34988a0c66c57fe3ffd3af8d9481273739e60b8a
[libav.git] / libswscale / utils.c
1 /*
2 * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #define _SVID_SOURCE //needed for MAP_ANONYMOUS
22 #define _DARWIN_C_SOURCE // needed for MAP_ANON
23 #include <inttypes.h>
24 #include <string.h>
25 #include <math.h>
26 #include <stdio.h>
27 #include "config.h"
28 #include <assert.h>
29 #if HAVE_SYS_MMAN_H
30 #include <sys/mman.h>
31 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
32 #define MAP_ANONYMOUS MAP_ANON
33 #endif
34 #endif
35 #if HAVE_VIRTUALALLOC
36 #define WIN32_LEAN_AND_MEAN
37 #include <windows.h>
38 #endif
39 #include "swscale.h"
40 #include "swscale_internal.h"
41 #include "rgb2rgb.h"
42 #include "libavutil/intreadwrite.h"
43 #include "libavutil/x86_cpu.h"
44 #include "libavutil/avutil.h"
45 #include "libavutil/bswap.h"
46 #include "libavutil/opt.h"
47 #include "libavutil/pixdesc.h"
48
49 unsigned swscale_version(void)
50 {
51 return LIBSWSCALE_VERSION_INT;
52 }
53
54 const char *swscale_configuration(void)
55 {
56 return LIBAV_CONFIGURATION;
57 }
58
59 const char *swscale_license(void)
60 {
61 #define LICENSE_PREFIX "libswscale license: "
62 return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
63 }
64
65 #define RET 0xC3 //near return opcode for x86
66
67 #define isSupportedIn(x) ( \
68 (x)==PIX_FMT_YUV420P \
69 || (x)==PIX_FMT_YUVA420P \
70 || (x)==PIX_FMT_YUYV422 \
71 || (x)==PIX_FMT_UYVY422 \
72 || (x)==PIX_FMT_RGB48BE \
73 || (x)==PIX_FMT_RGB48LE \
74 || (x)==PIX_FMT_RGB32 \
75 || (x)==PIX_FMT_RGB32_1 \
76 || (x)==PIX_FMT_BGR24 \
77 || (x)==PIX_FMT_BGR565 \
78 || (x)==PIX_FMT_BGR555 \
79 || (x)==PIX_FMT_BGR32 \
80 || (x)==PIX_FMT_BGR32_1 \
81 || (x)==PIX_FMT_RGB24 \
82 || (x)==PIX_FMT_RGB565 \
83 || (x)==PIX_FMT_RGB555 \
84 || (x)==PIX_FMT_GRAY8 \
85 || (x)==PIX_FMT_Y400A \
86 || (x)==PIX_FMT_YUV410P \
87 || (x)==PIX_FMT_YUV440P \
88 || (x)==PIX_FMT_NV12 \
89 || (x)==PIX_FMT_NV21 \
90 || (x)==PIX_FMT_GRAY16BE \
91 || (x)==PIX_FMT_GRAY16LE \
92 || (x)==PIX_FMT_YUV444P \
93 || (x)==PIX_FMT_YUV422P \
94 || (x)==PIX_FMT_YUV411P \
95 || (x)==PIX_FMT_YUVJ420P \
96 || (x)==PIX_FMT_YUVJ422P \
97 || (x)==PIX_FMT_YUVJ440P \
98 || (x)==PIX_FMT_YUVJ444P \
99 || (x)==PIX_FMT_PAL8 \
100 || (x)==PIX_FMT_BGR8 \
101 || (x)==PIX_FMT_RGB8 \
102 || (x)==PIX_FMT_BGR4_BYTE \
103 || (x)==PIX_FMT_RGB4_BYTE \
104 || (x)==PIX_FMT_YUV440P \
105 || (x)==PIX_FMT_MONOWHITE \
106 || (x)==PIX_FMT_MONOBLACK \
107 || (x)==PIX_FMT_YUV420P16LE \
108 || (x)==PIX_FMT_YUV422P16LE \
109 || (x)==PIX_FMT_YUV444P16LE \
110 || (x)==PIX_FMT_YUV420P16BE \
111 || (x)==PIX_FMT_YUV422P16BE \
112 || (x)==PIX_FMT_YUV444P16BE \
113 )
114
115 int sws_isSupportedInput(enum PixelFormat pix_fmt)
116 {
117 return isSupportedIn(pix_fmt);
118 }
119
120 #define isSupportedOut(x) ( \
121 (x)==PIX_FMT_YUV420P \
122 || (x)==PIX_FMT_YUVA420P \
123 || (x)==PIX_FMT_YUYV422 \
124 || (x)==PIX_FMT_UYVY422 \
125 || (x)==PIX_FMT_YUV444P \
126 || (x)==PIX_FMT_YUV422P \
127 || (x)==PIX_FMT_YUV411P \
128 || (x)==PIX_FMT_YUVJ420P \
129 || (x)==PIX_FMT_YUVJ422P \
130 || (x)==PIX_FMT_YUVJ440P \
131 || (x)==PIX_FMT_YUVJ444P \
132 || isAnyRGB(x) \
133 || (x)==PIX_FMT_NV12 \
134 || (x)==PIX_FMT_NV21 \
135 || (x)==PIX_FMT_GRAY16BE \
136 || (x)==PIX_FMT_GRAY16LE \
137 || (x)==PIX_FMT_GRAY8 \
138 || (x)==PIX_FMT_YUV410P \
139 || (x)==PIX_FMT_YUV440P \
140 || (x)==PIX_FMT_YUV420P16LE \
141 || (x)==PIX_FMT_YUV422P16LE \
142 || (x)==PIX_FMT_YUV444P16LE \
143 || (x)==PIX_FMT_YUV420P16BE \
144 || (x)==PIX_FMT_YUV422P16BE \
145 || (x)==PIX_FMT_YUV444P16BE \
146 )
147
148 int sws_isSupportedOutput(enum PixelFormat pix_fmt)
149 {
150 return isSupportedOut(pix_fmt);
151 }
152
153 extern const int32_t ff_yuv2rgb_coeffs[8][4];
154
155 const char *sws_format_name(enum PixelFormat format)
156 {
157 if ((unsigned)format < PIX_FMT_NB && av_pix_fmt_descriptors[format].name)
158 return av_pix_fmt_descriptors[format].name;
159 else
160 return "Unknown format";
161 }
162
163 static double getSplineCoeff(double a, double b, double c, double d, double dist)
164 {
165 // printf("%f %f %f %f %f\n", a,b,c,d,dist);
166 if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
167 else return getSplineCoeff( 0.0,
168 b+ 2.0*c + 3.0*d,
169 c + 3.0*d,
170 -b- 3.0*c - 6.0*d,
171 dist-1.0);
172 }
173
174 static int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
175 int srcW, int dstW, int filterAlign, int one, int flags,
176 SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
177 {
178 int i;
179 int filterSize;
180 int filter2Size;
181 int minFilterSize;
182 int64_t *filter=NULL;
183 int64_t *filter2=NULL;
184 const int64_t fone= 1LL<<54;
185 int ret= -1;
186 #if ARCH_X86
187 if (flags & SWS_CPU_CAPS_MMX)
188 __asm__ volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
189 #endif
190
191 // NOTE: the +1 is for the MMX scaler which reads over the end
192 FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW+1)*sizeof(int16_t), fail);
193
194 if (FFABS(xInc - 0x10000) <10) { // unscaled
195 int i;
196 filterSize= 1;
197 FF_ALLOCZ_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
198
199 for (i=0; i<dstW; i++) {
200 filter[i*filterSize]= fone;
201 (*filterPos)[i]=i;
202 }
203
204 } else if (flags&SWS_POINT) { // lame looking point sampling mode
205 int i;
206 int xDstInSrc;
207 filterSize= 1;
208 FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
209
210 xDstInSrc= xInc/2 - 0x8000;
211 for (i=0; i<dstW; i++) {
212 int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
213
214 (*filterPos)[i]= xx;
215 filter[i]= fone;
216 xDstInSrc+= xInc;
217 }
218 } else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) { // bilinear upscale
219 int i;
220 int xDstInSrc;
221 filterSize= 2;
222 FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
223
224 xDstInSrc= xInc/2 - 0x8000;
225 for (i=0; i<dstW; i++) {
226 int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
227 int j;
228
229 (*filterPos)[i]= xx;
230 //bilinear upscale / linear interpolate / area averaging
231 for (j=0; j<filterSize; j++) {
232 int64_t coeff= fone - FFABS((xx<<16) - xDstInSrc)*(fone>>16);
233 if (coeff<0) coeff=0;
234 filter[i*filterSize + j]= coeff;
235 xx++;
236 }
237 xDstInSrc+= xInc;
238 }
239 } else {
240 int xDstInSrc;
241 int sizeFactor;
242
243 if (flags&SWS_BICUBIC) sizeFactor= 4;
244 else if (flags&SWS_X) sizeFactor= 8;
245 else if (flags&SWS_AREA) sizeFactor= 1; //downscale only, for upscale it is bilinear
246 else if (flags&SWS_GAUSS) sizeFactor= 8; // infinite ;)
247 else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6;
248 else if (flags&SWS_SINC) sizeFactor= 20; // infinite ;)
249 else if (flags&SWS_SPLINE) sizeFactor= 20; // infinite ;)
250 else if (flags&SWS_BILINEAR) sizeFactor= 2;
251 else {
252 sizeFactor= 0; //GCC warning killer
253 assert(0);
254 }
255
256 if (xInc <= 1<<16) filterSize= 1 + sizeFactor; // upscale
257 else filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;
258
259 if (filterSize > srcW-2) filterSize=srcW-2;
260
261 FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
262
263 xDstInSrc= xInc - 0x10000;
264 for (i=0; i<dstW; i++) {
265 int xx= (xDstInSrc - ((filterSize-2)<<16)) / (1<<17);
266 int j;
267 (*filterPos)[i]= xx;
268 for (j=0; j<filterSize; j++) {
269 int64_t d= ((int64_t)FFABS((xx<<17) - xDstInSrc))<<13;
270 double floatd;
271 int64_t coeff;
272
273 if (xInc > 1<<16)
274 d= d*dstW/srcW;
275 floatd= d * (1.0/(1<<30));
276
277 if (flags & SWS_BICUBIC) {
278 int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1<<24);
279 int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24);
280 int64_t dd = ( d*d)>>30;
281 int64_t ddd= (dd*d)>>30;
282
283 if (d < 1LL<<30)
284 coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30);
285 else if (d < 1LL<<31)
286 coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30);
287 else
288 coeff=0.0;
289 coeff *= fone>>(30+24);
290 }
291 /* else if (flags & SWS_X) {
292 double p= param ? param*0.01 : 0.3;
293 coeff = d ? sin(d*M_PI)/(d*M_PI) : 1.0;
294 coeff*= pow(2.0, - p*d*d);
295 }*/
296 else if (flags & SWS_X) {
297 double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
298 double c;
299
300 if (floatd<1.0)
301 c = cos(floatd*M_PI);
302 else
303 c=-1.0;
304 if (c<0.0) c= -pow(-c, A);
305 else c= pow( c, A);
306 coeff= (c*0.5 + 0.5)*fone;
307 } else if (flags & SWS_AREA) {
308 int64_t d2= d - (1<<29);
309 if (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16));
310 else if (d2*xInc < (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16));
311 else coeff=0.0;
312 coeff *= fone>>(30+16);
313 } else if (flags & SWS_GAUSS) {
314 double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
315 coeff = (pow(2.0, - p*floatd*floatd))*fone;
316 } else if (flags & SWS_SINC) {
317 coeff = (d ? sin(floatd*M_PI)/(floatd*M_PI) : 1.0)*fone;
318 } else if (flags & SWS_LANCZOS) {
319 double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
320 coeff = (d ? sin(floatd*M_PI)*sin(floatd*M_PI/p)/(floatd*floatd*M_PI*M_PI/p) : 1.0)*fone;
321 if (floatd>p) coeff=0;
322 } else if (flags & SWS_BILINEAR) {
323 coeff= (1<<30) - d;
324 if (coeff<0) coeff=0;
325 coeff *= fone >> 30;
326 } else if (flags & SWS_SPLINE) {
327 double p=-2.196152422706632;
328 coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone;
329 } else {
330 coeff= 0.0; //GCC warning killer
331 assert(0);
332 }
333
334 filter[i*filterSize + j]= coeff;
335 xx++;
336 }
337 xDstInSrc+= 2*xInc;
338 }
339 }
340
341 /* apply src & dst Filter to filter -> filter2
342 av_free(filter);
343 */
344 assert(filterSize>0);
345 filter2Size= filterSize;
346 if (srcFilter) filter2Size+= srcFilter->length - 1;
347 if (dstFilter) filter2Size+= dstFilter->length - 1;
348 assert(filter2Size>0);
349 FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size*dstW*sizeof(*filter2), fail);
350
351 for (i=0; i<dstW; i++) {
352 int j, k;
353
354 if(srcFilter) {
355 for (k=0; k<srcFilter->length; k++) {
356 for (j=0; j<filterSize; j++)
357 filter2[i*filter2Size + k + j] += srcFilter->coeff[k]*filter[i*filterSize + j];
358 }
359 } else {
360 for (j=0; j<filterSize; j++)
361 filter2[i*filter2Size + j]= filter[i*filterSize + j];
362 }
363 //FIXME dstFilter
364
365 (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
366 }
367 av_freep(&filter);
368
369 /* try to reduce the filter-size (step1 find size and shift left) */
370 // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
371 minFilterSize= 0;
372 for (i=dstW-1; i>=0; i--) {
373 int min= filter2Size;
374 int j;
375 int64_t cutOff=0.0;
376
377 /* get rid of near zero elements on the left by shifting left */
378 for (j=0; j<filter2Size; j++) {
379 int k;
380 cutOff += FFABS(filter2[i*filter2Size]);
381
382 if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
383
384 /* preserve monotonicity because the core can't handle the filter otherwise */
385 if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
386
387 // move filter coefficients left
388 for (k=1; k<filter2Size; k++)
389 filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
390 filter2[i*filter2Size + k - 1]= 0;
391 (*filterPos)[i]++;
392 }
393
394 cutOff=0;
395 /* count near zeros on the right */
396 for (j=filter2Size-1; j>0; j--) {
397 cutOff += FFABS(filter2[i*filter2Size + j]);
398
399 if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
400 min--;
401 }
402
403 if (min>minFilterSize) minFilterSize= min;
404 }
405
406 if (flags & SWS_CPU_CAPS_ALTIVEC) {
407 // we can handle the special case 4,
408 // so we don't want to go to the full 8
409 if (minFilterSize < 5)
410 filterAlign = 4;
411
412 // We really don't want to waste our time
413 // doing useless computation, so fall back on
414 // the scalar C code for very small filters.
415 // Vectorizing is worth it only if you have a
416 // decent-sized vector.
417 if (minFilterSize < 3)
418 filterAlign = 1;
419 }
420
421 if (flags & SWS_CPU_CAPS_MMX) {
422 // special case for unscaled vertical filtering
423 if (minFilterSize == 1 && filterAlign == 2)
424 filterAlign= 1;
425 }
426
427 assert(minFilterSize > 0);
428 filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
429 assert(filterSize > 0);
430 filter= av_malloc(filterSize*dstW*sizeof(*filter));
431 if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
432 goto fail;
433 *outFilterSize= filterSize;
434
435 if (flags&SWS_PRINT_INFO)
436 av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
437 /* try to reduce the filter-size (step2 reduce it) */
438 for (i=0; i<dstW; i++) {
439 int j;
440
441 for (j=0; j<filterSize; j++) {
442 if (j>=filter2Size) filter[i*filterSize + j]= 0;
443 else filter[i*filterSize + j]= filter2[i*filter2Size + j];
444 if((flags & SWS_BITEXACT) && j>=minFilterSize)
445 filter[i*filterSize + j]= 0;
446 }
447 }
448
449 //FIXME try to align filterPos if possible
450
451 //fix borders
452 for (i=0; i<dstW; i++) {
453 int j;
454 if ((*filterPos)[i] < 0) {
455 // move filter coefficients left to compensate for filterPos
456 for (j=1; j<filterSize; j++) {
457 int left= FFMAX(j + (*filterPos)[i], 0);
458 filter[i*filterSize + left] += filter[i*filterSize + j];
459 filter[i*filterSize + j]=0;
460 }
461 (*filterPos)[i]= 0;
462 }
463
464 if ((*filterPos)[i] + filterSize > srcW) {
465 int shift= (*filterPos)[i] + filterSize - srcW;
466 // move filter coefficients right to compensate for filterPos
467 for (j=filterSize-2; j>=0; j--) {
468 int right= FFMIN(j + shift, filterSize-1);
469 filter[i*filterSize +right] += filter[i*filterSize +j];
470 filter[i*filterSize +j]=0;
471 }
472 (*filterPos)[i]= srcW - filterSize;
473 }
474 }
475
476 // Note the +1 is for the MMX scaler which reads over the end
477 /* align at 16 for AltiVec (needed by hScale_altivec_real) */
478 FF_ALLOCZ_OR_GOTO(NULL, *outFilter, *outFilterSize*(dstW+1)*sizeof(int16_t), fail);
479
480 /* normalize & store in outFilter */
481 for (i=0; i<dstW; i++) {
482 int j;
483 int64_t error=0;
484 int64_t sum=0;
485
486 for (j=0; j<filterSize; j++) {
487 sum+= filter[i*filterSize + j];
488 }
489 sum= (sum + one/2)/ one;
490 for (j=0; j<*outFilterSize; j++) {
491 int64_t v= filter[i*filterSize + j] + error;
492 int intV= ROUNDED_DIV(v, sum);
493 (*outFilter)[i*(*outFilterSize) + j]= intV;
494 error= v - intV*sum;
495 }
496 }
497
498 (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
499 for (i=0; i<*outFilterSize; i++) {
500 int j= dstW*(*outFilterSize);
501 (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
502 }
503
504 ret=0;
505 fail:
506 av_free(filter);
507 av_free(filter2);
508 return ret;
509 }
510
511 #if ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT)
512 static int initMMX2HScaler(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits)
513 {
514 uint8_t *fragmentA;
515 x86_reg imm8OfPShufW1A;
516 x86_reg imm8OfPShufW2A;
517 x86_reg fragmentLengthA;
518 uint8_t *fragmentB;
519 x86_reg imm8OfPShufW1B;
520 x86_reg imm8OfPShufW2B;
521 x86_reg fragmentLengthB;
522 int fragmentPos;
523
524 int xpos, i;
525
526 // create an optimized horizontal scaling routine
527 /* This scaler is made of runtime-generated MMX2 code using specially
528 * tuned pshufw instructions. For every four output pixels, if four
529 * input pixels are enough for the fast bilinear scaling, then a chunk
530 * of fragmentB is used. If five input pixels are needed, then a chunk
531 * of fragmentA is used.
532 */
533
534 //code fragment
535
536 __asm__ volatile(
537 "jmp 9f \n\t"
538 // Begin
539 "0: \n\t"
540 "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
541 "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
542 "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
543 "punpcklbw %%mm7, %%mm1 \n\t"
544 "punpcklbw %%mm7, %%mm0 \n\t"
545 "pshufw $0xFF, %%mm1, %%mm1 \n\t"
546 "1: \n\t"
547 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
548 "2: \n\t"
549 "psubw %%mm1, %%mm0 \n\t"
550 "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
551 "pmullw %%mm3, %%mm0 \n\t"
552 "psllw $7, %%mm1 \n\t"
553 "paddw %%mm1, %%mm0 \n\t"
554
555 "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
556
557 "add $8, %%"REG_a" \n\t"
558 // End
559 "9: \n\t"
560 // "int $3 \n\t"
561 "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
562 "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
563 "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
564 "dec %1 \n\t"
565 "dec %2 \n\t"
566 "sub %0, %1 \n\t"
567 "sub %0, %2 \n\t"
568 "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
569 "sub %0, %3 \n\t"
570
571
572 :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
573 "=r" (fragmentLengthA)
574 );
575
576 __asm__ volatile(
577 "jmp 9f \n\t"
578 // Begin
579 "0: \n\t"
580 "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
581 "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
582 "punpcklbw %%mm7, %%mm0 \n\t"
583 "pshufw $0xFF, %%mm0, %%mm1 \n\t"
584 "1: \n\t"
585 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
586 "2: \n\t"
587 "psubw %%mm1, %%mm0 \n\t"
588 "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
589 "pmullw %%mm3, %%mm0 \n\t"
590 "psllw $7, %%mm1 \n\t"
591 "paddw %%mm1, %%mm0 \n\t"
592
593 "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
594
595 "add $8, %%"REG_a" \n\t"
596 // End
597 "9: \n\t"
598 // "int $3 \n\t"
599 "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
600 "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
601 "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
602 "dec %1 \n\t"
603 "dec %2 \n\t"
604 "sub %0, %1 \n\t"
605 "sub %0, %2 \n\t"
606 "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
607 "sub %0, %3 \n\t"
608
609
610 :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
611 "=r" (fragmentLengthB)
612 );
613
614 xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
615 fragmentPos=0;
616
617 for (i=0; i<dstW/numSplits; i++) {
618 int xx=xpos>>16;
619
620 if ((i&3) == 0) {
621 int a=0;
622 int b=((xpos+xInc)>>16) - xx;
623 int c=((xpos+xInc*2)>>16) - xx;
624 int d=((xpos+xInc*3)>>16) - xx;
625 int inc = (d+1<4);
626 uint8_t *fragment = (d+1<4) ? fragmentB : fragmentA;
627 x86_reg imm8OfPShufW1 = (d+1<4) ? imm8OfPShufW1B : imm8OfPShufW1A;
628 x86_reg imm8OfPShufW2 = (d+1<4) ? imm8OfPShufW2B : imm8OfPShufW2A;
629 x86_reg fragmentLength = (d+1<4) ? fragmentLengthB : fragmentLengthA;
630 int maxShift= 3-(d+inc);
631 int shift=0;
632
633 if (filterCode) {
634 filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
635 filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
636 filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
637 filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
638 filterPos[i/2]= xx;
639
640 memcpy(filterCode + fragmentPos, fragment, fragmentLength);
641
642 filterCode[fragmentPos + imm8OfPShufW1]=
643 (a+inc) | ((b+inc)<<2) | ((c+inc)<<4) | ((d+inc)<<6);
644 filterCode[fragmentPos + imm8OfPShufW2]=
645 a | (b<<2) | (c<<4) | (d<<6);
646
647 if (i+4-inc>=dstW) shift=maxShift; //avoid overread
648 else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
649
650 if (shift && i>=shift) {
651 filterCode[fragmentPos + imm8OfPShufW1]+= 0x55*shift;
652 filterCode[fragmentPos + imm8OfPShufW2]+= 0x55*shift;
653 filterPos[i/2]-=shift;
654 }
655 }
656
657 fragmentPos+= fragmentLength;
658
659 if (filterCode)
660 filterCode[fragmentPos]= RET;
661 }
662 xpos+=xInc;
663 }
664 if (filterCode)
665 filterPos[((i/2)+1)&(~1)]= xpos>>16; // needed to jump to the next part
666
667 return fragmentPos + 1;
668 }
669 #endif /* ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) */
670
671 static void getSubSampleFactors(int *h, int *v, enum PixelFormat format)
672 {
673 *h = av_pix_fmt_descriptors[format].log2_chroma_w;
674 *v = av_pix_fmt_descriptors[format].log2_chroma_h;
675 }
676
677 static int update_flags_cpu(int flags);
678
679 int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation)
680 {
681 memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
682 memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
683
684 c->brightness= brightness;
685 c->contrast = contrast;
686 c->saturation= saturation;
687 c->srcRange = srcRange;
688 c->dstRange = dstRange;
689 if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
690
691 c->dstFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[c->dstFormat]);
692 c->srcFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[c->srcFormat]);
693 c->flags = update_flags_cpu(c->flags);
694
695 ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
696 //FIXME factorize
697
698 #if HAVE_ALTIVEC
699 if (c->flags & SWS_CPU_CAPS_ALTIVEC)
700 ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness, contrast, saturation);
701 #endif
702 return 0;
703 }
704
705 int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation)
706 {
707 if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
708
709 *inv_table = c->srcColorspaceTable;
710 *table = c->dstColorspaceTable;
711 *srcRange = c->srcRange;
712 *dstRange = c->dstRange;
713 *brightness= c->brightness;
714 *contrast = c->contrast;
715 *saturation= c->saturation;
716
717 return 0;
718 }
719
720 static int handle_jpeg(enum PixelFormat *format)
721 {
722 switch (*format) {
723 case PIX_FMT_YUVJ420P: *format = PIX_FMT_YUV420P; return 1;
724 case PIX_FMT_YUVJ422P: *format = PIX_FMT_YUV422P; return 1;
725 case PIX_FMT_YUVJ444P: *format = PIX_FMT_YUV444P; return 1;
726 case PIX_FMT_YUVJ440P: *format = PIX_FMT_YUV440P; return 1;
727 default: return 0;
728 }
729 }
730
731 static int update_flags_cpu(int flags)
732 {
733 #if !CONFIG_RUNTIME_CPUDETECT //ensure that the flags match the compiled variant if cpudetect is off
734 flags &= ~( SWS_CPU_CAPS_MMX
735 |SWS_CPU_CAPS_MMX2
736 |SWS_CPU_CAPS_3DNOW
737 |SWS_CPU_CAPS_SSE2
738 |SWS_CPU_CAPS_ALTIVEC
739 |SWS_CPU_CAPS_BFIN);
740 flags |= ff_hardcodedcpuflags();
741 #endif /* CONFIG_RUNTIME_CPUDETECT */
742 return flags;
743 }
744
745 SwsContext *sws_alloc_context(void)
746 {
747 SwsContext *c= av_mallocz(sizeof(SwsContext));
748
749 c->av_class = &sws_context_class;
750 av_opt_set_defaults(c);
751
752 return c;
753 }
754
755 int sws_init_context(SwsContext *c, SwsFilter *srcFilter, SwsFilter *dstFilter)
756 {
757 int i;
758 int usesVFilter, usesHFilter;
759 int unscaled;
760 SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
761 int srcW= c->srcW;
762 int srcH= c->srcH;
763 int dstW= c->dstW;
764 int dstH= c->dstH;
765 int flags;
766 enum PixelFormat srcFormat= c->srcFormat;
767 enum PixelFormat dstFormat= c->dstFormat;
768
769 flags= c->flags = update_flags_cpu(c->flags);
770 #if ARCH_X86
771 if (flags & SWS_CPU_CAPS_MMX)
772 __asm__ volatile("emms\n\t"::: "memory");
773 #endif
774 if (!rgb15to16) sws_rgb2rgb_init(flags);
775
776 unscaled = (srcW == dstW && srcH == dstH);
777
778 if (!isSupportedIn(srcFormat)) {
779 av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", sws_format_name(srcFormat));
780 return AVERROR(EINVAL);
781 }
782 if (!isSupportedOut(dstFormat)) {
783 av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", sws_format_name(dstFormat));
784 return AVERROR(EINVAL);
785 }
786
787 i= flags & ( SWS_POINT
788 |SWS_AREA
789 |SWS_BILINEAR
790 |SWS_FAST_BILINEAR
791 |SWS_BICUBIC
792 |SWS_X
793 |SWS_GAUSS
794 |SWS_LANCZOS
795 |SWS_SINC
796 |SWS_SPLINE
797 |SWS_BICUBLIN);
798 if(!i || (i & (i-1))) {
799 av_log(NULL, AV_LOG_ERROR, "swScaler: Exactly one scaler algorithm must be chosen\n");
800 return AVERROR(EINVAL);
801 }
802 /* sanity check */
803 if (srcW<4 || srcH<1 || dstW<8 || dstH<1) { //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
804 av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
805 srcW, srcH, dstW, dstH);
806 return AVERROR(EINVAL);
807 }
808 if(srcW > VOFW || dstW > VOFW) {
809 av_log(NULL, AV_LOG_ERROR, "swScaler: Compile-time maximum width is "AV_STRINGIFY(VOFW)" change VOF/VOFW and recompile\n");
810 return AVERROR(EINVAL);
811 }
812
813 if (!dstFilter) dstFilter= &dummyFilter;
814 if (!srcFilter) srcFilter= &dummyFilter;
815
816 c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
817 c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
818 c->dstFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[dstFormat]);
819 c->srcFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[srcFormat]);
820 c->vRounder= 4* 0x0001000100010001ULL;
821
822 usesVFilter = (srcFilter->lumV && srcFilter->lumV->length>1) ||
823 (srcFilter->chrV && srcFilter->chrV->length>1) ||
824 (dstFilter->lumV && dstFilter->lumV->length>1) ||
825 (dstFilter->chrV && dstFilter->chrV->length>1);
826 usesHFilter = (srcFilter->lumH && srcFilter->lumH->length>1) ||
827 (srcFilter->chrH && srcFilter->chrH->length>1) ||
828 (dstFilter->lumH && dstFilter->lumH->length>1) ||
829 (dstFilter->chrH && dstFilter->chrH->length>1);
830
831 getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
832 getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
833
834 // reuse chroma for 2 pixels RGB/BGR unless user wants full chroma interpolation
835 if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
836
837 // drop some chroma lines if the user wants it
838 c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
839 c->chrSrcVSubSample+= c->vChrDrop;
840
841 // drop every other pixel for chroma calculation unless user wants full chroma
842 if (isAnyRGB(srcFormat) && !(flags&SWS_FULL_CHR_H_INP)
843 && srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
844 && srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
845 && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
846 && ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&SWS_FAST_BILINEAR)))
847 c->chrSrcHSubSample=1;
848
849 // Note the -((-x)>>y) is so that we always round toward +inf.
850 c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
851 c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
852 c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
853 c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
854
855 /* unscaled special cases */
856 if (unscaled && !usesHFilter && !usesVFilter && (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
857 ff_get_unscaled_swscale(c);
858
859 if (c->swScale) {
860 if (flags&SWS_PRINT_INFO)
861 av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
862 sws_format_name(srcFormat), sws_format_name(dstFormat));
863 return 0;
864 }
865 }
866
867 if (flags & SWS_CPU_CAPS_MMX2) {
868 c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
869 if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR)) {
870 if (flags&SWS_PRINT_INFO)
871 av_log(c, AV_LOG_INFO, "output width is not a multiple of 32 -> no MMX2 scaler\n");
872 }
873 if (usesHFilter) c->canMMX2BeUsed=0;
874 }
875 else
876 c->canMMX2BeUsed=0;
877
878 c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
879 c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
880
881 // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
882 // but only for the FAST_BILINEAR mode otherwise do correct scaling
883 // n-2 is the last chrominance sample available
884 // this is not perfect, but no one should notice the difference, the more correct variant
885 // would be like the vertical one, but that would require some special code for the
886 // first and last pixel
887 if (flags&SWS_FAST_BILINEAR) {
888 if (c->canMMX2BeUsed) {
889 c->lumXInc+= 20;
890 c->chrXInc+= 20;
891 }
892 //we don't use the x86 asm scaler if MMX is available
893 else if (flags & SWS_CPU_CAPS_MMX) {
894 c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
895 c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
896 }
897 }
898
899 /* precalculate horizontal scaler filter coefficients */
900 {
901 #if ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT)
902 // can't downscale !!!
903 if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR)) {
904 c->lumMmx2FilterCodeSize = initMMX2HScaler( dstW, c->lumXInc, NULL, NULL, NULL, 8);
905 c->chrMmx2FilterCodeSize = initMMX2HScaler(c->chrDstW, c->chrXInc, NULL, NULL, NULL, 4);
906
907 #ifdef MAP_ANONYMOUS
908 c->lumMmx2FilterCode = mmap(NULL, c->lumMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
909 c->chrMmx2FilterCode = mmap(NULL, c->chrMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
910 #elif HAVE_VIRTUALALLOC
911 c->lumMmx2FilterCode = VirtualAlloc(NULL, c->lumMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
912 c->chrMmx2FilterCode = VirtualAlloc(NULL, c->chrMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
913 #else
914 c->lumMmx2FilterCode = av_malloc(c->lumMmx2FilterCodeSize);
915 c->chrMmx2FilterCode = av_malloc(c->chrMmx2FilterCodeSize);
916 #endif
917
918 if (!c->lumMmx2FilterCode || !c->chrMmx2FilterCode)
919 return AVERROR(ENOMEM);
920 FF_ALLOCZ_OR_GOTO(c, c->hLumFilter , (dstW /8+8)*sizeof(int16_t), fail);
921 FF_ALLOCZ_OR_GOTO(c, c->hChrFilter , (c->chrDstW /4+8)*sizeof(int16_t), fail);
922 FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW /2/8+8)*sizeof(int32_t), fail);
923 FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW/2/4+8)*sizeof(int32_t), fail);
924
925 initMMX2HScaler( dstW, c->lumXInc, c->lumMmx2FilterCode, c->hLumFilter, c->hLumFilterPos, 8);
926 initMMX2HScaler(c->chrDstW, c->chrXInc, c->chrMmx2FilterCode, c->hChrFilter, c->hChrFilterPos, 4);
927
928 #ifdef MAP_ANONYMOUS
929 mprotect(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
930 mprotect(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
931 #endif
932 } else
933 #endif /* ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) */
934 {
935 const int filterAlign=
936 (flags & SWS_CPU_CAPS_MMX) ? 4 :
937 (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
938 1;
939
940 if (initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
941 srcW , dstW, filterAlign, 1<<14,
942 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
943 srcFilter->lumH, dstFilter->lumH, c->param) < 0)
944 goto fail;
945 if (initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
946 c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
947 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
948 srcFilter->chrH, dstFilter->chrH, c->param) < 0)
949 goto fail;
950 }
951 } // initialize horizontal stuff
952
953 /* precalculate vertical scaler filter coefficients */
954 {
955 const int filterAlign=
956 (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
957 (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
958 1;
959
960 if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
961 srcH , dstH, filterAlign, (1<<12),
962 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
963 srcFilter->lumV, dstFilter->lumV, c->param) < 0)
964 goto fail;
965 if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
966 c->chrSrcH, c->chrDstH, filterAlign, (1<<12),
967 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
968 srcFilter->chrV, dstFilter->chrV, c->param) < 0)
969 goto fail;
970
971 #if HAVE_ALTIVEC
972 FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof (vector signed short)*c->vLumFilterSize*c->dstH, fail);
973 FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH, fail);
974
975 for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
976 int j;
977 short *p = (short *)&c->vYCoeffsBank[i];
978 for (j=0;j<8;j++)
979 p[j] = c->vLumFilter[i];
980 }
981
982 for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
983 int j;
984 short *p = (short *)&c->vCCoeffsBank[i];
985 for (j=0;j<8;j++)
986 p[j] = c->vChrFilter[i];
987 }
988 #endif
989 }
990
991 // calculate buffer sizes so that they won't run out while handling these damn slices
992 c->vLumBufSize= c->vLumFilterSize;
993 c->vChrBufSize= c->vChrFilterSize;
994 for (i=0; i<dstH; i++) {
995 int chrI= i*c->chrDstH / dstH;
996 int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
997 ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
998
999 nextSlice>>= c->chrSrcVSubSample;
1000 nextSlice<<= c->chrSrcVSubSample;
1001 if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
1002 c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
1003 if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
1004 c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
1005 }
1006
1007 // allocate pixbufs (we use dynamic allocation because otherwise we would need to
1008 // allocate several megabytes to handle all possible cases)
1009 FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
1010 FF_ALLOC_OR_GOTO(c, c->chrPixBuf, c->vChrBufSize*2*sizeof(int16_t*), fail);
1011 if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
1012 FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
1013 //Note we need at least one pixel more at the end because of the MMX code (just in case someone wanna replace the 4000/8000)
1014 /* align at 16 bytes for AltiVec */
1015 for (i=0; i<c->vLumBufSize; i++) {
1016 FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i+c->vLumBufSize], VOF+1, fail);
1017 c->lumPixBuf[i] = c->lumPixBuf[i+c->vLumBufSize];
1018 }
1019 for (i=0; i<c->vChrBufSize; i++) {
1020 FF_ALLOC_OR_GOTO(c, c->chrPixBuf[i+c->vChrBufSize], (VOF+1)*2, fail);
1021 c->chrPixBuf[i] = c->chrPixBuf[i+c->vChrBufSize];
1022 }
1023 if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
1024 for (i=0; i<c->vLumBufSize; i++) {
1025 FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i+c->vLumBufSize], VOF+1, fail);
1026 c->alpPixBuf[i] = c->alpPixBuf[i+c->vLumBufSize];
1027 }
1028
1029 //try to avoid drawing green stuff between the right end and the stride end
1030 for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, (VOF+1)*2);
1031
1032 assert(2*VOFW == VOF);
1033
1034 assert(c->chrDstH <= dstH);
1035
1036 if (flags&SWS_PRINT_INFO) {
1037 if (flags&SWS_FAST_BILINEAR) av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
1038 else if (flags&SWS_BILINEAR) av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
1039 else if (flags&SWS_BICUBIC) av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
1040 else if (flags&SWS_X) av_log(c, AV_LOG_INFO, "Experimental scaler, ");
1041 else if (flags&SWS_POINT) av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
1042 else if (flags&SWS_AREA) av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
1043 else if (flags&SWS_BICUBLIN) av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
1044 else if (flags&SWS_GAUSS) av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
1045 else if (flags&SWS_SINC) av_log(c, AV_LOG_INFO, "Sinc scaler, ");
1046 else if (flags&SWS_LANCZOS) av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
1047 else if (flags&SWS_SPLINE) av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
1048 else av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
1049
1050 av_log(c, AV_LOG_INFO, "from %s to %s%s ",
1051 sws_format_name(srcFormat),
1052 #ifdef DITHER1XBPP
1053 dstFormat == PIX_FMT_BGR555 || dstFormat == PIX_FMT_BGR565 ||
1054 dstFormat == PIX_FMT_RGB444BE || dstFormat == PIX_FMT_RGB444LE ||
1055 dstFormat == PIX_FMT_BGR444BE || dstFormat == PIX_FMT_BGR444LE ? "dithered " : "",
1056 #else
1057 "",
1058 #endif
1059 sws_format_name(dstFormat));
1060
1061 if (flags & SWS_CPU_CAPS_MMX2) av_log(c, AV_LOG_INFO, "using MMX2\n");
1062 else if (flags & SWS_CPU_CAPS_3DNOW) av_log(c, AV_LOG_INFO, "using 3DNOW\n");
1063 else if (flags & SWS_CPU_CAPS_MMX) av_log(c, AV_LOG_INFO, "using MMX\n");
1064 else if (flags & SWS_CPU_CAPS_ALTIVEC) av_log(c, AV_LOG_INFO, "using AltiVec\n");
1065 else av_log(c, AV_LOG_INFO, "using C\n");
1066
1067 if (flags & SWS_CPU_CAPS_MMX) {
1068 if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
1069 av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
1070 else {
1071 if (c->hLumFilterSize==4)
1072 av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
1073 else if (c->hLumFilterSize==8)
1074 av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
1075 else
1076 av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");
1077
1078 if (c->hChrFilterSize==4)
1079 av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
1080 else if (c->hChrFilterSize==8)
1081 av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
1082 else
1083 av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
1084 }
1085 } else {
1086 #if ARCH_X86
1087 av_log(c, AV_LOG_VERBOSE, "using x86 asm scaler for horizontal scaling\n");
1088 #else
1089 if (flags & SWS_FAST_BILINEAR)
1090 av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
1091 else
1092 av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
1093 #endif
1094 }
1095 if (isPlanarYUV(dstFormat)) {
1096 if (c->vLumFilterSize==1)
1097 av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1098 else
1099 av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1100 } else {
1101 if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
1102 av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
1103 " 2-tap scaler for vertical chrominance scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1104 else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
1105 av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1106 else
1107 av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1108 }
1109
1110 if (dstFormat==PIX_FMT_BGR24)
1111 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 converter\n",
1112 (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
1113 else if (dstFormat==PIX_FMT_RGB32)
1114 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1115 else if (dstFormat==PIX_FMT_BGR565)
1116 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1117 else if (dstFormat==PIX_FMT_BGR555)
1118 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1119 else if (dstFormat == PIX_FMT_RGB444BE || dstFormat == PIX_FMT_RGB444LE ||
1120 dstFormat == PIX_FMT_BGR444BE || dstFormat == PIX_FMT_BGR444LE)
1121 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR12 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1122
1123 av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
1124 av_log(c, AV_LOG_DEBUG, "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1125 c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
1126 av_log(c, AV_LOG_DEBUG, "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1127 c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
1128 }
1129
1130 c->swScale= ff_getSwsFunc(c);
1131 return 0;
1132 fail: //FIXME replace things by appropriate error codes
1133 return -1;
1134 }
1135
1136 #if FF_API_SWS_GETCONTEXT
1137 SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat,
1138 int dstW, int dstH, enum PixelFormat dstFormat, int flags,
1139 SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
1140 {
1141 SwsContext *c;
1142
1143 if(!(c=sws_alloc_context()))
1144 return NULL;
1145
1146 c->flags= flags;
1147 c->srcW= srcW;
1148 c->srcH= srcH;
1149 c->dstW= dstW;
1150 c->dstH= dstH;
1151 c->srcRange = handle_jpeg(&srcFormat);
1152 c->dstRange = handle_jpeg(&dstFormat);
1153 c->srcFormat= srcFormat;
1154 c->dstFormat= dstFormat;
1155
1156 if (param) {
1157 c->param[0] = param[0];
1158 c->param[1] = param[1];
1159 }
1160 sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, c->dstRange, 0, 1<<16, 1<<16);
1161
1162 if(sws_init_context(c, srcFilter, dstFilter) < 0){
1163 sws_freeContext(c);
1164 return NULL;
1165 }
1166
1167 return c;
1168 }
1169 #endif
1170
1171 SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
1172 float lumaSharpen, float chromaSharpen,
1173 float chromaHShift, float chromaVShift,
1174 int verbose)
1175 {
1176 SwsFilter *filter= av_malloc(sizeof(SwsFilter));
1177 if (!filter)
1178 return NULL;
1179
1180 if (lumaGBlur!=0.0) {
1181 filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
1182 filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
1183 } else {
1184 filter->lumH= sws_getIdentityVec();
1185 filter->lumV= sws_getIdentityVec();
1186 }
1187
1188 if (chromaGBlur!=0.0) {
1189 filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
1190 filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
1191 } else {
1192 filter->chrH= sws_getIdentityVec();
1193 filter->chrV= sws_getIdentityVec();
1194 }
1195
1196 if (chromaSharpen!=0.0) {
1197 SwsVector *id= sws_getIdentityVec();
1198 sws_scaleVec(filter->chrH, -chromaSharpen);
1199 sws_scaleVec(filter->chrV, -chromaSharpen);
1200 sws_addVec(filter->chrH, id);
1201 sws_addVec(filter->chrV, id);
1202 sws_freeVec(id);
1203 }
1204
1205 if (lumaSharpen!=0.0) {
1206 SwsVector *id= sws_getIdentityVec();
1207 sws_scaleVec(filter->lumH, -lumaSharpen);
1208 sws_scaleVec(filter->lumV, -lumaSharpen);
1209 sws_addVec(filter->lumH, id);
1210 sws_addVec(filter->lumV, id);
1211 sws_freeVec(id);
1212 }
1213
1214 if (chromaHShift != 0.0)
1215 sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
1216
1217 if (chromaVShift != 0.0)
1218 sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
1219
1220 sws_normalizeVec(filter->chrH, 1.0);
1221 sws_normalizeVec(filter->chrV, 1.0);
1222 sws_normalizeVec(filter->lumH, 1.0);
1223 sws_normalizeVec(filter->lumV, 1.0);
1224
1225 if (verbose) sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
1226 if (verbose) sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
1227
1228 return filter;
1229 }
1230
1231 SwsVector *sws_allocVec(int length)
1232 {
1233 SwsVector *vec = av_malloc(sizeof(SwsVector));
1234 if (!vec)
1235 return NULL;
1236 vec->length = length;
1237 vec->coeff = av_malloc(sizeof(double) * length);
1238 if (!vec->coeff)
1239 av_freep(&vec);
1240 return vec;
1241 }
1242
1243 SwsVector *sws_getGaussianVec(double variance, double quality)
1244 {
1245 const int length= (int)(variance*quality + 0.5) | 1;
1246 int i;
1247 double middle= (length-1)*0.5;
1248 SwsVector *vec= sws_allocVec(length);
1249
1250 if (!vec)
1251 return NULL;
1252
1253 for (i=0; i<length; i++) {
1254 double dist= i-middle;
1255 vec->coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*M_PI);
1256 }
1257
1258 sws_normalizeVec(vec, 1.0);
1259
1260 return vec;
1261 }
1262
1263 SwsVector *sws_getConstVec(double c, int length)
1264 {
1265 int i;
1266 SwsVector *vec= sws_allocVec(length);
1267
1268 if (!vec)
1269 return NULL;
1270
1271 for (i=0; i<length; i++)
1272 vec->coeff[i]= c;
1273
1274 return vec;
1275 }
1276
1277 SwsVector *sws_getIdentityVec(void)
1278 {
1279 return sws_getConstVec(1.0, 1);
1280 }
1281
1282 static double sws_dcVec(SwsVector *a)
1283 {
1284 int i;
1285 double sum=0;
1286
1287 for (i=0; i<a->length; i++)
1288 sum+= a->coeff[i];
1289
1290 return sum;
1291 }
1292
1293 void sws_scaleVec(SwsVector *a, double scalar)
1294 {
1295 int i;
1296
1297 for (i=0; i<a->length; i++)
1298 a->coeff[i]*= scalar;
1299 }
1300
1301 void sws_normalizeVec(SwsVector *a, double height)
1302 {
1303 sws_scaleVec(a, height/sws_dcVec(a));
1304 }
1305
1306 static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
1307 {
1308 int length= a->length + b->length - 1;
1309 int i, j;
1310 SwsVector *vec= sws_getConstVec(0.0, length);
1311
1312 if (!vec)
1313 return NULL;
1314
1315 for (i=0; i<a->length; i++) {
1316 for (j=0; j<b->length; j++) {
1317 vec->coeff[i+j]+= a->coeff[i]*b->coeff[j];
1318 }
1319 }
1320
1321 return vec;
1322 }
1323
1324 static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
1325 {
1326 int length= FFMAX(a->length, b->length);
1327 int i;
1328 SwsVector *vec= sws_getConstVec(0.0, length);
1329
1330 if (!vec)
1331 return NULL;
1332
1333 for (i=0; i<a->length; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
1334 for (i=0; i<b->length; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
1335
1336 return vec;
1337 }
1338
1339 static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
1340 {
1341 int length= FFMAX(a->length, b->length);
1342 int i;
1343 SwsVector *vec= sws_getConstVec(0.0, length);
1344
1345 if (!vec)
1346 return NULL;
1347
1348 for (i=0; i<a->length; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
1349 for (i=0; i<b->length; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
1350
1351 return vec;
1352 }
1353
1354 /* shift left / or right if "shift" is negative */
1355 static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
1356 {
1357 int length= a->length + FFABS(shift)*2;
1358 int i;
1359 SwsVector *vec= sws_getConstVec(0.0, length);
1360
1361 if (!vec)
1362 return NULL;
1363
1364 for (i=0; i<a->length; i++) {
1365 vec->coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
1366 }
1367
1368 return vec;
1369 }
1370
1371 void sws_shiftVec(SwsVector *a, int shift)
1372 {
1373 SwsVector *shifted= sws_getShiftedVec(a, shift);
1374 av_free(a->coeff);
1375 a->coeff= shifted->coeff;
1376 a->length= shifted->length;
1377 av_free(shifted);
1378 }
1379
1380 void sws_addVec(SwsVector *a, SwsVector *b)
1381 {
1382 SwsVector *sum= sws_sumVec(a, b);
1383 av_free(a->coeff);
1384 a->coeff= sum->coeff;
1385 a->length= sum->length;
1386 av_free(sum);
1387 }
1388
1389 void sws_subVec(SwsVector *a, SwsVector *b)
1390 {
1391 SwsVector *diff= sws_diffVec(a, b);
1392 av_free(a->coeff);
1393 a->coeff= diff->coeff;
1394 a->length= diff->length;
1395 av_free(diff);
1396 }
1397
1398 void sws_convVec(SwsVector *a, SwsVector *b)
1399 {
1400 SwsVector *conv= sws_getConvVec(a, b);
1401 av_free(a->coeff);
1402 a->coeff= conv->coeff;
1403 a->length= conv->length;
1404 av_free(conv);
1405 }
1406
1407 SwsVector *sws_cloneVec(SwsVector *a)
1408 {
1409 int i;
1410 SwsVector *vec= sws_allocVec(a->length);
1411
1412 if (!vec)
1413 return NULL;
1414
1415 for (i=0; i<a->length; i++) vec->coeff[i]= a->coeff[i];
1416
1417 return vec;
1418 }
1419
1420 void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
1421 {
1422 int i;
1423 double max=0;
1424 double min=0;
1425 double range;
1426
1427 for (i=0; i<a->length; i++)
1428 if (a->coeff[i]>max) max= a->coeff[i];
1429
1430 for (i=0; i<a->length; i++)
1431 if (a->coeff[i]<min) min= a->coeff[i];
1432
1433 range= max - min;
1434
1435 for (i=0; i<a->length; i++) {
1436 int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
1437 av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
1438 for (;x>0; x--) av_log(log_ctx, log_level, " ");
1439 av_log(log_ctx, log_level, "|\n");
1440 }
1441 }
1442
1443 #if LIBSWSCALE_VERSION_MAJOR < 1
1444 void sws_printVec(SwsVector *a)
1445 {
1446 sws_printVec2(a, NULL, AV_LOG_DEBUG);
1447 }
1448 #endif
1449
1450 void sws_freeVec(SwsVector *a)
1451 {
1452 if (!a) return;
1453 av_freep(&a->coeff);
1454 a->length=0;
1455 av_free(a);
1456 }
1457
1458 void sws_freeFilter(SwsFilter *filter)
1459 {
1460 if (!filter) return;
1461
1462 if (filter->lumH) sws_freeVec(filter->lumH);
1463 if (filter->lumV) sws_freeVec(filter->lumV);
1464 if (filter->chrH) sws_freeVec(filter->chrH);
1465 if (filter->chrV) sws_freeVec(filter->chrV);
1466 av_free(filter);
1467 }
1468
1469 void sws_freeContext(SwsContext *c)
1470 {
1471 int i;
1472 if (!c) return;
1473
1474 if (c->lumPixBuf) {
1475 for (i=0; i<c->vLumBufSize; i++)
1476 av_freep(&c->lumPixBuf[i]);
1477 av_freep(&c->lumPixBuf);
1478 }
1479
1480 if (c->chrPixBuf) {
1481 for (i=0; i<c->vChrBufSize; i++)
1482 av_freep(&c->chrPixBuf[i]);
1483 av_freep(&c->chrPixBuf);
1484 }
1485
1486 if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
1487 for (i=0; i<c->vLumBufSize; i++)
1488 av_freep(&c->alpPixBuf[i]);
1489 av_freep(&c->alpPixBuf);
1490 }
1491
1492 av_freep(&c->vLumFilter);
1493 av_freep(&c->vChrFilter);
1494 av_freep(&c->hLumFilter);
1495 av_freep(&c->hChrFilter);
1496 #if HAVE_ALTIVEC
1497 av_freep(&c->vYCoeffsBank);
1498 av_freep(&c->vCCoeffsBank);
1499 #endif
1500
1501 av_freep(&c->vLumFilterPos);
1502 av_freep(&c->vChrFilterPos);
1503 av_freep(&c->hLumFilterPos);
1504 av_freep(&c->hChrFilterPos);
1505
1506 #if ARCH_X86
1507 #ifdef MAP_ANONYMOUS
1508 if (c->lumMmx2FilterCode) munmap(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize);
1509 if (c->chrMmx2FilterCode) munmap(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize);
1510 #elif HAVE_VIRTUALALLOC
1511 if (c->lumMmx2FilterCode) VirtualFree(c->lumMmx2FilterCode, 0, MEM_RELEASE);
1512 if (c->chrMmx2FilterCode) VirtualFree(c->chrMmx2FilterCode, 0, MEM_RELEASE);
1513 #else
1514 av_free(c->lumMmx2FilterCode);
1515 av_free(c->chrMmx2FilterCode);
1516 #endif
1517 c->lumMmx2FilterCode=NULL;
1518 c->chrMmx2FilterCode=NULL;
1519 #endif /* ARCH_X86 */
1520
1521 av_freep(&c->yuvTable);
1522
1523 av_free(c);
1524 }
1525
1526 struct SwsContext *sws_getCachedContext(struct SwsContext *context,
1527 int srcW, int srcH, enum PixelFormat srcFormat,
1528 int dstW, int dstH, enum PixelFormat dstFormat, int flags,
1529 SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
1530 {
1531 static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};
1532
1533 if (!param)
1534 param = default_param;
1535
1536 flags = update_flags_cpu(flags);
1537
1538 if (context &&
1539 (context->srcW != srcW ||
1540 context->srcH != srcH ||
1541 context->srcFormat != srcFormat ||
1542 context->dstW != dstW ||
1543 context->dstH != dstH ||
1544 context->dstFormat != dstFormat ||
1545 context->flags != flags ||
1546 context->param[0] != param[0] ||
1547 context->param[1] != param[1])) {
1548 sws_freeContext(context);
1549 context = NULL;
1550 }
1551
1552 if (!context) {
1553 if (!(context = sws_alloc_context()))
1554 return NULL;
1555 context->srcW = srcW;
1556 context->srcH = srcH;
1557 context->srcRange = handle_jpeg(&srcFormat);
1558 context->srcFormat = srcFormat;
1559 context->dstW = dstW;
1560 context->dstH = dstH;
1561 context->dstRange = handle_jpeg(&dstFormat);
1562 context->dstFormat = dstFormat;
1563 context->flags = flags;
1564 context->param[0] = param[0];
1565 context->param[1] = param[1];
1566 sws_setColorspaceDetails(context, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], context->srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, context->dstRange, 0, 1<<16, 1<<16);
1567 if (sws_init_context(context, srcFilter, dstFilter) < 0) {
1568 sws_freeContext(context);
1569 return NULL;
1570 }
1571 }
1572 return context;
1573 }
1574