<= c->chrSrcVSubSample;
2761 if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
2762 c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
2763 if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
2764 c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
2765 }
2766
2767 // allocate pixbufs (we use dynamic allocation because otherwise we would need to
2768 // allocate several megabytes to handle all possible cases)
2769 FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
2770 FF_ALLOC_OR_GOTO(c, c->chrPixBuf, c->vChrBufSize*2*sizeof(int16_t*), fail);
2771 if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
2772 FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
2773 //Note we need at least one pixel more at the end because of the MMX code (just in case someone wanna replace the 4000/8000)
2774 /* align at 16 bytes for AltiVec */
2775 for (i=0; i<c->vLumBufSize; i++) {
2776 FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i+c->vLumBufSize], VOF+1, fail);
2777 c->lumPixBuf[i] = c->lumPixBuf[i+c->vLumBufSize];
2778 }
2779 for (i=0; i<c->vChrBufSize; i++) {
2780 FF_ALLOC_OR_GOTO(c, c->chrPixBuf[i+c->vChrBufSize], (VOF+1)*2, fail);
2781 c->chrPixBuf[i] = c->chrPixBuf[i+c->vChrBufSize];
2782 }
2783 if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
2784 for (i=0; i<c->vLumBufSize; i++) {
2785 FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i+c->vLumBufSize], VOF+1, fail);
2786 c->alpPixBuf[i] = c->alpPixBuf[i+c->vLumBufSize];
2787 }
2788
2789 //try to avoid drawing green stuff between the right end and the stride end
2790 for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, (VOF+1)*2);
2791
2792 assert(2*VOFW == VOF);
2793
2794 assert(c->chrDstH <= dstH);
2795
2796 if (flags&SWS_PRINT_INFO) {
2797 if (flags&SWS_FAST_BILINEAR)
2798 av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
2799 else if (flags&SWS_BILINEAR)
2800 av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
2801 else if (flags&SWS_BICUBIC)
2802 av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
2803 else if (flags&SWS_X)
2804 av_log(c, AV_LOG_INFO, "Experimental scaler, ");
2805 else if (flags&SWS_POINT)
2806 av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
2807 else if (flags&SWS_AREA)
2808 av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
2809 else if (flags&SWS_BICUBLIN)
2810 av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
2811 else if (flags&SWS_GAUSS)
2812 av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
2813 else if (flags&SWS_SINC)
2814 av_log(c, AV_LOG_INFO, "Sinc scaler, ");
2815 else if (flags&SWS_LANCZOS)
2816 av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
2817 else if (flags&SWS_SPLINE)
2818 av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
2819 else
2820 av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
2821
2822 av_log(c, AV_LOG_INFO, "from %s to %s%s ",
2823 sws_format_name(srcFormat),
2824 #ifdef DITHER1XBPP
2825 dstFormat == PIX_FMT_BGR555 || dstFormat == PIX_FMT_BGR565 ? "dithered " : "",
2826 #else
2827 "",
2828 #endif
2829 sws_format_name(dstFormat));
2830
2831 if (flags & SWS_CPU_CAPS_MMX2)
2832 av_log(c, AV_LOG_INFO, "using MMX2\n");
2833 else if (flags & SWS_CPU_CAPS_3DNOW)
2834 av_log(c, AV_LOG_INFO, "using 3DNOW\n");
2835 else if (flags & SWS_CPU_CAPS_MMX)
2836 av_log(c, AV_LOG_INFO, "using MMX\n");
2837 else if (flags & SWS_CPU_CAPS_ALTIVEC)
2838 av_log(c, AV_LOG_INFO, "using AltiVec\n");
2839 else
2840 av_log(c, AV_LOG_INFO, "using C\n");
2841 }
2842
2843 if (flags & SWS_PRINT_INFO) {
2844 if (flags & SWS_CPU_CAPS_MMX) {
2845 if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
2846 av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
2847 else {
2848 if (c->hLumFilterSize==4)
2849 av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
2850 else if (c->hLumFilterSize==8)
2851 av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
2852 else
2853 av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");
2854
2855 if (c->hChrFilterSize==4)
2856 av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
2857 else if (c->hChrFilterSize==8)
2858 av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
2859 else
2860 av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
2861 }
2862 } else {
2863 #if ARCH_X86
2864 av_log(c, AV_LOG_VERBOSE, "using x86 asm scaler for horizontal scaling\n");
2865 #else
2866 if (flags & SWS_FAST_BILINEAR)
2867 av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
2868 else
2869 av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
2870 #endif
2871 }
2872 if (isPlanarYUV(dstFormat)) {
2873 if (c->vLumFilterSize==1)
2874 av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2875 else
2876 av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2877 } else {
2878 if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
2879 av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
2880 " 2-tap scaler for vertical chrominance scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2881 else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
2882 av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2883 else
2884 av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2885 }
2886
2887 if (dstFormat==PIX_FMT_BGR24)
2888 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 converter\n",
2889 (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
2890 else if (dstFormat==PIX_FMT_RGB32)
2891 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2892 else if (dstFormat==PIX_FMT_BGR565)
2893 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2894 else if (dstFormat==PIX_FMT_BGR555)
2895 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2896
2897 av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
2898 }
2899 if (flags & SWS_PRINT_INFO) {
2900 av_log(c, AV_LOG_DEBUG, "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2901 c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
2902 av_log(c, AV_LOG_DEBUG, "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2903 c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
2904 }
2905
2906 c->swScale= getSwsFunc(c);
2907 return c;
2908
2909 fail:
2910 sws_freeContext(c);
2911 return NULL;
2912 }
2913
2914 static void reset_ptr(const uint8_t* src[], int format)
2915 {
2916 if(!isALPHA(format))