a52626cbd5d72545045ece9edd8cd7307a88985e
[libav.git] / libswscale / swscale_internal.h
1 /*
2 * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3 *
4 * This file is part of Libav.
5 *
6 * Libav is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * Libav is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with Libav; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #ifndef SWSCALE_SWSCALE_INTERNAL_H
22 #define SWSCALE_SWSCALE_INTERNAL_H
23
24 #include "config.h"
25
26 #if HAVE_ALTIVEC_H
27 #include <altivec.h>
28 #endif
29
30 #include "libavutil/avassert.h"
31 #include "libavutil/avutil.h"
32 #include "libavutil/common.h"
33 #include "libavutil/log.h"
34 #include "libavutil/pixfmt.h"
35 #include "libavutil/pixdesc.h"
36
37 #define STR(s) AV_TOSTRING(s) // AV_STRINGIFY is too long
38
39 #define FAST_BGR2YV12 // use 7-bit instead of 15-bit coefficients
40
41 #define MAX_FILTER_SIZE 256
42
43 #if HAVE_BIGENDIAN
44 #define ALT32_CORR (-1)
45 #else
46 #define ALT32_CORR 1
47 #endif
48
49 #if ARCH_X86_64
50 # define APCK_PTR2 8
51 # define APCK_COEF 16
52 # define APCK_SIZE 24
53 #else
54 # define APCK_PTR2 4
55 # define APCK_COEF 8
56 # define APCK_SIZE 16
57 #endif
58
59 struct SwsContext;
60
61 typedef int (*SwsFunc)(struct SwsContext *context, const uint8_t *src[],
62 int srcStride[], int srcSliceY, int srcSliceH,
63 uint8_t *dst[], int dstStride[]);
64
65 /**
66 * Write one line of horizontally scaled data to planar output
67 * without any additional vertical scaling (or point-scaling).
68 *
69 * @param src scaled source data, 15bit for 8-10bit output,
70 * 19-bit for 16bit output (in int32_t)
71 * @param dest pointer to the output plane. For >8bit
72 * output, this is in uint16_t
73 * @param dstW width of destination in pixels
74 * @param dither ordered dither array of type int16_t and size 8
75 * @param offset Dither offset
76 */
77 typedef void (*yuv2planar1_fn)(const int16_t *src, uint8_t *dest, int dstW,
78 const uint8_t *dither, int offset);
79
80 /**
81 * Write one line of horizontally scaled data to planar output
82 * with multi-point vertical scaling between input pixels.
83 *
84 * @param filter vertical luma/alpha scaling coefficients, 12bit [0,4096]
85 * @param src scaled luma (Y) or alpha (A) source data, 15bit for 8-10bit output,
86 * 19-bit for 16bit output (in int32_t)
87 * @param filterSize number of vertical input lines to scale
88 * @param dest pointer to output plane. For >8bit
89 * output, this is in uint16_t
90 * @param dstW width of destination pixels
91 * @param offset Dither offset
92 */
93 typedef void (*yuv2planarX_fn)(const int16_t *filter, int filterSize,
94 const int16_t **src, uint8_t *dest, int dstW,
95 const uint8_t *dither, int offset);
96
97 /**
98 * Write one line of horizontally scaled chroma to interleaved output
99 * with multi-point vertical scaling between input pixels.
100 *
101 * @param c SWS scaling context
102 * @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
103 * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
104 * 19-bit for 16bit output (in int32_t)
105 * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
106 * 19-bit for 16bit output (in int32_t)
107 * @param chrFilterSize number of vertical chroma input lines to scale
108 * @param dest pointer to the output plane. For >8bit
109 * output, this is in uint16_t
110 * @param dstW width of chroma planes
111 */
112 typedef void (*yuv2interleavedX_fn)(struct SwsContext *c,
113 const int16_t *chrFilter,
114 int chrFilterSize,
115 const int16_t **chrUSrc,
116 const int16_t **chrVSrc,
117 uint8_t *dest, int dstW);
118
119 /**
120 * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
121 * output without any additional vertical scaling (or point-scaling). Note
122 * that this function may do chroma scaling, see the "uvalpha" argument.
123 *
124 * @param c SWS scaling context
125 * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
126 * 19-bit for 16bit output (in int32_t)
127 * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
128 * 19-bit for 16bit output (in int32_t)
129 * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
130 * 19-bit for 16bit output (in int32_t)
131 * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
132 * 19-bit for 16bit output (in int32_t)
133 * @param dest pointer to the output plane. For 16bit output, this is
134 * uint16_t
135 * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
136 * to write into dest[]
137 * @param uvalpha chroma scaling coefficient for the second line of chroma
138 * pixels, either 2048 or 0. If 0, one chroma input is used
139 * for 2 output pixels (or if the SWS_FLAG_FULL_CHR_INT flag
140 * is set, it generates 1 output pixel). If 2048, two chroma
141 * input pixels should be averaged for 2 output pixels (this
142 * only happens if SWS_FLAG_FULL_CHR_INT is not set)
143 * @param y vertical line number for this output. This does not need
144 * to be used to calculate the offset in the destination,
145 * but can be used to generate comfort noise using dithering
146 * for some output formats.
147 */
148 typedef void (*yuv2packed1_fn)(struct SwsContext *c, const int16_t *lumSrc,
149 const int16_t *chrUSrc[2],
150 const int16_t *chrVSrc[2],
151 const int16_t *alpSrc, uint8_t *dest,
152 int dstW, int uvalpha, int y);
153 /**
154 * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
155 * output by doing bilinear scaling between two input lines.
156 *
157 * @param c SWS scaling context
158 * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
159 * 19-bit for 16bit output (in int32_t)
160 * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
161 * 19-bit for 16bit output (in int32_t)
162 * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
163 * 19-bit for 16bit output (in int32_t)
164 * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
165 * 19-bit for 16bit output (in int32_t)
166 * @param dest pointer to the output plane. For 16bit output, this is
167 * uint16_t
168 * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
169 * to write into dest[]
170 * @param yalpha luma/alpha scaling coefficients for the second input line.
171 * The first line's coefficients can be calculated by using
172 * 4096 - yalpha
173 * @param uvalpha chroma scaling coefficient for the second input line. The
174 * first line's coefficients can be calculated by using
175 * 4096 - uvalpha
176 * @param y vertical line number for this output. This does not need
177 * to be used to calculate the offset in the destination,
178 * but can be used to generate comfort noise using dithering
179 * for some output formats.
180 */
181 typedef void (*yuv2packed2_fn)(struct SwsContext *c, const int16_t *lumSrc[2],
182 const int16_t *chrUSrc[2],
183 const int16_t *chrVSrc[2],
184 const int16_t *alpSrc[2],
185 uint8_t *dest,
186 int dstW, int yalpha, int uvalpha, int y);
187 /**
188 * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
189 * output by doing multi-point vertical scaling between input pixels.
190 *
191 * @param c SWS scaling context
192 * @param lumFilter vertical luma/alpha scaling coefficients, 12bit [0,4096]
193 * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
194 * 19-bit for 16bit output (in int32_t)
195 * @param lumFilterSize number of vertical luma/alpha input lines to scale
196 * @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
197 * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
198 * 19-bit for 16bit output (in int32_t)
199 * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
200 * 19-bit for 16bit output (in int32_t)
201 * @param chrFilterSize number of vertical chroma input lines to scale
202 * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
203 * 19-bit for 16bit output (in int32_t)
204 * @param dest pointer to the output plane. For 16bit output, this is
205 * uint16_t
206 * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
207 * to write into dest[]
208 * @param y vertical line number for this output. This does not need
209 * to be used to calculate the offset in the destination,
210 * but can be used to generate comfort noise using dithering
211 * or some output formats.
212 */
213 typedef void (*yuv2packedX_fn)(struct SwsContext *c, const int16_t *lumFilter,
214 const int16_t **lumSrc, int lumFilterSize,
215 const int16_t *chrFilter,
216 const int16_t **chrUSrc,
217 const int16_t **chrVSrc, int chrFilterSize,
218 const int16_t **alpSrc, uint8_t *dest,
219 int dstW, int y);
220
221 /**
222 * Write one line of horizontally scaled Y/U/V/A to YUV/RGB
223 * output by doing multi-point vertical scaling between input pixels.
224 *
225 * @param c SWS scaling context
226 * @param lumFilter vertical luma/alpha scaling coefficients, 12bit [0,4096]
227 * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
228 * 19-bit for 16bit output (in int32_t)
229 * @param lumFilterSize number of vertical luma/alpha input lines to scale
230 * @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
231 * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
232 * 19-bit for 16bit output (in int32_t)
233 * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
234 * 19-bit for 16bit output (in int32_t)
235 * @param chrFilterSize number of vertical chroma input lines to scale
236 * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
237 * 19-bit for 16bit output (in int32_t)
238 * @param dest pointer to the output planes. For 16bit output, this is
239 * uint16_t
240 * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
241 * to write into dest[]
242 * @param y vertical line number for this output. This does not need
243 * to be used to calculate the offset in the destination,
244 * but can be used to generate comfort noise using dithering
245 * or some output formats.
246 */
247 typedef void (*yuv2anyX_fn)(struct SwsContext *c, const int16_t *lumFilter,
248 const int16_t **lumSrc, int lumFilterSize,
249 const int16_t *chrFilter,
250 const int16_t **chrUSrc,
251 const int16_t **chrVSrc, int chrFilterSize,
252 const int16_t **alpSrc, uint8_t **dest,
253 int dstW, int y);
254
255 /* This struct should be aligned on at least a 32-byte boundary. */
256 typedef struct SwsContext {
257 /**
258 * info on struct for av_log
259 */
260 const AVClass *av_class;
261
262 /**
263 * Note that src, dst, srcStride, dstStride will be copied in the
264 * sws_scale() wrapper so they can be freely modified here.
265 */
266 SwsFunc swScale;
267 int srcW; ///< Width of source luma/alpha planes.
268 int srcH; ///< Height of source luma/alpha planes.
269 int dstH; ///< Height of destination luma/alpha planes.
270 int chrSrcW; ///< Width of source chroma planes.
271 int chrSrcH; ///< Height of source chroma planes.
272 int chrDstW; ///< Width of destination chroma planes.
273 int chrDstH; ///< Height of destination chroma planes.
274 int lumXInc, chrXInc;
275 int lumYInc, chrYInc;
276 enum AVPixelFormat dstFormat; ///< Destination pixel format.
277 enum AVPixelFormat srcFormat; ///< Source pixel format.
278 int dstFormatBpp; ///< Number of bits per pixel of the destination pixel format.
279 int srcFormatBpp; ///< Number of bits per pixel of the source pixel format.
280 int dstBpc, srcBpc;
281 int chrSrcHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source image.
282 int chrSrcVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image.
283 int chrDstHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination image.
284 int chrDstVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination image.
285 int vChrDrop; ///< Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user.
286 int sliceDir; ///< Direction that slices are fed to the scaler (1 = top-to-bottom, -1 = bottom-to-top).
287 double param[2]; ///< Input parameters for scaling algorithms that need them.
288
289 uint32_t pal_yuv[256];
290 uint32_t pal_rgb[256];
291
292 /**
293 * @name Scaled horizontal lines ring buffer.
294 * The horizontal scaler keeps just enough scaled lines in a ring buffer
295 * so they may be passed to the vertical scaler. The pointers to the
296 * allocated buffers for each line are duplicated in sequence in the ring
297 * buffer to simplify indexing and avoid wrapping around between lines
298 * inside the vertical scaler code. The wrapping is done before the
299 * vertical scaler is called.
300 */
301 //@{
302 int16_t **lumPixBuf; ///< Ring buffer for scaled horizontal luma plane lines to be fed to the vertical scaler.
303 int16_t **chrUPixBuf; ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
304 int16_t **chrVPixBuf; ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
305 int16_t **alpPixBuf; ///< Ring buffer for scaled horizontal alpha plane lines to be fed to the vertical scaler.
306 int vLumBufSize; ///< Number of vertical luma/alpha lines allocated in the ring buffer.
307 int vChrBufSize; ///< Number of vertical chroma lines allocated in the ring buffer.
308 int lastInLumBuf; ///< Last scaled horizontal luma/alpha line from source in the ring buffer.
309 int lastInChrBuf; ///< Last scaled horizontal chroma line from source in the ring buffer.
310 int lumBufIndex; ///< Index in ring buffer of the last scaled horizontal luma/alpha line from source.
311 int chrBufIndex; ///< Index in ring buffer of the last scaled horizontal chroma line from source.
312 //@}
313
314 uint8_t *formatConvBuffer;
315
316 /**
317 * @name Horizontal and vertical filters.
318 * To better understand the following fields, here is a pseudo-code of
319 * their usage in filtering a horizontal line:
320 * @code
321 * for (i = 0; i < width; i++) {
322 * dst[i] = 0;
323 * for (j = 0; j < filterSize; j++)
324 * dst[i] += src[ filterPos[i] + j ] * filter[ filterSize * i + j ];
325 * dst[i] >>= FRAC_BITS; // The actual implementation is fixed-point.
326 * }
327 * @endcode
328 */
329 //@{
330 int16_t *hLumFilter; ///< Array of horizontal filter coefficients for luma/alpha planes.
331 int16_t *hChrFilter; ///< Array of horizontal filter coefficients for chroma planes.
332 int16_t *vLumFilter; ///< Array of vertical filter coefficients for luma/alpha planes.
333 int16_t *vChrFilter; ///< Array of vertical filter coefficients for chroma planes.
334 int32_t *hLumFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
335 int32_t *hChrFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for chroma planes.
336 int32_t *vLumFilterPos; ///< Array of vertical filter starting positions for each dst[i] for luma/alpha planes.
337 int32_t *vChrFilterPos; ///< Array of vertical filter starting positions for each dst[i] for chroma planes.
338 int hLumFilterSize; ///< Horizontal filter size for luma/alpha pixels.
339 int hChrFilterSize; ///< Horizontal filter size for chroma pixels.
340 int vLumFilterSize; ///< Vertical filter size for luma/alpha pixels.
341 int vChrFilterSize; ///< Vertical filter size for chroma pixels.
342 //@}
343
344 int lumMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes.
345 int chrMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes.
346 uint8_t *lumMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes.
347 uint8_t *chrMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes.
348
349 int canMMXEXTBeUsed;
350
351 int dstY; ///< Last destination vertical line output from last slice.
352 int flags; ///< Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...
353 void *yuvTable; // pointer to the yuv->rgb table start so it can be freed()
354 uint8_t *table_rV[256];
355 uint8_t *table_gU[256];
356 int table_gV[256];
357 uint8_t *table_bU[256];
358
359 //Colorspace stuff
360 int contrast, brightness, saturation; // for sws_getColorspaceDetails
361 int srcColorspaceTable[4];
362 int dstColorspaceTable[4];
363 int srcRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (source image).
364 int dstRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (destination image).
365 int yuv2rgb_y_offset;
366 int yuv2rgb_y_coeff;
367 int yuv2rgb_v2r_coeff;
368 int yuv2rgb_v2g_coeff;
369 int yuv2rgb_u2g_coeff;
370 int yuv2rgb_u2b_coeff;
371
372 #define RED_DITHER "0*8"
373 #define GREEN_DITHER "1*8"
374 #define BLUE_DITHER "2*8"
375 #define Y_COEFF "3*8"
376 #define VR_COEFF "4*8"
377 #define UB_COEFF "5*8"
378 #define VG_COEFF "6*8"
379 #define UG_COEFF "7*8"
380 #define Y_OFFSET "8*8"
381 #define U_OFFSET "9*8"
382 #define V_OFFSET "10*8"
383 #define LUM_MMX_FILTER_OFFSET "11*8"
384 #define CHR_MMX_FILTER_OFFSET "11*8+4*4*256"
385 #define DSTW_OFFSET "11*8+4*4*256*2" //do not change, it is hardcoded in the ASM
386 #define ESP_OFFSET "11*8+4*4*256*2+8"
387 #define VROUNDER_OFFSET "11*8+4*4*256*2+16"
388 #define U_TEMP "11*8+4*4*256*2+24"
389 #define V_TEMP "11*8+4*4*256*2+32"
390 #define Y_TEMP "11*8+4*4*256*2+40"
391 #define ALP_MMX_FILTER_OFFSET "11*8+4*4*256*2+48"
392 #define UV_OFF_PX "11*8+4*4*256*3+48"
393 #define UV_OFF_BYTE "11*8+4*4*256*3+56"
394 #define DITHER16 "11*8+4*4*256*3+64"
395 #define DITHER32 "11*8+4*4*256*3+80"
396
397 DECLARE_ALIGNED(8, uint64_t, redDither);
398 DECLARE_ALIGNED(8, uint64_t, greenDither);
399 DECLARE_ALIGNED(8, uint64_t, blueDither);
400
401 DECLARE_ALIGNED(8, uint64_t, yCoeff);
402 DECLARE_ALIGNED(8, uint64_t, vrCoeff);
403 DECLARE_ALIGNED(8, uint64_t, ubCoeff);
404 DECLARE_ALIGNED(8, uint64_t, vgCoeff);
405 DECLARE_ALIGNED(8, uint64_t, ugCoeff);
406 DECLARE_ALIGNED(8, uint64_t, yOffset);
407 DECLARE_ALIGNED(8, uint64_t, uOffset);
408 DECLARE_ALIGNED(8, uint64_t, vOffset);
409 int32_t lumMmxFilter[4 * MAX_FILTER_SIZE];
410 int32_t chrMmxFilter[4 * MAX_FILTER_SIZE];
411 int dstW; ///< Width of destination luma/alpha planes.
412 DECLARE_ALIGNED(8, uint64_t, esp);
413 DECLARE_ALIGNED(8, uint64_t, vRounder);
414 DECLARE_ALIGNED(8, uint64_t, u_temp);
415 DECLARE_ALIGNED(8, uint64_t, v_temp);
416 DECLARE_ALIGNED(8, uint64_t, y_temp);
417 int32_t alpMmxFilter[4 * MAX_FILTER_SIZE];
418 // alignment of these values is not necessary, but merely here
419 // to maintain the same offset across x8632 and x86-64. Once we
420 // use proper offset macros in the asm, they can be removed.
421 DECLARE_ALIGNED(8, ptrdiff_t, uv_off_px); ///< offset (in pixels) between u and v planes
422 DECLARE_ALIGNED(8, ptrdiff_t, uv_off_byte); ///< offset (in bytes) between u and v planes
423 DECLARE_ALIGNED(8, uint16_t, dither16)[8];
424 DECLARE_ALIGNED(8, uint32_t, dither32)[8];
425
426 const uint8_t *chrDither8, *lumDither8;
427
428 #if HAVE_ALTIVEC
429 vector signed short CY;
430 vector signed short CRV;
431 vector signed short CBU;
432 vector signed short CGU;
433 vector signed short CGV;
434 vector signed short OY;
435 vector unsigned short CSHIFT;
436 vector signed short *vYCoeffsBank, *vCCoeffsBank;
437 #endif
438
439 #if ARCH_BFIN
440 DECLARE_ALIGNED(4, uint32_t, oy);
441 DECLARE_ALIGNED(4, uint32_t, oc);
442 DECLARE_ALIGNED(4, uint32_t, zero);
443 DECLARE_ALIGNED(4, uint32_t, cy);
444 DECLARE_ALIGNED(4, uint32_t, crv);
445 DECLARE_ALIGNED(4, uint32_t, rmask);
446 DECLARE_ALIGNED(4, uint32_t, cbu);
447 DECLARE_ALIGNED(4, uint32_t, bmask);
448 DECLARE_ALIGNED(4, uint32_t, cgu);
449 DECLARE_ALIGNED(4, uint32_t, cgv);
450 DECLARE_ALIGNED(4, uint32_t, gmask);
451 #endif
452
453 #if HAVE_VIS
454 DECLARE_ALIGNED(8, uint64_t, sparc_coeffs)[10];
455 #endif
456
457 /* function pointers for swScale() */
458 yuv2planar1_fn yuv2plane1;
459 yuv2planarX_fn yuv2planeX;
460 yuv2interleavedX_fn yuv2nv12cX;
461 yuv2packed1_fn yuv2packed1;
462 yuv2packed2_fn yuv2packed2;
463 yuv2packedX_fn yuv2packedX;
464 yuv2anyX_fn yuv2anyX;
465
466 /// Unscaled conversion of luma plane to YV12 for horizontal scaler.
467 void (*lumToYV12)(uint8_t *dst, const uint8_t *src,
468 int width, uint32_t *pal);
469 /// Unscaled conversion of alpha plane to YV12 for horizontal scaler.
470 void (*alpToYV12)(uint8_t *dst, const uint8_t *src,
471 int width, uint32_t *pal);
472 /// Unscaled conversion of chroma planes to YV12 for horizontal scaler.
473 void (*chrToYV12)(uint8_t *dstU, uint8_t *dstV,
474 const uint8_t *src1, const uint8_t *src2,
475 int width, uint32_t *pal);
476
477 /**
478 * Functions to read planar input, such as planar RGB, and convert
479 * internally to Y/UV.
480 */
481 /** @{ */
482 void (*readLumPlanar)(uint8_t *dst, const uint8_t *src[4], int width);
483 void (*readChrPlanar)(uint8_t *dstU, uint8_t *dstV, const uint8_t *src[4],
484 int width);
485 /** @} */
486
487 /**
488 * Scale one horizontal line of input data using a bilinear filter
489 * to produce one line of output data. Compared to SwsContext->hScale(),
490 * please take note of the following caveats when using these:
491 * - Scaling is done using only 7bit instead of 14bit coefficients.
492 * - You can use no more than 5 input pixels to produce 4 output
493 * pixels. Therefore, this filter should not be used for downscaling
494 * by more than ~20% in width (because that equals more than 5/4th
495 * downscaling and thus more than 5 pixels input per 4 pixels output).
496 * - In general, bilinear filters create artifacts during downscaling
497 * (even when <20%), because one output pixel will span more than one
498 * input pixel, and thus some pixels will need edges of both neighbor
499 * pixels to interpolate the output pixel. Since you can use at most
500 * two input pixels per output pixel in bilinear scaling, this is
501 * impossible and thus downscaling by any size will create artifacts.
502 * To enable this type of scaling, set SWS_FLAG_FAST_BILINEAR
503 * in SwsContext->flags.
504 */
505 /** @{ */
506 void (*hyscale_fast)(struct SwsContext *c,
507 int16_t *dst, int dstWidth,
508 const uint8_t *src, int srcW, int xInc);
509 void (*hcscale_fast)(struct SwsContext *c,
510 int16_t *dst1, int16_t *dst2, int dstWidth,
511 const uint8_t *src1, const uint8_t *src2,
512 int srcW, int xInc);
513 /** @} */
514
515 /**
516 * Scale one horizontal line of input data using a filter over the input
517 * lines, to produce one (differently sized) line of output data.
518 *
519 * @param dst pointer to destination buffer for horizontally scaled
520 * data. If the number of bits per component of one
521 * destination pixel (SwsContext->dstBpc) is <= 10, data
522 * will be 15bpc in 16bits (int16_t) width. Else (i.e.
523 * SwsContext->dstBpc == 16), data will be 19bpc in
524 * 32bits (int32_t) width.
525 * @param dstW width of destination image
526 * @param src pointer to source data to be scaled. If the number of
527 * bits per component of a source pixel (SwsContext->srcBpc)
528 * is 8, this is 8bpc in 8bits (uint8_t) width. Else
529 * (i.e. SwsContext->dstBpc > 8), this is native depth
530 * in 16bits (uint16_t) width. In other words, for 9-bit
531 * YUV input, this is 9bpc, for 10-bit YUV input, this is
532 * 10bpc, and for 16-bit RGB or YUV, this is 16bpc.
533 * @param filter filter coefficients to be used per output pixel for
534 * scaling. This contains 14bpp filtering coefficients.
535 * Guaranteed to contain dstW * filterSize entries.
536 * @param filterPos position of the first input pixel to be used for
537 * each output pixel during scaling. Guaranteed to
538 * contain dstW entries.
539 * @param filterSize the number of input coefficients to be used (and
540 * thus the number of input pixels to be used) for
541 * creating a single output pixel. Is aligned to 4
542 * (and input coefficients thus padded with zeroes)
543 * to simplify creating SIMD code.
544 */
545 /** @{ */
546 void (*hyScale)(struct SwsContext *c, int16_t *dst, int dstW,
547 const uint8_t *src, const int16_t *filter,
548 const int32_t *filterPos, int filterSize);
549 void (*hcScale)(struct SwsContext *c, int16_t *dst, int dstW,
550 const uint8_t *src, const int16_t *filter,
551 const int32_t *filterPos, int filterSize);
552 /** @} */
553
554 /// Color range conversion function for luma plane if needed.
555 void (*lumConvertRange)(int16_t *dst, int width);
556 /// Color range conversion function for chroma planes if needed.
557 void (*chrConvertRange)(int16_t *dst1, int16_t *dst2, int width);
558
559 int needs_hcscale; ///< Set if there are chroma planes to be converted.
560 } SwsContext;
561 //FIXME check init (where 0)
562
563 SwsFunc ff_yuv2rgb_get_func_ptr(SwsContext *c);
564 int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4],
565 int fullRange, int brightness,
566 int contrast, int saturation);
567 void ff_yuv2rgb_init_tables_ppc(SwsContext *c, const int inv_table[4],
568 int brightness, int contrast, int saturation);
569
570 void updateMMXDitherTables(SwsContext *c, int dstY, int lumBufIndex, int chrBufIndex,
571 int lastInLumBuf, int lastInChrBuf);
572
573 SwsFunc ff_yuv2rgb_init_x86(SwsContext *c);
574 SwsFunc ff_yuv2rgb_init_vis(SwsContext *c);
575 SwsFunc ff_yuv2rgb_init_ppc(SwsContext *c);
576 SwsFunc ff_yuv2rgb_get_func_ptr_bfin(SwsContext *c);
577 void ff_bfin_get_unscaled_swscale(SwsContext *c);
578
579 const char *sws_format_name(enum AVPixelFormat format);
580
581 static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
582 {
583 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
584 av_assert0(desc);
585 return desc->comp[0].depth_minus1 == 15;
586 }
587
588 static av_always_inline int is9_OR_10BPS(enum AVPixelFormat pix_fmt)
589 {
590 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
591 av_assert0(desc);
592 return desc->comp[0].depth_minus1 == 8 || desc->comp[0].depth_minus1 == 9;
593 }
594
595 static av_always_inline int isBE(enum AVPixelFormat pix_fmt)
596 {
597 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
598 av_assert0(desc);
599 return desc->flags & AV_PIX_FMT_FLAG_BE;
600 }
601
602 static av_always_inline int isYUV(enum AVPixelFormat pix_fmt)
603 {
604 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
605 av_assert0(desc);
606 return !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components >= 2;
607 }
608
609 static av_always_inline int isPlanarYUV(enum AVPixelFormat pix_fmt)
610 {
611 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
612 av_assert0(desc);
613 return ((desc->flags & AV_PIX_FMT_FLAG_PLANAR) && isYUV(pix_fmt));
614 }
615
616 static av_always_inline int isRGB(enum AVPixelFormat pix_fmt)
617 {
618 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
619 av_assert0(desc);
620 return (desc->flags & AV_PIX_FMT_FLAG_RGB);
621 }
622
623 #if 0 // FIXME
624 #define isGray(x) \
625 (!(av_pix_fmt_descriptors[x].flags & AV_PIX_FMT_FLAG_PAL) && \
626 av_pix_fmt_descriptors[x].nb_components <= 2)
627 #else
628 #define isGray(x) \
629 ((x) == AV_PIX_FMT_GRAY8 || \
630 (x) == AV_PIX_FMT_Y400A || \
631 (x) == AV_PIX_FMT_GRAY16BE || \
632 (x) == AV_PIX_FMT_GRAY16LE)
633 #endif
634
635 #define isRGBinInt(x) \
636 ((x) == AV_PIX_FMT_RGB48BE || \
637 (x) == AV_PIX_FMT_RGB48LE || \
638 (x) == AV_PIX_FMT_RGB32 || \
639 (x) == AV_PIX_FMT_RGB32_1 || \
640 (x) == AV_PIX_FMT_RGB24 || \
641 (x) == AV_PIX_FMT_RGB565BE || \
642 (x) == AV_PIX_FMT_RGB565LE || \
643 (x) == AV_PIX_FMT_RGB555BE || \
644 (x) == AV_PIX_FMT_RGB555LE || \
645 (x) == AV_PIX_FMT_RGB444BE || \
646 (x) == AV_PIX_FMT_RGB444LE || \
647 (x) == AV_PIX_FMT_RGB8 || \
648 (x) == AV_PIX_FMT_RGB4 || \
649 (x) == AV_PIX_FMT_RGB4_BYTE || \
650 (x) == AV_PIX_FMT_MONOBLACK || \
651 (x) == AV_PIX_FMT_MONOWHITE)
652
653 #define isBGRinInt(x) \
654 ((x) == AV_PIX_FMT_BGR48BE || \
655 (x) == AV_PIX_FMT_BGR48LE || \
656 (x) == AV_PIX_FMT_BGR32 || \
657 (x) == AV_PIX_FMT_BGR32_1 || \
658 (x) == AV_PIX_FMT_BGR24 || \
659 (x) == AV_PIX_FMT_BGR565BE || \
660 (x) == AV_PIX_FMT_BGR565LE || \
661 (x) == AV_PIX_FMT_BGR555BE || \
662 (x) == AV_PIX_FMT_BGR555LE || \
663 (x) == AV_PIX_FMT_BGR444BE || \
664 (x) == AV_PIX_FMT_BGR444LE || \
665 (x) == AV_PIX_FMT_BGR8 || \
666 (x) == AV_PIX_FMT_BGR4 || \
667 (x) == AV_PIX_FMT_BGR4_BYTE || \
668 (x) == AV_PIX_FMT_MONOBLACK || \
669 (x) == AV_PIX_FMT_MONOWHITE)
670
671 #define isAnyRGB(x) \
672 (isRGBinInt(x) || \
673 isBGRinInt(x))
674
675 static av_always_inline int isALPHA(enum AVPixelFormat pix_fmt)
676 {
677 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
678 av_assert0(desc);
679 return desc->nb_components == 2 || desc->nb_components == 4;
680 }
681
682 static av_always_inline int isPacked(enum AVPixelFormat pix_fmt)
683 {
684 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
685 av_assert0(desc);
686 return ((desc->nb_components >= 2 && !(desc->flags & AV_PIX_FMT_FLAG_PLANAR)) ||
687 pix_fmt == AV_PIX_FMT_PAL8);
688 }
689
690 static av_always_inline int isPlanar(enum AVPixelFormat pix_fmt)
691 {
692 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
693 av_assert0(desc);
694 return (desc->nb_components >= 2 && (desc->flags & AV_PIX_FMT_FLAG_PLANAR));
695 }
696
697 static av_always_inline int isPackedRGB(enum AVPixelFormat pix_fmt)
698 {
699 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
700 av_assert0(desc);
701 return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) == AV_PIX_FMT_FLAG_RGB);
702 }
703
704 static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt)
705 {
706 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
707 av_assert0(desc);
708 return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) ==
709 (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB));
710 }
711
712 static av_always_inline int usePal(enum AVPixelFormat pix_fmt)
713 {
714 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
715 av_assert0(desc);
716 return ((desc->flags & AV_PIX_FMT_FLAG_PAL) || (desc->flags & AV_PIX_FMT_FLAG_PSEUDOPAL) ||
717 pix_fmt == AV_PIX_FMT_Y400A);
718 }
719
720 extern const uint64_t ff_dither4[2];
721 extern const uint64_t ff_dither8[2];
722
723 extern const uint8_t ff_dither_4x4_16[4][8];
724 extern const uint8_t ff_dither_8x8_32[8][8];
725 extern const uint8_t ff_dither_8x8_73[8][8];
726 extern const uint8_t ff_dither_8x8_128[8][8];
727 extern const uint8_t ff_dither_8x8_220[8][8];
728
729 extern const int32_t ff_yuv2rgb_coeffs[8][4];
730
731 extern const AVClass sws_context_class;
732
733 /**
734 * Set c->swScale to an unscaled converter if one exists for the specific
735 * source and destination formats, bit depths, flags, etc.
736 */
737 void ff_get_unscaled_swscale(SwsContext *c);
738
739 void ff_swscale_get_unscaled_ppc(SwsContext *c);
740
741 /**
742 * Return function pointer to fastest main scaler path function depending
743 * on architecture and available optimizations.
744 */
745 SwsFunc ff_getSwsFunc(SwsContext *c);
746
747 void ff_sws_init_input_funcs(SwsContext *c);
748 void ff_sws_init_output_funcs(SwsContext *c,
749 yuv2planar1_fn *yuv2plane1,
750 yuv2planarX_fn *yuv2planeX,
751 yuv2interleavedX_fn *yuv2nv12cX,
752 yuv2packed1_fn *yuv2packed1,
753 yuv2packed2_fn *yuv2packed2,
754 yuv2packedX_fn *yuv2packedX,
755 yuv2anyX_fn *yuv2anyX);
756 void ff_sws_init_swscale_ppc(SwsContext *c);
757 void ff_sws_init_swscale_x86(SwsContext *c);
758
759 #endif /* SWSCALE_SWSCALE_INTERNAL_H */