2 * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
4 * This file is part of FFmpeg.
6 * FFmpeg is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 * the C code (not assembly, mmx, ...) of this file can be used
21 * under the LGPL license too
25 supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09, PAL8
26 supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
27 {BGR,RGB}{1,4,8,15,16} support dithering
29 unscaled special converters (YV12=I420=IYUV, Y800=Y8)
30 YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
35 BGR24 -> BGR32 & RGB24 -> RGB32
36 BGR32 -> BGR24 & RGB32 -> RGB24
41 tested special converters (most are tested actually but i didnt write it down ...)
48 untested special converters
49 YV12/I420 -> BGR15/BGR24/BGR32 (its the yuv2rgb stuff, so it should be ok)
50 YV12/I420 -> YV12/I420
51 YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
52 BGR24 -> BGR32 & RGB24 -> RGB32
53 BGR32 -> BGR24 & RGB32 -> RGB24
64 #ifdef HAVE_SYS_MMAN_H
66 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
67 #define MAP_ANONYMOUS MAP_ANON
71 #include "swscale_internal.h"
76 #include "libvo/fastmemcpy.h"
86 //#define WORDS_BIGENDIAN
89 #define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
91 #define RET 0xC3 //near return opcode for X86
94 #define ASSERT(x) assert(x);
102 #define PI 3.14159265358979323846
105 #define isSupportedIn(x) ((x)==PIX_FMT_YUV420P || (x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422 \
106 || (x)==PIX_FMT_RGB32 || (x)==PIX_FMT_BGR24 || (x)==PIX_FMT_BGR565 || (x)==PIX_FMT_BGR555 \
107 || (x)==PIX_FMT_BGR32 || (x)==PIX_FMT_RGB24 || (x)==PIX_FMT_RGB565 || (x)==PIX_FMT_RGB555 \
108 || (x)==PIX_FMT_GRAY8 || (x)==PIX_FMT_YUV410P \
109 || (x)==PIX_FMT_GRAY16BE || (x)==PIX_FMT_GRAY16LE \
110 || (x)==PIX_FMT_YUV444P || (x)==PIX_FMT_YUV422P || (x)==PIX_FMT_YUV411P \
111 || (x)==PIX_FMT_PAL8 || (x)==PIX_FMT_BGR8 || (x)==PIX_FMT_RGB8 \
112 || (x)==PIX_FMT_BGR4_BYTE || (x)==PIX_FMT_RGB4_BYTE)
113 #define isSupportedOut(x) ((x)==PIX_FMT_YUV420P || (x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422 \
114 || (x)==PIX_FMT_YUV444P || (x)==PIX_FMT_YUV422P || (x)==PIX_FMT_YUV411P \
115 || isRGB(x) || isBGR(x) \
116 || (x)==PIX_FMT_NV12 || (x)==PIX_FMT_NV21 \
117 || (x)==PIX_FMT_GRAY16BE || (x)==PIX_FMT_GRAY16LE \
118 || (x)==PIX_FMT_GRAY8 || (x)==PIX_FMT_YUV410P)
119 #define isPacked(x) ((x)==PIX_FMT_PAL8 || (x)==PIX_FMT_YUYV422 || \
120 (x)==PIX_FMT_UYVY422 || isRGB(x) || isBGR(x))
122 #define RGB2YUV_SHIFT 16
123 #define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
124 #define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
125 #define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
126 #define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
127 #define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
128 #define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
129 #define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
130 #define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
131 #define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))
133 extern const int32_t Inverse_Table_6_9
[8][4];
137 Special versions: fast Y 1:1 scaling (no interpolation in y direction)
140 more intelligent missalignment avoidance for the horizontal scaler
141 write special vertical cubic upscale version
142 Optimize C code (yv12 / minmax)
143 add support for packed pixel yuv input & output
144 add support for Y8 output
145 optimize bgr24 & bgr32
146 add BGR4 output support
147 write special BGR->BGR scaler
150 #if defined(ARCH_X86) && defined (CONFIG_GPL)
151 static uint64_t attribute_used
__attribute__((aligned(8))) bF8
= 0xF8F8F8F8F8F8F8F8LL
;
152 static uint64_t attribute_used
__attribute__((aligned(8))) bFC
= 0xFCFCFCFCFCFCFCFCLL
;
153 static uint64_t __attribute__((aligned(8))) w10
= 0x0010001000100010LL
;
154 static uint64_t attribute_used
__attribute__((aligned(8))) w02
= 0x0002000200020002LL
;
155 static uint64_t attribute_used
__attribute__((aligned(8))) bm00001111
=0x00000000FFFFFFFFLL
;
156 static uint64_t attribute_used
__attribute__((aligned(8))) bm00000111
=0x0000000000FFFFFFLL
;
157 static uint64_t attribute_used
__attribute__((aligned(8))) bm11111000
=0xFFFFFFFFFF000000LL
;
158 static uint64_t attribute_used
__attribute__((aligned(8))) bm01010101
=0x00FF00FF00FF00FFLL
;
160 static volatile uint64_t attribute_used
__attribute__((aligned(8))) b5Dither
;
161 static volatile uint64_t attribute_used
__attribute__((aligned(8))) g5Dither
;
162 static volatile uint64_t attribute_used
__attribute__((aligned(8))) g6Dither
;
163 static volatile uint64_t attribute_used
__attribute__((aligned(8))) r5Dither
;
165 static uint64_t __attribute__((aligned(8))) dither4
[2]={
166 0x0103010301030103LL
,
167 0x0200020002000200LL
,};
169 static uint64_t __attribute__((aligned(8))) dither8
[2]={
170 0x0602060206020602LL
,
171 0x0004000400040004LL
,};
173 static uint64_t __attribute__((aligned(8))) b16Mask
= 0x001F001F001F001FLL
;
174 static uint64_t attribute_used
__attribute__((aligned(8))) g16Mask
= 0x07E007E007E007E0LL
;
175 static uint64_t attribute_used
__attribute__((aligned(8))) r16Mask
= 0xF800F800F800F800LL
;
176 static uint64_t __attribute__((aligned(8))) b15Mask
= 0x001F001F001F001FLL
;
177 static uint64_t attribute_used
__attribute__((aligned(8))) g15Mask
= 0x03E003E003E003E0LL
;
178 static uint64_t attribute_used
__attribute__((aligned(8))) r15Mask
= 0x7C007C007C007C00LL
;
180 static uint64_t attribute_used
__attribute__((aligned(8))) M24A
= 0x00FF0000FF0000FFLL
;
181 static uint64_t attribute_used
__attribute__((aligned(8))) M24B
= 0xFF0000FF0000FF00LL
;
182 static uint64_t attribute_used
__attribute__((aligned(8))) M24C
= 0x0000FF0000FF0000LL
;
185 static const uint64_t bgr2YCoeff attribute_used
__attribute__((aligned(8))) = 0x000000210041000DULL
;
186 static const uint64_t bgr2UCoeff attribute_used
__attribute__((aligned(8))) = 0x0000FFEEFFDC0038ULL
;
187 static const uint64_t bgr2VCoeff attribute_used
__attribute__((aligned(8))) = 0x00000038FFD2FFF8ULL
;
189 static const uint64_t bgr2YCoeff attribute_used
__attribute__((aligned(8))) = 0x000020E540830C8BULL
;
190 static const uint64_t bgr2UCoeff attribute_used
__attribute__((aligned(8))) = 0x0000ED0FDAC23831ULL
;
191 static const uint64_t bgr2VCoeff attribute_used
__attribute__((aligned(8))) = 0x00003831D0E6F6EAULL
;
192 #endif /* FAST_BGR2YV12 */
193 static const uint64_t bgr2YOffset attribute_used
__attribute__((aligned(8))) = 0x1010101010101010ULL
;
194 static const uint64_t bgr2UVOffset attribute_used
__attribute__((aligned(8))) = 0x8080808080808080ULL
;
195 static const uint64_t w1111 attribute_used
__attribute__((aligned(8))) = 0x0001000100010001ULL
;
196 #endif /* defined(ARCH_X86) */
198 // clipping helper table for C implementations:
199 static unsigned char clip_table
[768];
201 static SwsVector
*sws_getConvVec(SwsVector
*a
, SwsVector
*b
);
203 extern const uint8_t dither_2x2_4
[2][8];
204 extern const uint8_t dither_2x2_8
[2][8];
205 extern const uint8_t dither_8x8_32
[8][8];
206 extern const uint8_t dither_8x8_73
[8][8];
207 extern const uint8_t dither_8x8_220
[8][8];
209 static const char * sws_context_to_name(void * ptr
) {
213 static AVClass sws_context_class
= { "SWScaler", sws_context_to_name
, NULL
};
215 char *sws_format_name(enum PixelFormat format
)
218 case PIX_FMT_YUV420P
:
220 case PIX_FMT_YUYV422
:
226 case PIX_FMT_YUV422P
:
228 case PIX_FMT_YUV444P
:
232 case PIX_FMT_YUV410P
:
234 case PIX_FMT_YUV411P
:
240 case PIX_FMT_GRAY16BE
:
242 case PIX_FMT_GRAY16LE
:
246 case PIX_FMT_MONOWHITE
:
248 case PIX_FMT_MONOBLACK
:
252 case PIX_FMT_YUVJ420P
:
254 case PIX_FMT_YUVJ422P
:
256 case PIX_FMT_YUVJ444P
:
258 case PIX_FMT_XVMC_MPEG2_MC
:
259 return "xvmc_mpeg2_mc";
260 case PIX_FMT_XVMC_MPEG2_IDCT
:
261 return "xvmc_mpeg2_idct";
262 case PIX_FMT_UYVY422
:
264 case PIX_FMT_UYYVYY411
:
266 case PIX_FMT_RGB32_1
:
268 case PIX_FMT_BGR32_1
:
280 case PIX_FMT_BGR4_BYTE
:
286 case PIX_FMT_RGB4_BYTE
:
293 return "Unknown format";
297 #if defined(ARCH_X86) && defined (CONFIG_GPL)
298 void in_asm_used_var_warning_killer()
300 volatile int i
= bF8
+bFC
+w10
+
301 bm00001111
+bm00000111
+bm11111000
+b16Mask
+g16Mask
+r16Mask
+b15Mask
+g15Mask
+r15Mask
+
302 M24A
+M24B
+M24C
+w02
+ b5Dither
+g5Dither
+r5Dither
+g6Dither
+dither4
[0]+dither8
[0]+bm01010101
;
307 static inline void yuv2yuvXinC(int16_t *lumFilter
, int16_t **lumSrc
, int lumFilterSize
,
308 int16_t *chrFilter
, int16_t **chrSrc
, int chrFilterSize
,
309 uint8_t *dest
, uint8_t *uDest
, uint8_t *vDest
, int dstW
, int chrDstW
)
311 //FIXME Optimize (just quickly writen not opti..)
313 for (i
=0; i
<dstW
; i
++)
317 for (j
=0; j
<lumFilterSize
; j
++)
318 val
+= lumSrc
[j
][i
] * lumFilter
[j
];
320 dest
[i
]= av_clip_uint8(val
>>19);
324 for (i
=0; i
<chrDstW
; i
++)
329 for (j
=0; j
<chrFilterSize
; j
++)
331 u
+= chrSrc
[j
][i
] * chrFilter
[j
];
332 v
+= chrSrc
[j
][i
+ 2048] * chrFilter
[j
];
335 uDest
[i
]= av_clip_uint8(u
>>19);
336 vDest
[i
]= av_clip_uint8(v
>>19);
340 static inline void yuv2nv12XinC(int16_t *lumFilter
, int16_t **lumSrc
, int lumFilterSize
,
341 int16_t *chrFilter
, int16_t **chrSrc
, int chrFilterSize
,
342 uint8_t *dest
, uint8_t *uDest
, int dstW
, int chrDstW
, int dstFormat
)
344 //FIXME Optimize (just quickly writen not opti..)
346 for (i
=0; i
<dstW
; i
++)
350 for (j
=0; j
<lumFilterSize
; j
++)
351 val
+= lumSrc
[j
][i
] * lumFilter
[j
];
353 dest
[i
]= av_clip_uint8(val
>>19);
359 if (dstFormat
== PIX_FMT_NV12
)
360 for (i
=0; i
<chrDstW
; i
++)
365 for (j
=0; j
<chrFilterSize
; j
++)
367 u
+= chrSrc
[j
][i
] * chrFilter
[j
];
368 v
+= chrSrc
[j
][i
+ 2048] * chrFilter
[j
];
371 uDest
[2*i
]= av_clip_uint8(u
>>19);
372 uDest
[2*i
+1]= av_clip_uint8(v
>>19);
375 for (i
=0; i
<chrDstW
; i
++)
380 for (j
=0; j
<chrFilterSize
; j
++)
382 u
+= chrSrc
[j
][i
] * chrFilter
[j
];
383 v
+= chrSrc
[j
][i
+ 2048] * chrFilter
[j
];
386 uDest
[2*i
]= av_clip_uint8(v
>>19);
387 uDest
[2*i
+1]= av_clip_uint8(u
>>19);
391 #define YSCALE_YUV_2_PACKEDX_C(type) \
392 for (i=0; i<(dstW>>1); i++){\
398 type attribute_unused *r, *b, *g;\
401 for (j=0; j<lumFilterSize; j++)\
403 Y1 += lumSrc[j][i2] * lumFilter[j];\
404 Y2 += lumSrc[j][i2+1] * lumFilter[j];\
406 for (j=0; j<chrFilterSize; j++)\
408 U += chrSrc[j][i] * chrFilter[j];\
409 V += chrSrc[j][i+2048] * chrFilter[j];\
415 if ((Y1|Y2|U|V)&256)\
417 if (Y1>255) Y1=255; \
418 else if (Y1<0)Y1=0; \
419 if (Y2>255) Y2=255; \
420 else if (Y2<0)Y2=0; \
427 #define YSCALE_YUV_2_RGBX_C(type) \
428 YSCALE_YUV_2_PACKEDX_C(type) \
429 r = (type *)c->table_rV[V]; \
430 g = (type *)(c->table_gU[U] + c->table_gV[V]); \
431 b = (type *)c->table_bU[U]; \
433 #define YSCALE_YUV_2_PACKED2_C \
434 for (i=0; i<(dstW>>1); i++){ \
436 int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19; \
437 int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19; \
438 int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19; \
439 int V= (uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19; \
441 #define YSCALE_YUV_2_RGB2_C(type) \
442 YSCALE_YUV_2_PACKED2_C\
444 r = (type *)c->table_rV[V];\
445 g = (type *)(c->table_gU[U] + c->table_gV[V]);\
446 b = (type *)c->table_bU[U];\
448 #define YSCALE_YUV_2_PACKED1_C \
449 for (i=0; i<(dstW>>1); i++){\
451 int Y1= buf0[i2 ]>>7;\
452 int Y2= buf0[i2+1]>>7;\
453 int U= (uvbuf1[i ])>>7;\
454 int V= (uvbuf1[i+2048])>>7;\
456 #define YSCALE_YUV_2_RGB1_C(type) \
457 YSCALE_YUV_2_PACKED1_C\
459 r = (type *)c->table_rV[V];\
460 g = (type *)(c->table_gU[U] + c->table_gV[V]);\
461 b = (type *)c->table_bU[U];\
463 #define YSCALE_YUV_2_PACKED1B_C \
464 for (i=0; i<(dstW>>1); i++){\
466 int Y1= buf0[i2 ]>>7;\
467 int Y2= buf0[i2+1]>>7;\
468 int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\
469 int V= (uvbuf0[i+2048] + uvbuf1[i+2048])>>8;\
471 #define YSCALE_YUV_2_RGB1B_C(type) \
472 YSCALE_YUV_2_PACKED1B_C\
474 r = (type *)c->table_rV[V];\
475 g = (type *)(c->table_gU[U] + c->table_gV[V]);\
476 b = (type *)c->table_bU[U];\
478 #define YSCALE_YUV_2_ANYRGB_C(func, func2)\
479 switch(c->dstFormat)\
484 ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
485 ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
490 ((uint8_t*)dest)[0]= r[Y1];\
491 ((uint8_t*)dest)[1]= g[Y1];\
492 ((uint8_t*)dest)[2]= b[Y1];\
493 ((uint8_t*)dest)[3]= r[Y2];\
494 ((uint8_t*)dest)[4]= g[Y2];\
495 ((uint8_t*)dest)[5]= b[Y2];\
501 ((uint8_t*)dest)[0]= b[Y1];\
502 ((uint8_t*)dest)[1]= g[Y1];\
503 ((uint8_t*)dest)[2]= r[Y1];\
504 ((uint8_t*)dest)[3]= b[Y2];\
505 ((uint8_t*)dest)[4]= g[Y2];\
506 ((uint8_t*)dest)[5]= r[Y2];\
510 case PIX_FMT_RGB565:\
511 case PIX_FMT_BGR565:\
513 const int dr1= dither_2x2_8[y&1 ][0];\
514 const int dg1= dither_2x2_4[y&1 ][0];\
515 const int db1= dither_2x2_8[(y&1)^1][0];\
516 const int dr2= dither_2x2_8[y&1 ][1];\
517 const int dg2= dither_2x2_4[y&1 ][1];\
518 const int db2= dither_2x2_8[(y&1)^1][1];\
520 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
521 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
525 case PIX_FMT_RGB555:\
526 case PIX_FMT_BGR555:\
528 const int dr1= dither_2x2_8[y&1 ][0];\
529 const int dg1= dither_2x2_8[y&1 ][1];\
530 const int db1= dither_2x2_8[(y&1)^1][0];\
531 const int dr2= dither_2x2_8[y&1 ][1];\
532 const int dg2= dither_2x2_8[y&1 ][0];\
533 const int db2= dither_2x2_8[(y&1)^1][1];\
535 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
536 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
543 const uint8_t * const d64= dither_8x8_73[y&7];\
544 const uint8_t * const d32= dither_8x8_32[y&7];\
546 ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
547 ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
554 const uint8_t * const d64= dither_8x8_73 [y&7];\
555 const uint8_t * const d128=dither_8x8_220[y&7];\
557 ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
558 + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
562 case PIX_FMT_RGB4_BYTE:\
563 case PIX_FMT_BGR4_BYTE:\
565 const uint8_t * const d64= dither_8x8_73 [y&7];\
566 const uint8_t * const d128=dither_8x8_220[y&7];\
568 ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
569 ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
573 case PIX_FMT_MONOBLACK:\
575 const uint8_t * const d128=dither_8x8_220[y&7];\
576 uint8_t *g= c->table_gU[128] + c->table_gV[128];\
577 for (i=0; i<dstW-7; i+=8){\
579 acc = g[((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19) + d128[0]];\
580 acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
581 acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
582 acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
583 acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
584 acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
585 acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
586 acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
587 ((uint8_t*)dest)[0]= acc;\
592 ((uint8_t*)dest)-= dstW>>4;\
596 static int top[1024];\
597 static int last_new[1024][1024];\
598 static int last_in3[1024][1024];\
599 static int drift[1024][1024];\
603 const uint8_t * const d128=dither_8x8_220[y&7];\
608 for (i=dstW>>1; i<dstW; i++){\
609 int in= ((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19);\
610 int in2 = (76309 * (in - 16) + 32768) >> 16;\
611 int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
612 int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
613 + (last_new[y][i] - in3)*f/256;\
614 int new= old> 128 ? 255 : 0;\
616 error_new+= FFABS(last_new[y][i] - new);\
617 error_in3+= FFABS(last_in3[y][i] - in3);\
618 f= error_new - error_in3*4;\
623 left= top[i]= old - new;\
624 last_new[y][i]= new;\
625 last_in3[y][i]= in3;\
627 acc+= acc + (new&1);\
629 ((uint8_t*)dest)[0]= acc;\
637 case PIX_FMT_YUYV422:\
639 ((uint8_t*)dest)[2*i2+0]= Y1;\
640 ((uint8_t*)dest)[2*i2+1]= U;\
641 ((uint8_t*)dest)[2*i2+2]= Y2;\
642 ((uint8_t*)dest)[2*i2+3]= V;\
645 case PIX_FMT_UYVY422:\
647 ((uint8_t*)dest)[2*i2+0]= U;\
648 ((uint8_t*)dest)[2*i2+1]= Y1;\
649 ((uint8_t*)dest)[2*i2+2]= V;\
650 ((uint8_t*)dest)[2*i2+3]= Y2;\
656 static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
657 int16_t *chrFilter
, int16_t **chrSrc
, int chrFilterSize
,
658 uint8_t *dest
, int dstW
, int y
)
665 YSCALE_YUV_2_RGBX_C(uint32_t)
666 ((uint32_t*)dest
)[i2
+0]= r
[Y1
] + g
[Y1
] + b
[Y1
];
667 ((uint32_t*)dest
)[i2
+1]= r
[Y2
] + g
[Y2
] + b
[Y2
];
671 YSCALE_YUV_2_RGBX_C(uint8_t)
672 ((uint8_t*)dest
)[0]= r
[Y1
];
673 ((uint8_t*)dest
)[1]= g
[Y1
];
674 ((uint8_t*)dest
)[2]= b
[Y1
];
675 ((uint8_t*)dest
)[3]= r
[Y2
];
676 ((uint8_t*)dest
)[4]= g
[Y2
];
677 ((uint8_t*)dest
)[5]= b
[Y2
];
682 YSCALE_YUV_2_RGBX_C(uint8_t)
683 ((uint8_t*)dest
)[0]= b
[Y1
];
684 ((uint8_t*)dest
)[1]= g
[Y1
];
685 ((uint8_t*)dest
)[2]= r
[Y1
];
686 ((uint8_t*)dest
)[3]= b
[Y2
];
687 ((uint8_t*)dest
)[4]= g
[Y2
];
688 ((uint8_t*)dest
)[5]= r
[Y2
];
695 const int dr1
= dither_2x2_8
[y
&1 ][0];
696 const int dg1
= dither_2x2_4
[y
&1 ][0];
697 const int db1
= dither_2x2_8
[(y
&1)^1][0];
698 const int dr2
= dither_2x2_8
[y
&1 ][1];
699 const int dg2
= dither_2x2_4
[y
&1 ][1];
700 const int db2
= dither_2x2_8
[(y
&1)^1][1];
701 YSCALE_YUV_2_RGBX_C(uint16_t)
702 ((uint16_t*)dest
)[i2
+0]= r
[Y1
+dr1
] + g
[Y1
+dg1
] + b
[Y1
+db1
];
703 ((uint16_t*)dest
)[i2
+1]= r
[Y2
+dr2
] + g
[Y2
+dg2
] + b
[Y2
+db2
];
710 const int dr1
= dither_2x2_8
[y
&1 ][0];
711 const int dg1
= dither_2x2_8
[y
&1 ][1];
712 const int db1
= dither_2x2_8
[(y
&1)^1][0];
713 const int dr2
= dither_2x2_8
[y
&1 ][1];
714 const int dg2
= dither_2x2_8
[y
&1 ][0];
715 const int db2
= dither_2x2_8
[(y
&1)^1][1];
716 YSCALE_YUV_2_RGBX_C(uint16_t)
717 ((uint16_t*)dest
)[i2
+0]= r
[Y1
+dr1
] + g
[Y1
+dg1
] + b
[Y1
+db1
];
718 ((uint16_t*)dest
)[i2
+1]= r
[Y2
+dr2
] + g
[Y2
+dg2
] + b
[Y2
+db2
];
725 const uint8_t * const d64
= dither_8x8_73
[y
&7];
726 const uint8_t * const d32
= dither_8x8_32
[y
&7];
727 YSCALE_YUV_2_RGBX_C(uint8_t)
728 ((uint8_t*)dest
)[i2
+0]= r
[Y1
+d32
[(i2
+0)&7]] + g
[Y1
+d32
[(i2
+0)&7]] + b
[Y1
+d64
[(i2
+0)&7]];
729 ((uint8_t*)dest
)[i2
+1]= r
[Y2
+d32
[(i2
+1)&7]] + g
[Y2
+d32
[(i2
+1)&7]] + b
[Y2
+d64
[(i2
+1)&7]];
736 const uint8_t * const d64
= dither_8x8_73
[y
&7];
737 const uint8_t * const d128
=dither_8x8_220
[y
&7];
738 YSCALE_YUV_2_RGBX_C(uint8_t)
739 ((uint8_t*)dest
)[i
]= r
[Y1
+d128
[(i2
+0)&7]] + g
[Y1
+d64
[(i2
+0)&7]] + b
[Y1
+d128
[(i2
+0)&7]]
740 +((r
[Y2
+d128
[(i2
+1)&7]] + g
[Y2
+d64
[(i2
+1)&7]] + b
[Y2
+d128
[(i2
+1)&7]])<<4);
744 case PIX_FMT_RGB4_BYTE
:
745 case PIX_FMT_BGR4_BYTE
:
747 const uint8_t * const d64
= dither_8x8_73
[y
&7];
748 const uint8_t * const d128
=dither_8x8_220
[y
&7];
749 YSCALE_YUV_2_RGBX_C(uint8_t)
750 ((uint8_t*)dest
)[i2
+0]= r
[Y1
+d128
[(i2
+0)&7]] + g
[Y1
+d64
[(i2
+0)&7]] + b
[Y1
+d128
[(i2
+0)&7]];
751 ((uint8_t*)dest
)[i2
+1]= r
[Y2
+d128
[(i2
+1)&7]] + g
[Y2
+d64
[(i2
+1)&7]] + b
[Y2
+d128
[(i2
+1)&7]];
755 case PIX_FMT_MONOBLACK
:
757 const uint8_t * const d128
=dither_8x8_220
[y
&7];
758 uint8_t *g
= c
->table_gU
[128] + c
->table_gV
[128];
760 for (i
=0; i
<dstW
-1; i
+=2){
765 for (j
=0; j
<lumFilterSize
; j
++)
767 Y1
+= lumSrc
[j
][i
] * lumFilter
[j
];
768 Y2
+= lumSrc
[j
][i
+1] * lumFilter
[j
];
779 acc
+= acc
+ g
[Y1
+d128
[(i
+0)&7]];
780 acc
+= acc
+ g
[Y2
+d128
[(i
+1)&7]];
782 ((uint8_t*)dest
)[0]= acc
;
788 case PIX_FMT_YUYV422
:
789 YSCALE_YUV_2_PACKEDX_C(void)
790 ((uint8_t*)dest
)[2*i2
+0]= Y1
;
791 ((uint8_t*)dest
)[2*i2
+1]= U
;
792 ((uint8_t*)dest
)[2*i2
+2]= Y2
;
793 ((uint8_t*)dest
)[2*i2
+3]= V
;
796 case PIX_FMT_UYVY422
:
797 YSCALE_YUV_2_PACKEDX_C(void)
798 ((uint8_t*)dest
)[2*i2
+0]= U
;
799 ((uint8_t*)dest
)[2*i2
+1]= Y1
;
800 ((uint8_t*)dest
)[2*i2
+2]= V
;
801 ((uint8_t*)dest
)[2*i2
+3]= Y2
;
808 //Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
810 #if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT) || !defined(CONFIG_GPL)
815 #if (defined (HAVE_ALTIVEC) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
816 #define COMPILE_ALTIVEC
817 #endif //HAVE_ALTIVEC
818 #endif //ARCH_POWERPC
820 #if defined(ARCH_X86)
822 #if ((defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
826 #if (defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
830 #if ((defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
831 #define COMPILE_3DNOW
833 #endif //ARCH_X86 || ARCH_X86_64
844 #define RENAME(a) a ## _C
845 #include "swscale_template.c"
849 #ifdef COMPILE_ALTIVEC
852 #define RENAME(a) a ## _altivec
853 #include "swscale_template.c"
855 #endif //ARCH_POWERPC
857 #if defined(ARCH_X86)
866 #define RENAME(a) a ## _X86
867 #include "swscale_template.c"
875 #define RENAME(a) a ## _MMX
876 #include "swscale_template.c"
885 #define RENAME(a) a ## _MMX2
886 #include "swscale_template.c"
895 #define RENAME(a) a ## _3DNow
896 #include "swscale_template.c"
899 #endif //ARCH_X86 || ARCH_X86_64
901 // minor note: the HAVE_xyz is messed up after that line so don't use it
903 static double getSplineCoeff(double a
, double b
, double c
, double d
, double dist
)
905 // printf("%f %f %f %f %f\n", a,b,c,d,dist);
906 if (dist
<=1.0) return ((d
*dist
+ c
)*dist
+ b
)*dist
+a
;
907 else return getSplineCoeff( 0.0,
914 static inline int initFilter(int16_t **outFilter
, int16_t **filterPos
, int *outFilterSize
, int xInc
,
915 int srcW
, int dstW
, int filterAlign
, int one
, int flags
,
916 SwsVector
*srcFilter
, SwsVector
*dstFilter
, double param
[2])
923 double *filter2
=NULL
;
924 #if defined(ARCH_X86)
925 if (flags
& SWS_CPU_CAPS_MMX
)
926 asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions)
929 // Note the +1 is for the MMXscaler which reads over the end
930 *filterPos
= av_malloc((dstW
+1)*sizeof(int16_t));
932 if (FFABS(xInc
- 0x10000) <10) // unscaled
936 filter
= av_malloc(dstW
*sizeof(double)*filterSize
);
937 for (i
=0; i
<dstW
*filterSize
; i
++) filter
[i
]=0;
939 for (i
=0; i
<dstW
; i
++)
941 filter
[i
*filterSize
]=1;
946 else if (flags
&SWS_POINT
) // lame looking point sampling mode
951 filter
= av_malloc(dstW
*sizeof(double)*filterSize
);
953 xDstInSrc
= xInc
/2 - 0x8000;
954 for (i
=0; i
<dstW
; i
++)
956 int xx
= (xDstInSrc
- ((filterSize
-1)<<15) + (1<<15))>>16;
963 else if ((xInc
<= (1<<16) && (flags
&SWS_AREA
)) || (flags
&SWS_FAST_BILINEAR
)) // bilinear upscale
967 if (flags
&SWS_BICUBIC
) filterSize
= 4;
968 else if (flags
&SWS_X
) filterSize
= 4;
969 else filterSize
= 2; // SWS_BILINEAR / SWS_AREA
970 filter
= av_malloc(dstW
*sizeof(double)*filterSize
);
972 xDstInSrc
= xInc
/2 - 0x8000;
973 for (i
=0; i
<dstW
; i
++)
975 int xx
= (xDstInSrc
- ((filterSize
-1)<<15) + (1<<15))>>16;
979 //Bilinear upscale / linear interpolate / Area averaging
980 for (j
=0; j
<filterSize
; j
++)
982 double d
= FFABS((xx
<<16) - xDstInSrc
)/(double)(1<<16);
983 double coeff
= 1.0 - d
;
984 if (coeff
<0) coeff
=0;
985 filter
[i
*filterSize
+ j
]= coeff
;
994 double sizeFactor
, filterSizeInSrc
;
995 const double xInc1
= (double)xInc
/ (double)(1<<16);
997 if (flags
&SWS_BICUBIC
) sizeFactor
= 4.0;
998 else if (flags
&SWS_X
) sizeFactor
= 8.0;
999 else if (flags
&SWS_AREA
) sizeFactor
= 1.0; //downscale only, for upscale it is bilinear
1000 else if (flags
&SWS_GAUSS
) sizeFactor
= 8.0; // infinite ;)
1001 else if (flags
&SWS_LANCZOS
) sizeFactor
= param
[0] != SWS_PARAM_DEFAULT ?
2.0*param
[0] : 6.0;
1002 else if (flags
&SWS_SINC
) sizeFactor
= 20.0; // infinite ;)
1003 else if (flags
&SWS_SPLINE
) sizeFactor
= 20.0; // infinite ;)
1004 else if (flags
&SWS_BILINEAR
) sizeFactor
= 2.0;
1006 sizeFactor
= 0.0; //GCC warning killer
1010 if (xInc1
<= 1.0) filterSizeInSrc
= sizeFactor
; // upscale
1011 else filterSizeInSrc
= sizeFactor
*srcW
/ (double)dstW
;
1013 filterSize
= (int)ceil(1 + filterSizeInSrc
); // will be reduced later if possible
1014 if (filterSize
> srcW
-2) filterSize
=srcW
-2;
1016 filter
= av_malloc(dstW
*sizeof(double)*filterSize
);
1018 xDstInSrc
= xInc1
/ 2.0 - 0.5;
1019 for (i
=0; i
<dstW
; i
++)
1021 int xx
= (int)(xDstInSrc
- (filterSize
-1)*0.5 + 0.5);
1023 (*filterPos
)[i
]= xx
;
1024 for (j
=0; j
<filterSize
; j
++)
1026 double d
= FFABS(xx
- xDstInSrc
)/filterSizeInSrc
*sizeFactor
;
1028 if (flags
& SWS_BICUBIC
)
1030 double B
= param
[0] != SWS_PARAM_DEFAULT ? param
[0] : 0.0;
1031 double C
= param
[1] != SWS_PARAM_DEFAULT ? param
[1] : 0.6;
1034 coeff
= (12-9*B
-6*C
)*d
*d
*d
+ (-18+12*B
+6*C
)*d
*d
+ 6-2*B
;
1036 coeff
= (-B
-6*C
)*d
*d
*d
+ (6*B
+30*C
)*d
*d
+ (-12*B
-48*C
)*d
+8*B
+24*C
;
1040 /* else if (flags & SWS_X)
1042 double p= param ? param*0.01 : 0.3;
1043 coeff = d ? sin(d*PI)/(d*PI) : 1.0;
1044 coeff*= pow(2.0, - p*d*d);
1046 else if (flags
& SWS_X
)
1048 double A
= param
[0] != SWS_PARAM_DEFAULT ? param
[0] : 1.0;
1054 if (coeff
<0.0) coeff
= -pow(-coeff
, A
);
1055 else coeff
= pow( coeff
, A
);
1056 coeff
= coeff
*0.5 + 0.5;
1058 else if (flags
& SWS_AREA
)
1060 double srcPixelSize
= 1.0/xInc1
;
1061 if (d
+ srcPixelSize
/2 < 0.5) coeff
= 1.0;
1062 else if (d
- srcPixelSize
/2 < 0.5) coeff
= (0.5-d
)/srcPixelSize
+ 0.5;
1065 else if (flags
& SWS_GAUSS
)
1067 double p
= param
[0] != SWS_PARAM_DEFAULT ? param
[0] : 3.0;
1068 coeff
= pow(2.0, - p
*d
*d
);
1070 else if (flags
& SWS_SINC
)
1072 coeff
= d ?
sin(d
*PI
)/(d
*PI
) : 1.0;
1074 else if (flags
& SWS_LANCZOS
)
1076 double p
= param
[0] != SWS_PARAM_DEFAULT ? param
[0] : 3.0;
1077 coeff
= d ?
sin(d
*PI
)*sin(d
*PI
/p
)/(d
*d
*PI
*PI
/p
) : 1.0;
1080 else if (flags
& SWS_BILINEAR
)
1083 if (coeff
<0) coeff
=0;
1085 else if (flags
& SWS_SPLINE
)
1087 double p
=-2.196152422706632;
1088 coeff
= getSplineCoeff(1.0, 0.0, p
, -p
-1.0, d
);
1091 coeff
= 0.0; //GCC warning killer
1095 filter
[i
*filterSize
+ j
]= coeff
;
1102 /* apply src & dst Filter to filter -> filter2
1105 ASSERT(filterSize
>0)
1106 filter2Size
= filterSize
;
1107 if (srcFilter
) filter2Size
+= srcFilter
->length
- 1;
1108 if (dstFilter
) filter2Size
+= dstFilter
->length
- 1;
1109 ASSERT(filter2Size
>0)
1110 filter2
= av_malloc(filter2Size
*dstW
*sizeof(double));
1112 for (i
=0; i
<dstW
; i
++)
1115 SwsVector scaleFilter
;
1118 scaleFilter
.coeff
= filter
+ i
*filterSize
;
1119 scaleFilter
.length
= filterSize
;
1121 if (srcFilter
) outVec
= sws_getConvVec(srcFilter
, &scaleFilter
);
1122 else outVec
= &scaleFilter
;
1124 ASSERT(outVec
->length
== filter2Size
)
1127 for (j
=0; j
<outVec
->length
; j
++)
1129 filter2
[i
*filter2Size
+ j
]= outVec
->coeff
[j
];
1132 (*filterPos
)[i
]+= (filterSize
-1)/2 - (filter2Size
-1)/2;
1134 if (outVec
!= &scaleFilter
) sws_freeVec(outVec
);
1136 av_free(filter
); filter
=NULL
;
1138 /* try to reduce the filter-size (step1 find size and shift left) */
1139 // Assume its near normalized (*0.5 or *2.0 is ok but * 0.001 is not)
1141 for (i
=dstW
-1; i
>=0; i
--)
1143 int min
= filter2Size
;
1147 /* get rid off near zero elements on the left by shifting left */
1148 for (j
=0; j
<filter2Size
; j
++)
1151 cutOff
+= FFABS(filter2
[i
*filter2Size
]);
1153 if (cutOff
> SWS_MAX_REDUCE_CUTOFF
) break;
1155 /* preserve Monotonicity because the core can't handle the filter otherwise */
1156 if (i
<dstW
-1 && (*filterPos
)[i
] >= (*filterPos
)[i
+1]) break;
1158 // Move filter coeffs left
1159 for (k
=1; k
<filter2Size
; k
++)
1160 filter2
[i
*filter2Size
+ k
- 1]= filter2
[i
*filter2Size
+ k
];
1161 filter2
[i
*filter2Size
+ k
- 1]= 0.0;
1166 /* count near zeros on the right */
1167 for (j
=filter2Size
-1; j
>0; j
--)
1169 cutOff
+= FFABS(filter2
[i
*filter2Size
+ j
]);
1171 if (cutOff
> SWS_MAX_REDUCE_CUTOFF
) break;
1175 if (min
>minFilterSize
) minFilterSize
= min
;
1178 if (flags
& SWS_CPU_CAPS_ALTIVEC
) {
1179 // we can handle the special case 4,
1180 // so we don't want to go to the full 8
1181 if (minFilterSize
< 5)
1184 // we really don't want to waste our time
1185 // doing useless computation, so fall-back on
1186 // the scalar C code for very small filter.
1187 // vectorizing is worth it only if you have
1188 // decent-sized vector.
1189 if (minFilterSize
< 3)
1193 if (flags
& SWS_CPU_CAPS_MMX
) {
1194 // special case for unscaled vertical filtering
1195 if (minFilterSize
== 1 && filterAlign
== 2)
1199 ASSERT(minFilterSize
> 0)
1200 filterSize
= (minFilterSize
+(filterAlign
-1)) & (~(filterAlign
-1));
1201 ASSERT(filterSize
> 0)
1202 filter
= av_malloc(filterSize
*dstW
*sizeof(double));
1203 if (filterSize
>= MAX_FILTER_SIZE
)
1205 *outFilterSize
= filterSize
;
1207 if (flags
&SWS_PRINT_INFO
)
1208 av_log(NULL
, AV_LOG_VERBOSE
, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size
, filterSize
);
1209 /* try to reduce the filter-size (step2 reduce it) */
1210 for (i
=0; i
<dstW
; i
++)
1214 for (j
=0; j
<filterSize
; j
++)
1216 if (j
>=filter2Size
) filter
[i
*filterSize
+ j
]= 0.0;
1217 else filter
[i
*filterSize
+ j
]= filter2
[i
*filter2Size
+ j
];
1220 av_free(filter2
); filter2
=NULL
;
1223 //FIXME try to align filterpos if possible
1226 for (i
=0; i
<dstW
; i
++)
1229 if ((*filterPos
)[i
] < 0)
1231 // Move filter coeffs left to compensate for filterPos
1232 for (j
=1; j
<filterSize
; j
++)
1234 int left
= FFMAX(j
+ (*filterPos
)[i
], 0);
1235 filter
[i
*filterSize
+ left
] += filter
[i
*filterSize
+ j
];
1236 filter
[i
*filterSize
+ j
]=0;
1241 if ((*filterPos
)[i
] + filterSize
> srcW
)
1243 int shift
= (*filterPos
)[i
] + filterSize
- srcW
;
1244 // Move filter coeffs right to compensate for filterPos
1245 for (j
=filterSize
-2; j
>=0; j
--)
1247 int right
= FFMIN(j
+ shift
, filterSize
-1);
1248 filter
[i
*filterSize
+right
] += filter
[i
*filterSize
+j
];
1249 filter
[i
*filterSize
+j
]=0;
1251 (*filterPos
)[i
]= srcW
- filterSize
;
1255 // Note the +1 is for the MMXscaler which reads over the end
1256 /* align at 16 for AltiVec (needed by hScale_altivec_real) */
1257 *outFilter
= av_mallocz(*outFilterSize
*(dstW
+1)*sizeof(int16_t));
1259 /* Normalize & Store in outFilter */
1260 for (i
=0; i
<dstW
; i
++)
1267 for (j
=0; j
<filterSize
; j
++)
1269 sum
+= filter
[i
*filterSize
+ j
];
1272 for (j
=0; j
<*outFilterSize
; j
++)
1274 double v
= filter
[i
*filterSize
+ j
]*scale
+ error
;
1275 int intV
= floor(v
+ 0.5);
1276 (*outFilter
)[i
*(*outFilterSize
) + j
]= intV
;
1281 (*filterPos
)[dstW
]= (*filterPos
)[dstW
-1]; // the MMX scaler will read over the end
1282 for (i
=0; i
<*outFilterSize
; i
++)
1284 int j
= dstW
*(*outFilterSize
);
1285 (*outFilter
)[j
+ i
]= (*outFilter
)[j
+ i
- (*outFilterSize
)];
1293 static void initMMX2HScaler(int dstW
, int xInc
, uint8_t *funnyCode
, int16_t *filter
, int32_t *filterPos
, int numSplits
)
1296 long imm8OfPShufW1A
;
1297 long imm8OfPShufW2A
;
1298 long fragmentLengthA
;
1300 long imm8OfPShufW1B
;
1301 long imm8OfPShufW2B
;
1302 long fragmentLengthB
;
1307 // create an optimized horizontal scaling routine
1315 "movq (%%"REG_d
", %%"REG_a
"), %%mm3 \n\t"
1316 "movd (%%"REG_c
", %%"REG_S
"), %%mm0 \n\t"
1317 "movd 1(%%"REG_c
", %%"REG_S
"), %%mm1 \n\t"
1318 "punpcklbw %%mm7, %%mm1 \n\t"
1319 "punpcklbw %%mm7, %%mm0 \n\t"
1320 "pshufw $0xFF, %%mm1, %%mm1 \n\t"
1322 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
1324 "psubw %%mm1, %%mm0 \n\t"
1325 "movl 8(%%"REG_b
", %%"REG_a
"), %%esi \n\t"
1326 "pmullw %%mm3, %%mm0 \n\t"
1327 "psllw $7, %%mm1 \n\t"
1328 "paddw %%mm1, %%mm0 \n\t"
1330 "movq %%mm0, (%%"REG_D
", %%"REG_a
") \n\t"
1332 "add $8, %%"REG_a
" \n\t"
1347 :"=r" (fragmentA
), "=r" (imm8OfPShufW1A
), "=r" (imm8OfPShufW2A
),
1348 "=r" (fragmentLengthA
)
1355 "movq (%%"REG_d
", %%"REG_a
"), %%mm3 \n\t"
1356 "movd (%%"REG_c
", %%"REG_S
"), %%mm0 \n\t"
1357 "punpcklbw %%mm7, %%mm0 \n\t"
1358 "pshufw $0xFF, %%mm0, %%mm1 \n\t"
1360 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
1362 "psubw %%mm1, %%mm0 \n\t"
1363 "movl 8(%%"REG_b
", %%"REG_a
"), %%esi \n\t"
1364 "pmullw %%mm3, %%mm0 \n\t"
1365 "psllw $7, %%mm1 \n\t"
1366 "paddw %%mm1, %%mm0 \n\t"
1368 "movq %%mm0, (%%"REG_D
", %%"REG_a
") \n\t"
1370 "add $8, %%"REG_a
" \n\t"
1385 :"=r" (fragmentB
), "=r" (imm8OfPShufW1B
), "=r" (imm8OfPShufW2B
),
1386 "=r" (fragmentLengthB
)
1389 xpos
= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
1392 for (i
=0; i
<dstW
/numSplits
; i
++)
1399 int b
=((xpos
+xInc
)>>16) - xx
;
1400 int c
=((xpos
+xInc
*2)>>16) - xx
;
1401 int d
=((xpos
+xInc
*3)>>16) - xx
;
1403 filter
[i
] = (( xpos
& 0xFFFF) ^ 0xFFFF)>>9;
1404 filter
[i
+1] = (((xpos
+xInc
) & 0xFFFF) ^ 0xFFFF)>>9;
1405 filter
[i
+2] = (((xpos
+xInc
*2) & 0xFFFF) ^ 0xFFFF)>>9;
1406 filter
[i
+3] = (((xpos
+xInc
*3) & 0xFFFF) ^ 0xFFFF)>>9;
1411 int maxShift
= 3-(d
+1);
1414 memcpy(funnyCode
+ fragmentPos
, fragmentB
, fragmentLengthB
);
1416 funnyCode
[fragmentPos
+ imm8OfPShufW1B
]=
1417 (a
+1) | ((b
+1)<<2) | ((c
+1)<<4) | ((d
+1)<<6);
1418 funnyCode
[fragmentPos
+ imm8OfPShufW2B
]=
1419 a
| (b
<<2) | (c
<<4) | (d
<<6);
1421 if (i
+3>=dstW
) shift
=maxShift
; //avoid overread
1422 else if ((filterPos
[i
/2]&3) <= maxShift
) shift
=filterPos
[i
/2]&3; //Align
1424 if (shift
&& i
>=shift
)
1426 funnyCode
[fragmentPos
+ imm8OfPShufW1B
]+= 0x55*shift
;
1427 funnyCode
[fragmentPos
+ imm8OfPShufW2B
]+= 0x55*shift
;
1428 filterPos
[i
/2]-=shift
;
1431 fragmentPos
+= fragmentLengthB
;
1438 memcpy(funnyCode
+ fragmentPos
, fragmentA
, fragmentLengthA
);
1440 funnyCode
[fragmentPos
+ imm8OfPShufW1A
]=
1441 funnyCode
[fragmentPos
+ imm8OfPShufW2A
]=
1442 a
| (b
<<2) | (c
<<4) | (d
<<6);
1444 if (i
+4>=dstW
) shift
=maxShift
; //avoid overread
1445 else if ((filterPos
[i
/2]&3) <= maxShift
) shift
=filterPos
[i
/2]&3; //partial align
1447 if (shift
&& i
>=shift
)
1449 funnyCode
[fragmentPos
+ imm8OfPShufW1A
]+= 0x55*shift
;
1450 funnyCode
[fragmentPos
+ imm8OfPShufW2A
]+= 0x55*shift
;
1451 filterPos
[i
/2]-=shift
;
1454 fragmentPos
+= fragmentLengthA
;
1457 funnyCode
[fragmentPos
]= RET
;
1461 filterPos
[i
/2]= xpos
>>16; // needed to jump to the next part
1463 #endif /* COMPILE_MMX2 */
1465 static void globalInit(void){
1466 // generating tables:
1468 for (i
=0; i
<768; i
++){
1469 int c
= av_clip_uint8(i
-256);
1474 static SwsFunc
getSwsFunc(int flags
){
1476 #if defined(RUNTIME_CPUDETECT) && defined (CONFIG_GPL)
1477 #if defined(ARCH_X86)
1478 // ordered per speed fasterst first
1479 if (flags
& SWS_CPU_CAPS_MMX2
)
1480 return swScale_MMX2
;
1481 else if (flags
& SWS_CPU_CAPS_3DNOW
)
1482 return swScale_3DNow
;
1483 else if (flags
& SWS_CPU_CAPS_MMX
)
1490 if (flags
& SWS_CPU_CAPS_ALTIVEC
)
1491 return swScale_altivec
;
1496 #endif /* defined(ARCH_X86) */
1497 #else //RUNTIME_CPUDETECT
1499 return swScale_MMX2
;
1500 #elif defined (HAVE_3DNOW)
1501 return swScale_3DNow
;
1502 #elif defined (HAVE_MMX)
1504 #elif defined (HAVE_ALTIVEC)
1505 return swScale_altivec
;
1509 #endif //!RUNTIME_CPUDETECT
1512 static int PlanarToNV12Wrapper(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1513 int srcSliceH
, uint8_t* dstParam
[], int dstStride
[]){
1514 uint8_t *dst
=dstParam
[0] + dstStride
[0]*srcSliceY
;
1516 if (dstStride
[0]==srcStride
[0] && srcStride
[0] > 0)
1517 memcpy(dst
, src
[0], srcSliceH
*dstStride
[0]);
1521 uint8_t *srcPtr
= src
[0];
1522 uint8_t *dstPtr
= dst
;
1523 for (i
=0; i
<srcSliceH
; i
++)
1525 memcpy(dstPtr
, srcPtr
, c
->srcW
);
1526 srcPtr
+= srcStride
[0];
1527 dstPtr
+= dstStride
[0];
1530 dst
= dstParam
[1] + dstStride
[1]*srcSliceY
/2;
1531 if (c
->dstFormat
== PIX_FMT_NV12
)
1532 interleaveBytes( src
[1],src
[2],dst
,c
->srcW
/2,srcSliceH
/2,srcStride
[1],srcStride
[2],dstStride
[0] );
1534 interleaveBytes( src
[2],src
[1],dst
,c
->srcW
/2,srcSliceH
/2,srcStride
[2],srcStride
[1],dstStride
[0] );
1539 static int PlanarToYuy2Wrapper(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1540 int srcSliceH
, uint8_t* dstParam
[], int dstStride
[]){
1541 uint8_t *dst
=dstParam
[0] + dstStride
[0]*srcSliceY
;
1543 yv12toyuy2( src
[0],src
[1],src
[2],dst
,c
->srcW
,srcSliceH
,srcStride
[0],srcStride
[1],dstStride
[0] );
1548 static int PlanarToUyvyWrapper(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1549 int srcSliceH
, uint8_t* dstParam
[], int dstStride
[]){
1550 uint8_t *dst
=dstParam
[0] + dstStride
[0]*srcSliceY
;
1552 yv12touyvy( src
[0],src
[1],src
[2],dst
,c
->srcW
,srcSliceH
,srcStride
[0],srcStride
[1],dstStride
[0] );
1557 /* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
1558 static int rgb2rgbWrapper(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1559 int srcSliceH
, uint8_t* dst
[], int dstStride
[]){
1560 const int srcFormat
= c
->srcFormat
;
1561 const int dstFormat
= c
->dstFormat
;
1562 const int srcBpp
= (fmt_depth(srcFormat
) + 7) >> 3;
1563 const int dstBpp
= (fmt_depth(dstFormat
) + 7) >> 3;
1564 const int srcId
= fmt_depth(srcFormat
) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
1565 const int dstId
= fmt_depth(dstFormat
) >> 2;
1566 void (*conv
)(const uint8_t *src
, uint8_t *dst
, long src_size
)=NULL
;
1569 if ( (isBGR(srcFormat
) && isBGR(dstFormat
))
1570 || (isRGB(srcFormat
) && isRGB(dstFormat
))){
1571 switch(srcId
| (dstId
<<4)){
1572 case 0x34: conv
= rgb16to15
; break;
1573 case 0x36: conv
= rgb24to15
; break;
1574 case 0x38: conv
= rgb32to15
; break;
1575 case 0x43: conv
= rgb15to16
; break;
1576 case 0x46: conv
= rgb24to16
; break;
1577 case 0x48: conv
= rgb32to16
; break;
1578 case 0x63: conv
= rgb15to24
; break;
1579 case 0x64: conv
= rgb16to24
; break;
1580 case 0x68: conv
= rgb32to24
; break;
1581 case 0x83: conv
= rgb15to32
; break;
1582 case 0x84: conv
= rgb16to32
; break;
1583 case 0x86: conv
= rgb24to32
; break;
1584 default: av_log(c
, AV_LOG_ERROR
, "swScaler: internal error %s -> %s converter\n",
1585 sws_format_name(srcFormat
), sws_format_name(dstFormat
)); break;
1587 }else if ( (isBGR(srcFormat
) && isRGB(dstFormat
))
1588 || (isRGB(srcFormat
) && isBGR(dstFormat
))){
1589 switch(srcId
| (dstId
<<4)){
1590 case 0x33: conv
= rgb15tobgr15
; break;
1591 case 0x34: conv
= rgb16tobgr15
; break;
1592 case 0x36: conv
= rgb24tobgr15
; break;
1593 case 0x38: conv
= rgb32tobgr15
; break;
1594 case 0x43: conv
= rgb15tobgr16
; break;
1595 case 0x44: conv
= rgb16tobgr16
; break;
1596 case 0x46: conv
= rgb24tobgr16
; break;
1597 case 0x48: conv
= rgb32tobgr16
; break;
1598 case 0x63: conv
= rgb15tobgr24
; break;
1599 case 0x64: conv
= rgb16tobgr24
; break;
1600 case 0x66: conv
= rgb24tobgr24
; break;
1601 case 0x68: conv
= rgb32tobgr24
; break;
1602 case 0x83: conv
= rgb15tobgr32
; break;
1603 case 0x84: conv
= rgb16tobgr32
; break;
1604 case 0x86: conv
= rgb24tobgr32
; break;
1605 case 0x88: conv
= rgb32tobgr32
; break;
1606 default: av_log(c
, AV_LOG_ERROR
, "swScaler: internal error %s -> %s converter\n",
1607 sws_format_name(srcFormat
), sws_format_name(dstFormat
)); break;
1610 av_log(c
, AV_LOG_ERROR
, "swScaler: internal error %s -> %s converter\n",
1611 sws_format_name(srcFormat
), sws_format_name(dstFormat
));
1614 if (dstStride
[0]*srcBpp
== srcStride
[0]*dstBpp
)
1615 conv(src
[0], dst
[0] + dstStride
[0]*srcSliceY
, srcSliceH
*srcStride
[0]);
1619 uint8_t *srcPtr
= src
[0];
1620 uint8_t *dstPtr
= dst
[0] + dstStride
[0]*srcSliceY
;
1622 for (i
=0; i
<srcSliceH
; i
++)
1624 conv(srcPtr
, dstPtr
, c
->srcW
*srcBpp
);
1625 srcPtr
+= srcStride
[0];
1626 dstPtr
+= dstStride
[0];
1632 static int bgr24toyv12Wrapper(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1633 int srcSliceH
, uint8_t* dst
[], int dstStride
[]){
1637 dst
[0]+ srcSliceY
*dstStride
[0],
1638 dst
[1]+(srcSliceY
>>1)*dstStride
[1],
1639 dst
[2]+(srcSliceY
>>1)*dstStride
[2],
1641 dstStride
[0], dstStride
[1], srcStride
[0]);
1645 static int yvu9toyv12Wrapper(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1646 int srcSliceH
, uint8_t* dst
[], int dstStride
[]){
1650 if (srcStride
[0]==dstStride
[0] && srcStride
[0] > 0)
1651 memcpy(dst
[0]+ srcSliceY
*dstStride
[0], src
[0], srcStride
[0]*srcSliceH
);
1653 uint8_t *srcPtr
= src
[0];
1654 uint8_t *dstPtr
= dst
[0] + dstStride
[0]*srcSliceY
;
1656 for (i
=0; i
<srcSliceH
; i
++)
1658 memcpy(dstPtr
, srcPtr
, c
->srcW
);
1659 srcPtr
+= srcStride
[0];
1660 dstPtr
+= dstStride
[0];
1664 if (c
->dstFormat
==PIX_FMT_YUV420P
){
1665 planar2x(src
[1], dst
[1], c
->chrSrcW
, c
->chrSrcH
, srcStride
[1], dstStride
[1]);
1666 planar2x(src
[2], dst
[2], c
->chrSrcW
, c
->chrSrcH
, srcStride
[2], dstStride
[2]);
1668 planar2x(src
[1], dst
[2], c
->chrSrcW
, c
->chrSrcH
, srcStride
[1], dstStride
[2]);
1669 planar2x(src
[2], dst
[1], c
->chrSrcW
, c
->chrSrcH
, srcStride
[2], dstStride
[1]);
1674 /* unscaled copy like stuff (assumes nearly identical formats) */
1675 static int simpleCopy(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1676 int srcSliceH
, uint8_t* dst
[], int dstStride
[]){
1678 if (isPacked(c
->srcFormat
))
1680 if (dstStride
[0]==srcStride
[0] && srcStride
[0] > 0)
1681 memcpy(dst
[0] + dstStride
[0]*srcSliceY
, src
[0], srcSliceH
*dstStride
[0]);
1685 uint8_t *srcPtr
= src
[0];
1686 uint8_t *dstPtr
= dst
[0] + dstStride
[0]*srcSliceY
;
1689 /* universal length finder */
1690 while(length
+c
->srcW
<= FFABS(dstStride
[0])
1691 && length
+c
->srcW
<= FFABS(srcStride
[0])) length
+= c
->srcW
;
1694 for (i
=0; i
<srcSliceH
; i
++)
1696 memcpy(dstPtr
, srcPtr
, length
);
1697 srcPtr
+= srcStride
[0];
1698 dstPtr
+= dstStride
[0];
1703 { /* Planar YUV or gray */
1705 for (plane
=0; plane
<3; plane
++)
1707 int length
= plane
==0 ? c
->srcW
: -((-c
->srcW
)>>c
->chrDstHSubSample
);
1708 int y
= plane
==0 ? srcSliceY
: -((-srcSliceY
)>>c
->chrDstVSubSample
);
1709 int height
= plane
==0 ? srcSliceH
: -((-srcSliceH
)>>c
->chrDstVSubSample
);
1711 if ((isGray(c
->srcFormat
) || isGray(c
->dstFormat
)) && plane
>0)
1713 if (!isGray(c
->dstFormat
))
1714 memset(dst
[plane
], 128, dstStride
[plane
]*height
);
1718 if (dstStride
[plane
]==srcStride
[plane
] && srcStride
[plane
] > 0)
1719 memcpy(dst
[plane
] + dstStride
[plane
]*y
, src
[plane
], height
*dstStride
[plane
]);
1723 uint8_t *srcPtr
= src
[plane
];
1724 uint8_t *dstPtr
= dst
[plane
] + dstStride
[plane
]*y
;
1725 for (i
=0; i
<height
; i
++)
1727 memcpy(dstPtr
, srcPtr
, length
);
1728 srcPtr
+= srcStride
[plane
];
1729 dstPtr
+= dstStride
[plane
];
1738 static int gray16togray(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1739 int srcSliceH
, uint8_t* dst
[], int dstStride
[]){
1741 int length
= c
->srcW
;
1743 int height
= srcSliceH
;
1745 uint8_t *srcPtr
= src
[0];
1746 uint8_t *dstPtr
= dst
[0] + dstStride
[0]*y
;
1748 if (!isGray(c
->dstFormat
)){
1749 int height
= -((-srcSliceH
)>>c
->chrDstVSubSample
);
1750 memset(dst
[1], 128, dstStride
[1]*height
);
1751 memset(dst
[2], 128, dstStride
[2]*height
);
1753 if (c
->srcFormat
== PIX_FMT_GRAY16LE
) srcPtr
++;
1754 for (i
=0; i
<height
; i
++)
1756 for (j
=0; j
<length
; j
++) dstPtr
[j
] = srcPtr
[j
<<1];
1757 srcPtr
+= srcStride
[0];
1758 dstPtr
+= dstStride
[0];
1763 static int graytogray16(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1764 int srcSliceH
, uint8_t* dst
[], int dstStride
[]){
1766 int length
= c
->srcW
;
1768 int height
= srcSliceH
;
1770 uint8_t *srcPtr
= src
[0];
1771 uint8_t *dstPtr
= dst
[0] + dstStride
[0]*y
;
1772 for (i
=0; i
<height
; i
++)
1774 for (j
=0; j
<length
; j
++)
1776 dstPtr
[j
<<1] = srcPtr
[j
];
1777 dstPtr
[(j
<<1)+1] = srcPtr
[j
];
1779 srcPtr
+= srcStride
[0];
1780 dstPtr
+= dstStride
[0];
1785 static int gray16swap(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1786 int srcSliceH
, uint8_t* dst
[], int dstStride
[]){
1788 int length
= c
->srcW
;
1790 int height
= srcSliceH
;
1792 uint16_t *srcPtr
= src
[0];
1793 uint16_t *dstPtr
= dst
[0] + dstStride
[0]*y
/2;
1794 for (i
=0; i
<height
; i
++)
1796 for (j
=0; j
<length
; j
++) dstPtr
[j
] = bswap_16(srcPtr
[j
]);
1797 srcPtr
+= srcStride
[0]/2;
1798 dstPtr
+= dstStride
[0]/2;
1804 static void getSubSampleFactors(int *h
, int *v
, int format
){
1806 case PIX_FMT_UYVY422
:
1807 case PIX_FMT_YUYV422
:
1811 case PIX_FMT_YUV420P
:
1812 case PIX_FMT_GRAY16BE
:
1813 case PIX_FMT_GRAY16LE
:
1814 case PIX_FMT_GRAY8
: //FIXME remove after different subsamplings are fully implemented
1820 case PIX_FMT_YUV410P
:
1824 case PIX_FMT_YUV444P
:
1828 case PIX_FMT_YUV422P
:
1832 case PIX_FMT_YUV411P
:
1843 static uint16_t roundToInt16(int64_t f
){
1844 int r
= (f
+ (1<<15))>>16;
1845 if (r
<-0x7FFF) return 0x8000;
1846 else if (r
> 0x7FFF) return 0x7FFF;
1851 * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
1852 * @param fullRange if 1 then the luma range is 0..255 if 0 its 16..235
1853 * @return -1 if not supported
1855 int sws_setColorspaceDetails(SwsContext
*c
, const int inv_table
[4], int srcRange
, const int table
[4], int dstRange
, int brightness
, int contrast
, int saturation
){
1856 int64_t crv
= inv_table
[0];
1857 int64_t cbu
= inv_table
[1];
1858 int64_t cgu
= -inv_table
[2];
1859 int64_t cgv
= -inv_table
[3];
1863 if (isYUV(c
->dstFormat
) || isGray(c
->dstFormat
)) return -1;
1864 memcpy(c
->srcColorspaceTable
, inv_table
, sizeof(int)*4);
1865 memcpy(c
->dstColorspaceTable
, table
, sizeof(int)*4);
1867 c
->brightness
= brightness
;
1868 c
->contrast
= contrast
;
1869 c
->saturation
= saturation
;
1870 c
->srcRange
= srcRange
;
1871 c
->dstRange
= dstRange
;
1873 c
->uOffset
= 0x0400040004000400LL
;
1874 c
->vOffset
= 0x0400040004000400LL
;
1880 crv
= (crv
*224) / 255;
1881 cbu
= (cbu
*224) / 255;
1882 cgu
= (cgu
*224) / 255;
1883 cgv
= (cgv
*224) / 255;
1886 cy
= (cy
*contrast
)>>16;
1887 crv
= (crv
*contrast
* saturation
)>>32;
1888 cbu
= (cbu
*contrast
* saturation
)>>32;
1889 cgu
= (cgu
*contrast
* saturation
)>>32;
1890 cgv
= (cgv
*contrast
* saturation
)>>32;
1892 oy
-= 256*brightness
;
1894 c
->yCoeff
= roundToInt16(cy
*8192) * 0x0001000100010001ULL
;
1895 c
->vrCoeff
= roundToInt16(crv
*8192) * 0x0001000100010001ULL
;
1896 c
->ubCoeff
= roundToInt16(cbu
*8192) * 0x0001000100010001ULL
;
1897 c
->vgCoeff
= roundToInt16(cgv
*8192) * 0x0001000100010001ULL
;
1898 c
->ugCoeff
= roundToInt16(cgu
*8192) * 0x0001000100010001ULL
;
1899 c
->yOffset
= roundToInt16(oy
* 8) * 0x0001000100010001ULL
;
1901 yuv2rgb_c_init_tables(c
, inv_table
, srcRange
, brightness
, contrast
, saturation
);
1904 #ifdef COMPILE_ALTIVEC
1905 if (c
->flags
& SWS_CPU_CAPS_ALTIVEC
)
1906 yuv2rgb_altivec_init_tables (c
, inv_table
, brightness
, contrast
, saturation
);
1912 * @return -1 if not supported
1914 int sws_getColorspaceDetails(SwsContext
*c
, int **inv_table
, int *srcRange
, int **table
, int *dstRange
, int *brightness
, int *contrast
, int *saturation
){
1915 if (isYUV(c
->dstFormat
) || isGray(c
->dstFormat
)) return -1;
1917 *inv_table
= c
->srcColorspaceTable
;
1918 *table
= c
->dstColorspaceTable
;
1919 *srcRange
= c
->srcRange
;
1920 *dstRange
= c
->dstRange
;
1921 *brightness
= c
->brightness
;
1922 *contrast
= c
->contrast
;
1923 *saturation
= c
->saturation
;
1928 static int handle_jpeg(int *format
)
1931 case PIX_FMT_YUVJ420P
:
1932 *format
= PIX_FMT_YUV420P
;
1934 case PIX_FMT_YUVJ422P
:
1935 *format
= PIX_FMT_YUV422P
;
1937 case PIX_FMT_YUVJ444P
:
1938 *format
= PIX_FMT_YUV444P
;
1945 SwsContext
*sws_getContext(int srcW
, int srcH
, int srcFormat
, int dstW
, int dstH
, int dstFormat
, int flags
,
1946 SwsFilter
*srcFilter
, SwsFilter
*dstFilter
, double *param
){
1950 int usesVFilter
, usesHFilter
;
1951 int unscaled
, needsDither
;
1952 int srcRange
, dstRange
;
1953 SwsFilter dummyFilter
= {NULL
, NULL
, NULL
, NULL
};
1954 #if defined(ARCH_X86)
1955 if (flags
& SWS_CPU_CAPS_MMX
)
1956 asm volatile("emms\n\t"::: "memory");
1959 #if !defined(RUNTIME_CPUDETECT) || !defined (CONFIG_GPL) //ensure that the flags match the compiled variant if cpudetect is off
1960 flags
&= ~(SWS_CPU_CAPS_MMX
|SWS_CPU_CAPS_MMX2
|SWS_CPU_CAPS_3DNOW
|SWS_CPU_CAPS_ALTIVEC
);
1962 flags
|= SWS_CPU_CAPS_MMX
|SWS_CPU_CAPS_MMX2
;
1963 #elif defined (HAVE_3DNOW)
1964 flags
|= SWS_CPU_CAPS_MMX
|SWS_CPU_CAPS_3DNOW
;
1965 #elif defined (HAVE_MMX)
1966 flags
|= SWS_CPU_CAPS_MMX
;
1967 #elif defined (HAVE_ALTIVEC)
1968 flags
|= SWS_CPU_CAPS_ALTIVEC
;
1970 #endif /* RUNTIME_CPUDETECT */
1971 if (clip_table
[512] != 255) globalInit();
1972 if (rgb15to16
== NULL
) sws_rgb2rgb_init(flags
);
1974 unscaled
= (srcW
== dstW
&& srcH
== dstH
);
1975 needsDither
= (isBGR(dstFormat
) || isRGB(dstFormat
))
1976 && (fmt_depth(dstFormat
))<24
1977 && ((fmt_depth(dstFormat
))<(fmt_depth(srcFormat
)) || (!(isRGB(srcFormat
) || isBGR(srcFormat
))));
1979 srcRange
= handle_jpeg(&srcFormat
);
1980 dstRange
= handle_jpeg(&dstFormat
);
1982 if (!isSupportedIn(srcFormat
))
1984 av_log(NULL
, AV_LOG_ERROR
, "swScaler: %s is not supported as input format\n", sws_format_name(srcFormat
));
1987 if (!isSupportedOut(dstFormat
))
1989 av_log(NULL
, AV_LOG_ERROR
, "swScaler: %s is not supported as output format\n", sws_format_name(dstFormat
));
1994 if (srcW
<4 || srcH
<1 || dstW
<8 || dstH
<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
1996 av_log(NULL
, AV_LOG_ERROR
, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
1997 srcW
, srcH
, dstW
, dstH
);
2001 if (!dstFilter
) dstFilter
= &dummyFilter
;
2002 if (!srcFilter
) srcFilter
= &dummyFilter
;
2004 c
= av_mallocz(sizeof(SwsContext
));
2006 c
->av_class
= &sws_context_class
;
2011 c
->lumXInc
= ((srcW
<<16) + (dstW
>>1))/dstW
;
2012 c
->lumYInc
= ((srcH
<<16) + (dstH
>>1))/dstH
;
2014 c
->dstFormat
= dstFormat
;
2015 c
->srcFormat
= srcFormat
;
2016 c
->vRounder
= 4* 0x0001000100010001ULL
;
2018 usesHFilter
= usesVFilter
= 0;
2019 if (dstFilter
->lumV
!=NULL
&& dstFilter
->lumV
->length
>1) usesVFilter
=1;
2020 if (dstFilter
->lumH
!=NULL
&& dstFilter
->lumH
->length
>1) usesHFilter
=1;
2021 if (dstFilter
->chrV
!=NULL
&& dstFilter
->chrV
->length
>1) usesVFilter
=1;
2022 if (dstFilter
->chrH
!=NULL
&& dstFilter
->chrH
->length
>1) usesHFilter
=1;
2023 if (srcFilter
->lumV
!=NULL
&& srcFilter
->lumV
->length
>1) usesVFilter
=1;
2024 if (srcFilter
->lumH
!=NULL
&& srcFilter
->lumH
->length
>1) usesHFilter
=1;
2025 if (srcFilter
->chrV
!=NULL
&& srcFilter
->chrV
->length
>1) usesVFilter
=1;
2026 if (srcFilter
->chrH
!=NULL
&& srcFilter
->chrH
->length
>1) usesHFilter
=1;
2028 getSubSampleFactors(&c
->chrSrcHSubSample
, &c
->chrSrcVSubSample
, srcFormat
);
2029 getSubSampleFactors(&c
->chrDstHSubSample
, &c
->chrDstVSubSample
, dstFormat
);
2031 // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
2032 if ((isBGR(dstFormat
) || isRGB(dstFormat
)) && !(flags
&SWS_FULL_CHR_H_INT
)) c
->chrDstHSubSample
=1;
2034 // drop some chroma lines if the user wants it
2035 c
->vChrDrop
= (flags
&SWS_SRC_V_CHR_DROP_MASK
)>>SWS_SRC_V_CHR_DROP_SHIFT
;
2036 c
->chrSrcVSubSample
+= c
->vChrDrop
;
2038 // drop every 2. pixel for chroma calculation unless user wants full chroma
2039 if ((isBGR(srcFormat
) || isRGB(srcFormat
)) && !(flags
&SWS_FULL_CHR_H_INP
)
2040 && srcFormat
!=PIX_FMT_RGB8
&& srcFormat
!=PIX_FMT_BGR8
2041 && srcFormat
!=PIX_FMT_RGB4
&& srcFormat
!=PIX_FMT_BGR4
2042 && srcFormat
!=PIX_FMT_RGB4_BYTE
&& srcFormat
!=PIX_FMT_BGR4_BYTE
)
2043 c
->chrSrcHSubSample
=1;
2046 c
->param
[0] = param
[0];
2047 c
->param
[1] = param
[1];
2050 c
->param
[1] = SWS_PARAM_DEFAULT
;
2053 c
->chrIntHSubSample
= c
->chrDstHSubSample
;
2054 c
->chrIntVSubSample
= c
->chrSrcVSubSample
;
2056 // Note the -((-x)>>y) is so that we always round toward +inf.
2057 c
->chrSrcW
= -((-srcW
) >> c
->chrSrcHSubSample
);
2058 c
->chrSrcH
= -((-srcH
) >> c
->chrSrcVSubSample
);
2059 c
->chrDstW
= -((-dstW
) >> c
->chrDstHSubSample
);
2060 c
->chrDstH
= -((-dstH
) >> c
->chrDstVSubSample
);
2062 sws_setColorspaceDetails(c
, Inverse_Table_6_9
[SWS_CS_DEFAULT
], srcRange
, Inverse_Table_6_9
[SWS_CS_DEFAULT
] /* FIXME*/, dstRange
, 0, 1<<16, 1<<16);
2064 /* unscaled special Cases */
2065 if (unscaled
&& !usesHFilter
&& !usesVFilter
)
2068 if (srcFormat
== PIX_FMT_YUV420P
&& (dstFormat
== PIX_FMT_NV12
|| dstFormat
== PIX_FMT_NV21
))
2070 c
->swScale
= PlanarToNV12Wrapper
;
2074 if ((srcFormat
==PIX_FMT_YUV420P
|| srcFormat
==PIX_FMT_YUV422P
) && (isBGR(dstFormat
) || isRGB(dstFormat
)))
2076 c
->swScale
= yuv2rgb_get_func_ptr(c
);
2080 if ( srcFormat
==PIX_FMT_YUV410P
&& dstFormat
==PIX_FMT_YUV420P
)
2082 c
->swScale
= yvu9toyv12Wrapper
;
2086 if (srcFormat
==PIX_FMT_BGR24
&& dstFormat
==PIX_FMT_YUV420P
)
2087 c
->swScale
= bgr24toyv12Wrapper
;
2089 /* rgb/bgr -> rgb/bgr (no dither needed forms) */
2090 if ( (isBGR(srcFormat
) || isRGB(srcFormat
))
2091 && (isBGR(dstFormat
) || isRGB(dstFormat
))
2092 && srcFormat
!= PIX_FMT_BGR8
&& dstFormat
!= PIX_FMT_BGR8
2093 && srcFormat
!= PIX_FMT_RGB8
&& dstFormat
!= PIX_FMT_RGB8
2094 && srcFormat
!= PIX_FMT_BGR4
&& dstFormat
!= PIX_FMT_BGR4
2095 && srcFormat
!= PIX_FMT_RGB4
&& dstFormat
!= PIX_FMT_RGB4
2096 && srcFormat
!= PIX_FMT_BGR4_BYTE
&& dstFormat
!= PIX_FMT_BGR4_BYTE
2097 && srcFormat
!= PIX_FMT_RGB4_BYTE
&& dstFormat
!= PIX_FMT_RGB4_BYTE
2098 && srcFormat
!= PIX_FMT_MONOBLACK
&& dstFormat
!= PIX_FMT_MONOBLACK
2100 c
->swScale
= rgb2rgbWrapper
;
2102 /* LQ converters if -sws 0 or -sws 4*/
2103 if (c
->flags
&(SWS_FAST_BILINEAR
|SWS_POINT
)){
2104 /* rgb/bgr -> rgb/bgr (dither needed forms) */
2105 if ( (isBGR(srcFormat
) || isRGB(srcFormat
))
2106 && (isBGR(dstFormat
) || isRGB(dstFormat
))
2108 c
->swScale
= rgb2rgbWrapper
;
2111 if (srcFormat
== PIX_FMT_YUV420P
&&
2112 (dstFormat
== PIX_FMT_YUYV422
|| dstFormat
== PIX_FMT_UYVY422
))
2114 if (dstFormat
== PIX_FMT_YUYV422
)
2115 c
->swScale
= PlanarToYuy2Wrapper
;
2117 c
->swScale
= PlanarToUyvyWrapper
;
2121 #ifdef COMPILE_ALTIVEC
2122 if ((c
->flags
& SWS_CPU_CAPS_ALTIVEC
) &&
2123 ((srcFormat
== PIX_FMT_YUV420P
&&
2124 (dstFormat
== PIX_FMT_YUYV422
|| dstFormat
== PIX_FMT_UYVY422
)))) {
2125 // unscaled YV12 -> packed YUV, we want speed
2126 if (dstFormat
== PIX_FMT_YUYV422
)
2127 c
->swScale
= yv12toyuy2_unscaled_altivec
;
2129 c
->swScale
= yv12touyvy_unscaled_altivec
;
2134 if ( srcFormat
== dstFormat
2135 || (isPlanarYUV(srcFormat
) && isGray(dstFormat
))
2136 || (isPlanarYUV(dstFormat
) && isGray(srcFormat
)) )
2138 c
->swScale
= simpleCopy
;
2141 /* gray16{le,be} conversions */
2142 if (isGray16(srcFormat
) && (isPlanarYUV(dstFormat
) || (dstFormat
== PIX_FMT_GRAY8
)))
2144 c
->swScale
= gray16togray
;
2146 if ((isPlanarYUV(srcFormat
) || (srcFormat
== PIX_FMT_GRAY8
)) && isGray16(dstFormat
))
2148 c
->swScale
= graytogray16
;
2150 if (srcFormat
!= dstFormat
&& isGray16(srcFormat
) && isGray16(dstFormat
))
2152 c
->swScale
= gray16swap
;
2156 if (flags
&SWS_PRINT_INFO
)
2157 av_log(c
, AV_LOG_INFO
, "SwScaler: using unscaled %s -> %s special converter\n",
2158 sws_format_name(srcFormat
), sws_format_name(dstFormat
));
2163 if (flags
& SWS_CPU_CAPS_MMX2
)
2165 c
->canMMX2BeUsed
= (dstW
>=srcW
&& (dstW
&31)==0 && (srcW
&15)==0) ?
1 : 0;
2166 if (!c
->canMMX2BeUsed
&& dstW
>=srcW
&& (srcW
&15)==0 && (flags
&SWS_FAST_BILINEAR
))
2168 if (flags
&SWS_PRINT_INFO
)
2169 av_log(c
, AV_LOG_INFO
, "SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
2171 if (usesHFilter
) c
->canMMX2BeUsed
=0;
2176 c
->chrXInc
= ((c
->chrSrcW
<<16) + (c
->chrDstW
>>1))/c
->chrDstW
;
2177 c
->chrYInc
= ((c
->chrSrcH
<<16) + (c
->chrDstH
>>1))/c
->chrDstH
;
2179 // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
2180 // but only for the FAST_BILINEAR mode otherwise do correct scaling
2181 // n-2 is the last chrominance sample available
2182 // this is not perfect, but noone shuld notice the difference, the more correct variant
2183 // would be like the vertical one, but that would require some special code for the
2184 // first and last pixel
2185 if (flags
&SWS_FAST_BILINEAR
)
2187 if (c
->canMMX2BeUsed
)
2192 //we don't use the x86asm scaler if mmx is available
2193 else if (flags
& SWS_CPU_CAPS_MMX
)
2195 c
->lumXInc
= ((srcW
-2)<<16)/(dstW
-2) - 20;
2196 c
->chrXInc
= ((c
->chrSrcW
-2)<<16)/(c
->chrDstW
-2) - 20;
2200 /* precalculate horizontal scaler filter coefficients */
2202 const int filterAlign
=
2203 (flags
& SWS_CPU_CAPS_MMX
) ?
4 :
2204 (flags
& SWS_CPU_CAPS_ALTIVEC
) ?
8 :
2207 initFilter(&c
->hLumFilter
, &c
->hLumFilterPos
, &c
->hLumFilterSize
, c
->lumXInc
,
2208 srcW
, dstW
, filterAlign
, 1<<14,
2209 (flags
&SWS_BICUBLIN
) ?
(flags
|SWS_BICUBIC
) : flags
,
2210 srcFilter
->lumH
, dstFilter
->lumH
, c
->param
);
2211 initFilter(&c
->hChrFilter
, &c
->hChrFilterPos
, &c
->hChrFilterSize
, c
->chrXInc
,
2212 c
->chrSrcW
, c
->chrDstW
, filterAlign
, 1<<14,
2213 (flags
&SWS_BICUBLIN
) ?
(flags
|SWS_BILINEAR
) : flags
,
2214 srcFilter
->chrH
, dstFilter
->chrH
, c
->param
);
2216 #define MAX_FUNNY_CODE_SIZE 10000
2217 #if defined(COMPILE_MMX2)
2218 // can't downscale !!!
2219 if (c
->canMMX2BeUsed
&& (flags
& SWS_FAST_BILINEAR
))
2221 #ifdef MAP_ANONYMOUS
2222 c
->funnyYCode
= (uint8_t*)mmap(NULL
, MAX_FUNNY_CODE_SIZE
, PROT_EXEC
| PROT_READ
| PROT_WRITE
, MAP_PRIVATE
| MAP_ANONYMOUS
, 0, 0);
2223 c
->funnyUVCode
= (uint8_t*)mmap(NULL
, MAX_FUNNY_CODE_SIZE
, PROT_EXEC
| PROT_READ
| PROT_WRITE
, MAP_PRIVATE
| MAP_ANONYMOUS
, 0, 0);
2225 c
->funnyYCode
= av_malloc(MAX_FUNNY_CODE_SIZE
);
2226 c
->funnyUVCode
= av_malloc(MAX_FUNNY_CODE_SIZE
);
2229 c
->lumMmx2Filter
= av_malloc((dstW
/8+8)*sizeof(int16_t));
2230 c
->chrMmx2Filter
= av_malloc((c
->chrDstW
/4+8)*sizeof(int16_t));
2231 c
->lumMmx2FilterPos
= av_malloc((dstW
/2/8+8)*sizeof(int32_t));
2232 c
->chrMmx2FilterPos
= av_malloc((c
->chrDstW
/2/4+8)*sizeof(int32_t));
2234 initMMX2HScaler( dstW
, c
->lumXInc
, c
->funnyYCode
, c
->lumMmx2Filter
, c
->lumMmx2FilterPos
, 8);
2235 initMMX2HScaler(c
->chrDstW
, c
->chrXInc
, c
->funnyUVCode
, c
->chrMmx2Filter
, c
->chrMmx2FilterPos
, 4);
2237 #endif /* defined(COMPILE_MMX2) */
2238 } // Init Horizontal stuff
2242 /* precalculate vertical scaler filter coefficients */
2244 const int filterAlign
=
2245 (flags
& SWS_CPU_CAPS_MMX
) && (flags
& SWS_ACCURATE_RND
) ?
2 :
2246 (flags
& SWS_CPU_CAPS_ALTIVEC
) ?
8 :
2249 initFilter(&c
->vLumFilter
, &c
->vLumFilterPos
, &c
->vLumFilterSize
, c
->lumYInc
,
2250 srcH
, dstH
, filterAlign
, (1<<12)-4,
2251 (flags
&SWS_BICUBLIN
) ?
(flags
|SWS_BICUBIC
) : flags
,
2252 srcFilter
->lumV
, dstFilter
->lumV
, c
->param
);
2253 initFilter(&c
->vChrFilter
, &c
->vChrFilterPos
, &c
->vChrFilterSize
, c
->chrYInc
,
2254 c
->chrSrcH
, c
->chrDstH
, filterAlign
, (1<<12)-4,
2255 (flags
&SWS_BICUBLIN
) ?
(flags
|SWS_BILINEAR
) : flags
,
2256 srcFilter
->chrV
, dstFilter
->chrV
, c
->param
);
2259 c
->vYCoeffsBank
= av_malloc(sizeof (vector
signed short)*c
->vLumFilterSize
*c
->dstH
);
2260 c
->vCCoeffsBank
= av_malloc(sizeof (vector
signed short)*c
->vChrFilterSize
*c
->chrDstH
);
2262 for (i
=0;i
<c
->vLumFilterSize
*c
->dstH
;i
++) {
2264 short *p
= (short *)&c
->vYCoeffsBank
[i
];
2266 p
[j
] = c
->vLumFilter
[i
];
2269 for (i
=0;i
<c
->vChrFilterSize
*c
->chrDstH
;i
++) {
2271 short *p
= (short *)&c
->vCCoeffsBank
[i
];
2273 p
[j
] = c
->vChrFilter
[i
];
2278 // Calculate Buffer Sizes so that they won't run out while handling these damn slices
2279 c
->vLumBufSize
= c
->vLumFilterSize
;
2280 c
->vChrBufSize
= c
->vChrFilterSize
;
2281 for (i
=0; i
<dstH
; i
++)
2283 int chrI
= i
*c
->chrDstH
/ dstH
;
2284 int nextSlice
= FFMAX(c
->vLumFilterPos
[i
] + c
->vLumFilterSize
- 1,
2285 ((c
->vChrFilterPos
[chrI
] + c
->vChrFilterSize
- 1)<<c
->chrSrcVSubSample
));
2287 nextSlice
>>= c
->chrSrcVSubSample
;
2288 nextSlice
<<= c
->chrSrcVSubSample
;
2289 if (c
->vLumFilterPos
[i
] + c
->vLumBufSize
< nextSlice
)
2290 c
->vLumBufSize
= nextSlice
- c
->vLumFilterPos
[i
];
2291 if (c
->vChrFilterPos
[chrI
] + c
->vChrBufSize
< (nextSlice
>>c
->chrSrcVSubSample
))
2292 c
->vChrBufSize
= (nextSlice
>>c
->chrSrcVSubSample
) - c
->vChrFilterPos
[chrI
];
2295 // allocate pixbufs (we use dynamic allocation because otherwise we would need to
2296 c
->lumPixBuf
= av_malloc(c
->vLumBufSize
*2*sizeof(int16_t*));
2297 c
->chrPixBuf
= av_malloc(c
->vChrBufSize
*2*sizeof(int16_t*));
2298 //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
2299 /* align at 16 bytes for AltiVec */
2300 for (i
=0; i
<c
->vLumBufSize
; i
++)
2301 c
->lumPixBuf
[i
]= c
->lumPixBuf
[i
+c
->vLumBufSize
]= av_mallocz(4000);
2302 for (i
=0; i
<c
->vChrBufSize
; i
++)
2303 c
->chrPixBuf
[i
]= c
->chrPixBuf
[i
+c
->vChrBufSize
]= av_malloc(8000);
2305 //try to avoid drawing green stuff between the right end and the stride end
2306 for (i
=0; i
<c
->vChrBufSize
; i
++) memset(c
->chrPixBuf
[i
], 64, 8000);
2308 ASSERT(c
->chrDstH
<= dstH
)
2310 if (flags
&SWS_PRINT_INFO
)
2313 char *dither
= " dithered";
2317 if (flags
&SWS_FAST_BILINEAR
)
2318 av_log(c
, AV_LOG_INFO
, "SwScaler: FAST_BILINEAR scaler, ");
2319 else if (flags
&SWS_BILINEAR
)
2320 av_log(c
, AV_LOG_INFO
, "SwScaler: BILINEAR scaler, ");
2321 else if (flags
&SWS_BICUBIC
)
2322 av_log(c
, AV_LOG_INFO
, "SwScaler: BICUBIC scaler, ");
2323 else if (flags
&SWS_X
)
2324 av_log(c
, AV_LOG_INFO
, "SwScaler: Experimental scaler, ");
2325 else if (flags
&SWS_POINT
)
2326 av_log(c
, AV_LOG_INFO
, "SwScaler: Nearest Neighbor / POINT scaler, ");
2327 else if (flags
&SWS_AREA
)
2328 av_log(c
, AV_LOG_INFO
, "SwScaler: Area Averageing scaler, ");
2329 else if (flags
&SWS_BICUBLIN
)
2330 av_log(c
, AV_LOG_INFO
, "SwScaler: luma BICUBIC / chroma BILINEAR scaler, ");
2331 else if (flags
&SWS_GAUSS
)
2332 av_log(c
, AV_LOG_INFO
, "SwScaler: Gaussian scaler, ");
2333 else if (flags
&SWS_SINC
)
2334 av_log(c
, AV_LOG_INFO
, "SwScaler: Sinc scaler, ");
2335 else if (flags
&SWS_LANCZOS
)
2336 av_log(c
, AV_LOG_INFO
, "SwScaler: Lanczos scaler, ");
2337 else if (flags
&SWS_SPLINE
)
2338 av_log(c
, AV_LOG_INFO
, "SwScaler: Bicubic spline scaler, ");
2340 av_log(c
, AV_LOG_INFO
, "SwScaler: ehh flags invalid?! ");
2342 if (dstFormat
==PIX_FMT_BGR555
|| dstFormat
==PIX_FMT_BGR565
)
2343 av_log(c
, AV_LOG_INFO
, "from %s to%s %s ",
2344 sws_format_name(srcFormat
), dither
, sws_format_name(dstFormat
));
2346 av_log(c
, AV_LOG_INFO
, "from %s to %s ",
2347 sws_format_name(srcFormat
), sws_format_name(dstFormat
));
2349 if (flags
& SWS_CPU_CAPS_MMX2
)
2350 av_log(c
, AV_LOG_INFO
, "using MMX2\n");
2351 else if (flags
& SWS_CPU_CAPS_3DNOW
)
2352 av_log(c
, AV_LOG_INFO
, "using 3DNOW\n");
2353 else if (flags
& SWS_CPU_CAPS_MMX
)
2354 av_log(c
, AV_LOG_INFO
, "using MMX\n");
2355 else if (flags
& SWS_CPU_CAPS_ALTIVEC
)
2356 av_log(c
, AV_LOG_INFO
, "using AltiVec\n");
2358 av_log(c
, AV_LOG_INFO
, "using C\n");
2361 if (flags
& SWS_PRINT_INFO
)
2363 if (flags
& SWS_CPU_CAPS_MMX
)
2365 if (c
->canMMX2BeUsed
&& (flags
&SWS_FAST_BILINEAR
))
2366 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
2369 if (c
->hLumFilterSize
==4)
2370 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
2371 else if (c
->hLumFilterSize
==8)
2372 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
2374 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");
2376 if (c
->hChrFilterSize
==4)
2377 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
2378 else if (c
->hChrFilterSize
==8)
2379 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
2381 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
2386 #if defined(ARCH_X86)
2387 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using X86-Asm scaler for horizontal scaling\n");
2389 if (flags
& SWS_FAST_BILINEAR
)
2390 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
2392 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using C scaler for horizontal scaling\n");
2395 if (isPlanarYUV(dstFormat
))
2397 if (c
->vLumFilterSize
==1)
2398 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags
& SWS_CPU_CAPS_MMX
) ?
"MMX" : "C");
2400 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags
& SWS_CPU_CAPS_MMX
) ?
"MMX" : "C");
2404 if (c
->vLumFilterSize
==1 && c
->vChrFilterSize
==2)
2405 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
2406 "SwScaler: 2-tap scaler for vertical chrominance scaling (BGR)\n",(flags
& SWS_CPU_CAPS_MMX
) ?
"MMX" : "C");
2407 else if (c
->vLumFilterSize
==2 && c
->vChrFilterSize
==2)
2408 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags
& SWS_CPU_CAPS_MMX
) ?
"MMX" : "C");
2410 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", (flags
& SWS_CPU_CAPS_MMX
) ?
"MMX" : "C");
2413 if (dstFormat
==PIX_FMT_BGR24
)
2414 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using %s YV12->BGR24 Converter\n",
2415 (flags
& SWS_CPU_CAPS_MMX2
) ?
"MMX2" : ((flags
& SWS_CPU_CAPS_MMX
) ?
"MMX" : "C"));
2416 else if (dstFormat
==PIX_FMT_RGB32
)
2417 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using %s YV12->BGR32 Converter\n", (flags
& SWS_CPU_CAPS_MMX
) ?
"MMX" : "C");
2418 else if (dstFormat
==PIX_FMT_BGR565
)
2419 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using %s YV12->BGR16 Converter\n", (flags
& SWS_CPU_CAPS_MMX
) ?
"MMX" : "C");
2420 else if (dstFormat
==PIX_FMT_BGR555
)
2421 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using %s YV12->BGR15 Converter\n", (flags
& SWS_CPU_CAPS_MMX
) ?
"MMX" : "C");
2423 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: %dx%d -> %dx%d\n", srcW
, srcH
, dstW
, dstH
);
2425 if (flags
& SWS_PRINT_INFO
)
2427 av_log(c
, AV_LOG_DEBUG
, "SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2428 c
->srcW
, c
->srcH
, c
->dstW
, c
->dstH
, c
->lumXInc
, c
->lumYInc
);
2429 av_log(c
, AV_LOG_DEBUG
, "SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2430 c
->chrSrcW
, c
->chrSrcH
, c
->chrDstW
, c
->chrDstH
, c
->chrXInc
, c
->chrYInc
);
2433 c
->swScale
= getSwsFunc(flags
);
2438 * swscale warper, so we don't need to export the SwsContext.
2439 * assumes planar YUV to be in YUV order instead of YVU
2441 int sws_scale(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
2442 int srcSliceH
, uint8_t* dst
[], int dstStride
[]){
2444 uint8_t* src2
[4]= {src
[0], src
[1], src
[2]};
2446 if (c
->sliceDir
== 0 && srcSliceY
!= 0 && srcSliceY
+ srcSliceH
!= c
->srcH
) {
2447 av_log(c
, AV_LOG_ERROR
, "swScaler: slices start in the middle!\n");
2450 if (c
->sliceDir
== 0) {
2451 if (srcSliceY
== 0) c
->sliceDir
= 1; else c
->sliceDir
= -1;
2454 if (c
->srcFormat
== PIX_FMT_PAL8
){
2455 for (i
=0; i
<256; i
++){
2456 int p
= ((uint32_t*)(src
[1]))[i
];
2457 int r
= (p
>>16)&0xFF;
2458 int g
= (p
>> 8)&0xFF;
2460 int y
= av_clip_uint8(((RY
*r
+ GY
*g
+ BY
*b
)>>RGB2YUV_SHIFT
) + 16 );
2461 int u
= av_clip_uint8(((RU
*r
+ GU
*g
+ BU
*b
)>>RGB2YUV_SHIFT
) + 128);
2462 int v
= av_clip_uint8(((RV
*r
+ GV
*g
+ BV
*b
)>>RGB2YUV_SHIFT
) + 128);
2463 pal
[i
]= y
+ (u
<<8) + (v
<<16);
2468 // copy strides, so they can safely be modified
2469 if (c
->sliceDir
== 1) {
2470 // slices go from top to bottom
2471 int srcStride2
[4]= {srcStride
[0], srcStride
[1], srcStride
[2]};
2472 int dstStride2
[4]= {dstStride
[0], dstStride
[1], dstStride
[2]};
2473 return c
->swScale(c
, src2
, srcStride2
, srcSliceY
, srcSliceH
, dst
, dstStride2
);
2475 // slices go from bottom to top => we flip the image internally
2476 uint8_t* dst2
[4]= {dst
[0] + (c
->dstH
-1)*dstStride
[0],
2477 dst
[1] + ((c
->dstH
>>c
->chrDstVSubSample
)-1)*dstStride
[1],
2478 dst
[2] + ((c
->dstH
>>c
->chrDstVSubSample
)-1)*dstStride
[2]};
2479 int srcStride2
[4]= {-srcStride
[0], -srcStride
[1], -srcStride
[2]};
2480 int dstStride2
[4]= {-dstStride
[0], -dstStride
[1], -dstStride
[2]};
2482 src2
[0] += (srcSliceH
-1)*srcStride
[0];
2483 if (c
->srcFormat
!= PIX_FMT_PAL8
)
2484 src2
[1] += ((srcSliceH
>>c
->chrSrcVSubSample
)-1)*srcStride
[1];
2485 src2
[2] += ((srcSliceH
>>c
->chrSrcVSubSample
)-1)*srcStride
[2];
2487 return c
->swScale(c
, src2
, srcStride2
, c
->srcH
-srcSliceY
-srcSliceH
, srcSliceH
, dst2
, dstStride2
);
2492 * swscale warper, so we don't need to export the SwsContext
2494 int sws_scale_ordered(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
2495 int srcSliceH
, uint8_t* dst
[], int dstStride
[]){
2496 return sws_scale(c
, src
, srcStride
, srcSliceY
, srcSliceH
, dst
, dstStride
);
2499 SwsFilter
*sws_getDefaultFilter(float lumaGBlur
, float chromaGBlur
,
2500 float lumaSharpen
, float chromaSharpen
,
2501 float chromaHShift
, float chromaVShift
,
2504 SwsFilter
*filter
= av_malloc(sizeof(SwsFilter
));
2506 if (lumaGBlur
!=0.0){
2507 filter
->lumH
= sws_getGaussianVec(lumaGBlur
, 3.0);
2508 filter
->lumV
= sws_getGaussianVec(lumaGBlur
, 3.0);
2510 filter
->lumH
= sws_getIdentityVec();
2511 filter
->lumV
= sws_getIdentityVec();
2514 if (chromaGBlur
!=0.0){
2515 filter
->chrH
= sws_getGaussianVec(chromaGBlur
, 3.0);
2516 filter
->chrV
= sws_getGaussianVec(chromaGBlur
, 3.0);
2518 filter
->chrH
= sws_getIdentityVec();
2519 filter
->chrV
= sws_getIdentityVec();
2522 if (chromaSharpen
!=0.0){
2523 SwsVector
*id
= sws_getIdentityVec();
2524 sws_scaleVec(filter
->chrH
, -chromaSharpen
);
2525 sws_scaleVec(filter
->chrV
, -chromaSharpen
);
2526 sws_addVec(filter
->chrH
, id
);
2527 sws_addVec(filter
->chrV
, id
);
2531 if (lumaSharpen
!=0.0){
2532 SwsVector
*id
= sws_getIdentityVec();
2533 sws_scaleVec(filter
->lumH
, -lumaSharpen
);
2534 sws_scaleVec(filter
->lumV
, -lumaSharpen
);
2535 sws_addVec(filter
->lumH
, id
);
2536 sws_addVec(filter
->lumV
, id
);
2540 if (chromaHShift
!= 0.0)
2541 sws_shiftVec(filter
->chrH
, (int)(chromaHShift
+0.5));
2543 if (chromaVShift
!= 0.0)
2544 sws_shiftVec(filter
->chrV
, (int)(chromaVShift
+0.5));
2546 sws_normalizeVec(filter
->chrH
, 1.0);
2547 sws_normalizeVec(filter
->chrV
, 1.0);
2548 sws_normalizeVec(filter
->lumH
, 1.0);
2549 sws_normalizeVec(filter
->lumV
, 1.0);
2551 if (verbose
) sws_printVec(filter
->chrH
);
2552 if (verbose
) sws_printVec(filter
->lumH
);
2558 * returns a normalized gaussian curve used to filter stuff
2559 * quality=3 is high quality, lowwer is lowwer quality
2561 SwsVector
*sws_getGaussianVec(double variance
, double quality
){
2562 const int length
= (int)(variance
*quality
+ 0.5) | 1;
2564 double *coeff
= av_malloc(length
*sizeof(double));
2565 double middle
= (length
-1)*0.5;
2566 SwsVector
*vec
= av_malloc(sizeof(SwsVector
));
2569 vec
->length
= length
;
2571 for (i
=0; i
<length
; i
++)
2573 double dist
= i
-middle
;
2574 coeff
[i
]= exp( -dist
*dist
/(2*variance
*variance
) ) / sqrt(2*variance
*PI
);
2577 sws_normalizeVec(vec
, 1.0);
2582 SwsVector
*sws_getConstVec(double c
, int length
){
2584 double *coeff
= av_malloc(length
*sizeof(double));
2585 SwsVector
*vec
= av_malloc(sizeof(SwsVector
));
2588 vec
->length
= length
;
2590 for (i
=0; i
<length
; i
++)
2597 SwsVector
*sws_getIdentityVec(void){
2598 return sws_getConstVec(1.0, 1);
2601 double sws_dcVec(SwsVector
*a
){
2605 for (i
=0; i
<a
->length
; i
++)
2611 void sws_scaleVec(SwsVector
*a
, double scalar
){
2614 for (i
=0; i
<a
->length
; i
++)
2615 a
->coeff
[i
]*= scalar
;
2618 void sws_normalizeVec(SwsVector
*a
, double height
){
2619 sws_scaleVec(a
, height
/sws_dcVec(a
));
2622 static SwsVector
*sws_getConvVec(SwsVector
*a
, SwsVector
*b
){
2623 int length
= a
->length
+ b
->length
- 1;
2624 double *coeff
= av_malloc(length
*sizeof(double));
2626 SwsVector
*vec
= av_malloc(sizeof(SwsVector
));
2629 vec
->length
= length
;
2631 for (i
=0; i
<length
; i
++) coeff
[i
]= 0.0;
2633 for (i
=0; i
<a
->length
; i
++)
2635 for (j
=0; j
<b
->length
; j
++)
2637 coeff
[i
+j
]+= a
->coeff
[i
]*b
->coeff
[j
];
2644 static SwsVector
*sws_sumVec(SwsVector
*a
, SwsVector
*b
){
2645 int length
= FFMAX(a
->length
, b
->length
);
2646 double *coeff
= av_malloc(length
*sizeof(double));
2648 SwsVector
*vec
= av_malloc(sizeof(SwsVector
));
2651 vec
->length
= length
;
2653 for (i
=0; i
<length
; i
++) coeff
[i
]= 0.0;
2655 for (i
=0; i
<a
->length
; i
++) coeff
[i
+ (length
-1)/2 - (a
->length
-1)/2]+= a
->coeff
[i
];
2656 for (i
=0; i
<b
->length
; i
++) coeff
[i
+ (length
-1)/2 - (b
->length
-1)/2]+= b
->coeff
[i
];
2661 static SwsVector
*sws_diffVec(SwsVector
*a
, SwsVector
*b
){
2662 int length
= FFMAX(a
->length
, b
->length
);
2663 double *coeff
= av_malloc(length
*sizeof(double));
2665 SwsVector
*vec
= av_malloc(sizeof(SwsVector
));
2668 vec
->length
= length
;
2670 for (i
=0; i
<length
; i
++) coeff
[i
]= 0.0;
2672 for (i
=0; i
<a
->length
; i
++) coeff
[i
+ (length
-1)/2 - (a
->length
-1)/2]+= a
->coeff
[i
];
2673 for (i
=0; i
<b
->length
; i
++) coeff
[i
+ (length
-1)/2 - (b
->length
-1)/2]-= b
->coeff
[i
];
2678 /* shift left / or right if "shift" is negative */
2679 static SwsVector
*sws_getShiftedVec(SwsVector
*a
, int shift
){
2680 int length
= a
->length
+ FFABS(shift
)*2;
2681 double *coeff
= av_malloc(length
*sizeof(double));
2683 SwsVector
*vec
= av_malloc(sizeof(SwsVector
));
2686 vec
->length
= length
;
2688 for (i
=0; i
<length
; i
++) coeff
[i
]= 0.0;
2690 for (i
=0; i
<a
->length
; i
++)
2692 coeff
[i
+ (length
-1)/2 - (a
->length
-1)/2 - shift
]= a
->coeff
[i
];
2698 void sws_shiftVec(SwsVector
*a
, int shift
){
2699 SwsVector
*shifted
= sws_getShiftedVec(a
, shift
);
2701 a
->coeff
= shifted
->coeff
;
2702 a
->length
= shifted
->length
;
2706 void sws_addVec(SwsVector
*a
, SwsVector
*b
){
2707 SwsVector
*sum
= sws_sumVec(a
, b
);
2709 a
->coeff
= sum
->coeff
;
2710 a
->length
= sum
->length
;
2714 void sws_subVec(SwsVector
*a
, SwsVector
*b
){
2715 SwsVector
*diff
= sws_diffVec(a
, b
);
2717 a
->coeff
= diff
->coeff
;
2718 a
->length
= diff
->length
;
2722 void sws_convVec(SwsVector
*a
, SwsVector
*b
){
2723 SwsVector
*conv
= sws_getConvVec(a
, b
);
2725 a
->coeff
= conv
->coeff
;
2726 a
->length
= conv
->length
;
2730 SwsVector
*sws_cloneVec(SwsVector
*a
){
2731 double *coeff
= av_malloc(a
->length
*sizeof(double));
2733 SwsVector
*vec
= av_malloc(sizeof(SwsVector
));
2736 vec
->length
= a
->length
;
2738 for (i
=0; i
<a
->length
; i
++) coeff
[i
]= a
->coeff
[i
];
2743 void sws_printVec(SwsVector
*a
){
2749 for (i
=0; i
<a
->length
; i
++)
2750 if (a
->coeff
[i
]>max
) max
= a
->coeff
[i
];
2752 for (i
=0; i
<a
->length
; i
++)
2753 if (a
->coeff
[i
]<min
) min
= a
->coeff
[i
];
2757 for (i
=0; i
<a
->length
; i
++)
2759 int x
= (int)((a
->coeff
[i
]-min
)*60.0/range
+0.5);
2760 av_log(NULL
, AV_LOG_DEBUG
, "%1.3f ", a
->coeff
[i
]);
2761 for (;x
>0; x
--) av_log(NULL
, AV_LOG_DEBUG
, " ");
2762 av_log(NULL
, AV_LOG_DEBUG
, "|\n");
2766 void sws_freeVec(SwsVector
*a
){
2774 void sws_freeFilter(SwsFilter
*filter
){
2775 if (!filter
) return;
2777 if (filter
->lumH
) sws_freeVec(filter
->lumH
);
2778 if (filter
->lumV
) sws_freeVec(filter
->lumV
);
2779 if (filter
->chrH
) sws_freeVec(filter
->chrH
);
2780 if (filter
->chrV
) sws_freeVec(filter
->chrV
);
2785 void sws_freeContext(SwsContext
*c
){
2791 for (i
=0; i
<c
->vLumBufSize
; i
++)
2793 av_free(c
->lumPixBuf
[i
]);
2794 c
->lumPixBuf
[i
]=NULL
;
2796 av_free(c
->lumPixBuf
);
2802 for (i
=0; i
<c
->vChrBufSize
; i
++)
2804 av_free(c
->chrPixBuf
[i
]);
2805 c
->chrPixBuf
[i
]=NULL
;
2807 av_free(c
->chrPixBuf
);
2811 av_free(c
->vLumFilter
);
2812 c
->vLumFilter
= NULL
;
2813 av_free(c
->vChrFilter
);
2814 c
->vChrFilter
= NULL
;
2815 av_free(c
->hLumFilter
);
2816 c
->hLumFilter
= NULL
;
2817 av_free(c
->hChrFilter
);
2818 c
->hChrFilter
= NULL
;
2820 av_free(c
->vYCoeffsBank
);
2821 c
->vYCoeffsBank
= NULL
;
2822 av_free(c
->vCCoeffsBank
);
2823 c
->vCCoeffsBank
= NULL
;
2826 av_free(c
->vLumFilterPos
);
2827 c
->vLumFilterPos
= NULL
;
2828 av_free(c
->vChrFilterPos
);
2829 c
->vChrFilterPos
= NULL
;
2830 av_free(c
->hLumFilterPos
);
2831 c
->hLumFilterPos
= NULL
;
2832 av_free(c
->hChrFilterPos
);
2833 c
->hChrFilterPos
= NULL
;
2835 #if defined(ARCH_X86) && defined(CONFIG_GPL)
2836 #ifdef MAP_ANONYMOUS
2837 if (c
->funnyYCode
) munmap(c
->funnyYCode
, MAX_FUNNY_CODE_SIZE
);
2838 if (c
->funnyUVCode
) munmap(c
->funnyUVCode
, MAX_FUNNY_CODE_SIZE
);
2840 av_free(c
->funnyYCode
);
2841 av_free(c
->funnyUVCode
);
2844 c
->funnyUVCode
=NULL
;
2845 #endif /* defined(ARCH_X86) */
2847 av_free(c
->lumMmx2Filter
);
2848 c
->lumMmx2Filter
=NULL
;
2849 av_free(c
->chrMmx2Filter
);
2850 c
->chrMmx2Filter
=NULL
;
2851 av_free(c
->lumMmx2FilterPos
);
2852 c
->lumMmx2FilterPos
=NULL
;
2853 av_free(c
->chrMmx2FilterPos
);
2854 c
->chrMmx2FilterPos
=NULL
;
2855 av_free(c
->yuvTable
);
2862 * Checks if context is valid or reallocs a new one instead.
2863 * If context is NULL, just calls sws_getContext() to get a new one.
2864 * Otherwise, checks if the parameters are the same already saved in context.
2865 * If that is the case, returns the current context.
2866 * Otherwise, frees context and gets a new one.
2868 * Be warned that srcFilter, dstFilter are not checked, they are
2869 * asumed to remain valid.
2871 struct SwsContext
*sws_getCachedContext(struct SwsContext
*context
,
2872 int srcW
, int srcH
, int srcFormat
,
2873 int dstW
, int dstH
, int dstFormat
, int flags
,
2874 SwsFilter
*srcFilter
, SwsFilter
*dstFilter
, double *param
)
2876 if (context
!= NULL
) {
2877 if ((context
->srcW
!= srcW
) || (context
->srcH
!= srcH
) ||
2878 (context
->srcFormat
!= srcFormat
) ||
2879 (context
->dstW
!= dstW
) || (context
->dstH
!= dstH
) ||
2880 (context
->dstFormat
!= dstFormat
) || (context
->flags
!= flags
) ||
2881 (context
->param
!= param
))
2883 sws_freeContext(context
);
2887 if (context
== NULL
) {
2888 return sws_getContext(srcW
, srcH
, srcFormat
,
2889 dstW
, dstH
, dstFormat
, flags
,
2890 srcFilter
, dstFilter
, param
);