Cosmetics: fix braces placement.
[libav.git] / libswscale / utils.c
1 /*
2 * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #define _SVID_SOURCE //needed for MAP_ANONYMOUS
22 #define _DARWIN_C_SOURCE // needed for MAP_ANON
23 #include <inttypes.h>
24 #include <string.h>
25 #include <math.h>
26 #include <stdio.h>
27 #include "config.h"
28 #include <assert.h>
29 #if HAVE_SYS_MMAN_H
30 #include <sys/mman.h>
31 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
32 #define MAP_ANONYMOUS MAP_ANON
33 #endif
34 #endif
35 #if HAVE_VIRTUALALLOC
36 #define WIN32_LEAN_AND_MEAN
37 #include <windows.h>
38 #endif
39 #include "swscale.h"
40 #include "swscale_internal.h"
41 #include "rgb2rgb.h"
42 #include "libavutil/intreadwrite.h"
43 #include "libavutil/x86_cpu.h"
44 #include "libavutil/avutil.h"
45 #include "libavutil/bswap.h"
46 #include "libavutil/pixdesc.h"
47
48 unsigned swscale_version(void)
49 {
50 return LIBSWSCALE_VERSION_INT;
51 }
52
53 const char *swscale_configuration(void)
54 {
55 return FFMPEG_CONFIGURATION;
56 }
57
58 const char *swscale_license(void)
59 {
60 #define LICENSE_PREFIX "libswscale license: "
61 return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
62 }
63
64 #define RET 0xC3 //near return opcode for x86
65
66 #define isSupportedIn(x) ( \
67 (x)==PIX_FMT_YUV420P \
68 || (x)==PIX_FMT_YUVA420P \
69 || (x)==PIX_FMT_YUYV422 \
70 || (x)==PIX_FMT_UYVY422 \
71 || (x)==PIX_FMT_RGB48BE \
72 || (x)==PIX_FMT_RGB48LE \
73 || (x)==PIX_FMT_RGB32 \
74 || (x)==PIX_FMT_RGB32_1 \
75 || (x)==PIX_FMT_BGR24 \
76 || (x)==PIX_FMT_BGR565 \
77 || (x)==PIX_FMT_BGR555 \
78 || (x)==PIX_FMT_BGR32 \
79 || (x)==PIX_FMT_BGR32_1 \
80 || (x)==PIX_FMT_RGB24 \
81 || (x)==PIX_FMT_RGB565 \
82 || (x)==PIX_FMT_RGB555 \
83 || (x)==PIX_FMT_GRAY8 \
84 || (x)==PIX_FMT_Y400A \
85 || (x)==PIX_FMT_YUV410P \
86 || (x)==PIX_FMT_YUV440P \
87 || (x)==PIX_FMT_NV12 \
88 || (x)==PIX_FMT_NV21 \
89 || (x)==PIX_FMT_GRAY16BE \
90 || (x)==PIX_FMT_GRAY16LE \
91 || (x)==PIX_FMT_YUV444P \
92 || (x)==PIX_FMT_YUV422P \
93 || (x)==PIX_FMT_YUV411P \
94 || (x)==PIX_FMT_YUVJ420P \
95 || (x)==PIX_FMT_YUVJ422P \
96 || (x)==PIX_FMT_YUVJ440P \
97 || (x)==PIX_FMT_YUVJ444P \
98 || (x)==PIX_FMT_PAL8 \
99 || (x)==PIX_FMT_BGR8 \
100 || (x)==PIX_FMT_RGB8 \
101 || (x)==PIX_FMT_BGR4_BYTE \
102 || (x)==PIX_FMT_RGB4_BYTE \
103 || (x)==PIX_FMT_YUV440P \
104 || (x)==PIX_FMT_MONOWHITE \
105 || (x)==PIX_FMT_MONOBLACK \
106 || (x)==PIX_FMT_YUV420P16LE \
107 || (x)==PIX_FMT_YUV422P16LE \
108 || (x)==PIX_FMT_YUV444P16LE \
109 || (x)==PIX_FMT_YUV420P16BE \
110 || (x)==PIX_FMT_YUV422P16BE \
111 || (x)==PIX_FMT_YUV444P16BE \
112 )
113
114 int sws_isSupportedInput(enum PixelFormat pix_fmt)
115 {
116 return isSupportedIn(pix_fmt);
117 }
118
119 #define isSupportedOut(x) ( \
120 (x)==PIX_FMT_YUV420P \
121 || (x)==PIX_FMT_YUVA420P \
122 || (x)==PIX_FMT_YUYV422 \
123 || (x)==PIX_FMT_UYVY422 \
124 || (x)==PIX_FMT_YUV444P \
125 || (x)==PIX_FMT_YUV422P \
126 || (x)==PIX_FMT_YUV411P \
127 || (x)==PIX_FMT_YUVJ420P \
128 || (x)==PIX_FMT_YUVJ422P \
129 || (x)==PIX_FMT_YUVJ440P \
130 || (x)==PIX_FMT_YUVJ444P \
131 || isAnyRGB(x) \
132 || (x)==PIX_FMT_NV12 \
133 || (x)==PIX_FMT_NV21 \
134 || (x)==PIX_FMT_GRAY16BE \
135 || (x)==PIX_FMT_GRAY16LE \
136 || (x)==PIX_FMT_GRAY8 \
137 || (x)==PIX_FMT_YUV410P \
138 || (x)==PIX_FMT_YUV440P \
139 || (x)==PIX_FMT_YUV420P16LE \
140 || (x)==PIX_FMT_YUV422P16LE \
141 || (x)==PIX_FMT_YUV444P16LE \
142 || (x)==PIX_FMT_YUV420P16BE \
143 || (x)==PIX_FMT_YUV422P16BE \
144 || (x)==PIX_FMT_YUV444P16BE \
145 )
146
147 int sws_isSupportedOutput(enum PixelFormat pix_fmt)
148 {
149 return isSupportedOut(pix_fmt);
150 }
151
152 extern const int32_t ff_yuv2rgb_coeffs[8][4];
153
154 const char *sws_format_name(enum PixelFormat format)
155 {
156 if ((unsigned)format < PIX_FMT_NB && av_pix_fmt_descriptors[format].name)
157 return av_pix_fmt_descriptors[format].name;
158 else
159 return "Unknown format";
160 }
161
162 static double getSplineCoeff(double a, double b, double c, double d, double dist)
163 {
164 // printf("%f %f %f %f %f\n", a,b,c,d,dist);
165 if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
166 else return getSplineCoeff( 0.0,
167 b+ 2.0*c + 3.0*d,
168 c + 3.0*d,
169 -b- 3.0*c - 6.0*d,
170 dist-1.0);
171 }
172
173 static int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
174 int srcW, int dstW, int filterAlign, int one, int flags,
175 SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
176 {
177 int i;
178 int filterSize;
179 int filter2Size;
180 int minFilterSize;
181 int64_t *filter=NULL;
182 int64_t *filter2=NULL;
183 const int64_t fone= 1LL<<54;
184 int ret= -1;
185 #if ARCH_X86
186 if (flags & SWS_CPU_CAPS_MMX)
187 __asm__ volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
188 #endif
189
190 // NOTE: the +1 is for the MMX scaler which reads over the end
191 FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW+1)*sizeof(int16_t), fail);
192
193 if (FFABS(xInc - 0x10000) <10) { // unscaled
194 int i;
195 filterSize= 1;
196 FF_ALLOCZ_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
197
198 for (i=0; i<dstW; i++) {
199 filter[i*filterSize]= fone;
200 (*filterPos)[i]=i;
201 }
202
203 } else if (flags&SWS_POINT) { // lame looking point sampling mode
204 int i;
205 int xDstInSrc;
206 filterSize= 1;
207 FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
208
209 xDstInSrc= xInc/2 - 0x8000;
210 for (i=0; i<dstW; i++) {
211 int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
212
213 (*filterPos)[i]= xx;
214 filter[i]= fone;
215 xDstInSrc+= xInc;
216 }
217 } else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) { // bilinear upscale
218 int i;
219 int xDstInSrc;
220 filterSize= 2;
221 FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
222
223 xDstInSrc= xInc/2 - 0x8000;
224 for (i=0; i<dstW; i++) {
225 int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
226 int j;
227
228 (*filterPos)[i]= xx;
229 //bilinear upscale / linear interpolate / area averaging
230 for (j=0; j<filterSize; j++) {
231 int64_t coeff= fone - FFABS((xx<<16) - xDstInSrc)*(fone>>16);
232 if (coeff<0) coeff=0;
233 filter[i*filterSize + j]= coeff;
234 xx++;
235 }
236 xDstInSrc+= xInc;
237 }
238 } else {
239 int xDstInSrc;
240 int sizeFactor;
241
242 if (flags&SWS_BICUBIC) sizeFactor= 4;
243 else if (flags&SWS_X) sizeFactor= 8;
244 else if (flags&SWS_AREA) sizeFactor= 1; //downscale only, for upscale it is bilinear
245 else if (flags&SWS_GAUSS) sizeFactor= 8; // infinite ;)
246 else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6;
247 else if (flags&SWS_SINC) sizeFactor= 20; // infinite ;)
248 else if (flags&SWS_SPLINE) sizeFactor= 20; // infinite ;)
249 else if (flags&SWS_BILINEAR) sizeFactor= 2;
250 else {
251 sizeFactor= 0; //GCC warning killer
252 assert(0);
253 }
254
255 if (xInc <= 1<<16) filterSize= 1 + sizeFactor; // upscale
256 else filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;
257
258 if (filterSize > srcW-2) filterSize=srcW-2;
259
260 FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
261
262 xDstInSrc= xInc - 0x10000;
263 for (i=0; i<dstW; i++) {
264 int xx= (xDstInSrc - ((filterSize-2)<<16)) / (1<<17);
265 int j;
266 (*filterPos)[i]= xx;
267 for (j=0; j<filterSize; j++) {
268 int64_t d= ((int64_t)FFABS((xx<<17) - xDstInSrc))<<13;
269 double floatd;
270 int64_t coeff;
271
272 if (xInc > 1<<16)
273 d= d*dstW/srcW;
274 floatd= d * (1.0/(1<<30));
275
276 if (flags & SWS_BICUBIC) {
277 int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1<<24);
278 int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24);
279 int64_t dd = ( d*d)>>30;
280 int64_t ddd= (dd*d)>>30;
281
282 if (d < 1LL<<30)
283 coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30);
284 else if (d < 1LL<<31)
285 coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30);
286 else
287 coeff=0.0;
288 coeff *= fone>>(30+24);
289 }
290 /* else if (flags & SWS_X) {
291 double p= param ? param*0.01 : 0.3;
292 coeff = d ? sin(d*M_PI)/(d*M_PI) : 1.0;
293 coeff*= pow(2.0, - p*d*d);
294 }*/
295 else if (flags & SWS_X) {
296 double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
297 double c;
298
299 if (floatd<1.0)
300 c = cos(floatd*M_PI);
301 else
302 c=-1.0;
303 if (c<0.0) c= -pow(-c, A);
304 else c= pow( c, A);
305 coeff= (c*0.5 + 0.5)*fone;
306 } else if (flags & SWS_AREA) {
307 int64_t d2= d - (1<<29);
308 if (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16));
309 else if (d2*xInc < (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16));
310 else coeff=0.0;
311 coeff *= fone>>(30+16);
312 } else if (flags & SWS_GAUSS) {
313 double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
314 coeff = (pow(2.0, - p*floatd*floatd))*fone;
315 } else if (flags & SWS_SINC) {
316 coeff = (d ? sin(floatd*M_PI)/(floatd*M_PI) : 1.0)*fone;
317 } else if (flags & SWS_LANCZOS) {
318 double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
319 coeff = (d ? sin(floatd*M_PI)*sin(floatd*M_PI/p)/(floatd*floatd*M_PI*M_PI/p) : 1.0)*fone;
320 if (floatd>p) coeff=0;
321 } else if (flags & SWS_BILINEAR) {
322 coeff= (1<<30) - d;
323 if (coeff<0) coeff=0;
324 coeff *= fone >> 30;
325 } else if (flags & SWS_SPLINE) {
326 double p=-2.196152422706632;
327 coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone;
328 } else {
329 coeff= 0.0; //GCC warning killer
330 assert(0);
331 }
332
333 filter[i*filterSize + j]= coeff;
334 xx++;
335 }
336 xDstInSrc+= 2*xInc;
337 }
338 }
339
340 /* apply src & dst Filter to filter -> filter2
341 av_free(filter);
342 */
343 assert(filterSize>0);
344 filter2Size= filterSize;
345 if (srcFilter) filter2Size+= srcFilter->length - 1;
346 if (dstFilter) filter2Size+= dstFilter->length - 1;
347 assert(filter2Size>0);
348 FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size*dstW*sizeof(*filter2), fail);
349
350 for (i=0; i<dstW; i++) {
351 int j, k;
352
353 if(srcFilter) {
354 for (k=0; k<srcFilter->length; k++) {
355 for (j=0; j<filterSize; j++)
356 filter2[i*filter2Size + k + j] += srcFilter->coeff[k]*filter[i*filterSize + j];
357 }
358 } else {
359 for (j=0; j<filterSize; j++)
360 filter2[i*filter2Size + j]= filter[i*filterSize + j];
361 }
362 //FIXME dstFilter
363
364 (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
365 }
366 av_freep(&filter);
367
368 /* try to reduce the filter-size (step1 find size and shift left) */
369 // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
370 minFilterSize= 0;
371 for (i=dstW-1; i>=0; i--) {
372 int min= filter2Size;
373 int j;
374 int64_t cutOff=0.0;
375
376 /* get rid of near zero elements on the left by shifting left */
377 for (j=0; j<filter2Size; j++) {
378 int k;
379 cutOff += FFABS(filter2[i*filter2Size]);
380
381 if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
382
383 /* preserve monotonicity because the core can't handle the filter otherwise */
384 if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
385
386 // move filter coefficients left
387 for (k=1; k<filter2Size; k++)
388 filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
389 filter2[i*filter2Size + k - 1]= 0;
390 (*filterPos)[i]++;
391 }
392
393 cutOff=0;
394 /* count near zeros on the right */
395 for (j=filter2Size-1; j>0; j--) {
396 cutOff += FFABS(filter2[i*filter2Size + j]);
397
398 if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
399 min--;
400 }
401
402 if (min>minFilterSize) minFilterSize= min;
403 }
404
405 if (flags & SWS_CPU_CAPS_ALTIVEC) {
406 // we can handle the special case 4,
407 // so we don't want to go to the full 8
408 if (minFilterSize < 5)
409 filterAlign = 4;
410
411 // We really don't want to waste our time
412 // doing useless computation, so fall back on
413 // the scalar C code for very small filters.
414 // Vectorizing is worth it only if you have a
415 // decent-sized vector.
416 if (minFilterSize < 3)
417 filterAlign = 1;
418 }
419
420 if (flags & SWS_CPU_CAPS_MMX) {
421 // special case for unscaled vertical filtering
422 if (minFilterSize == 1 && filterAlign == 2)
423 filterAlign= 1;
424 }
425
426 assert(minFilterSize > 0);
427 filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
428 assert(filterSize > 0);
429 filter= av_malloc(filterSize*dstW*sizeof(*filter));
430 if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
431 goto fail;
432 *outFilterSize= filterSize;
433
434 if (flags&SWS_PRINT_INFO)
435 av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
436 /* try to reduce the filter-size (step2 reduce it) */
437 for (i=0; i<dstW; i++) {
438 int j;
439
440 for (j=0; j<filterSize; j++) {
441 if (j>=filter2Size) filter[i*filterSize + j]= 0;
442 else filter[i*filterSize + j]= filter2[i*filter2Size + j];
443 if((flags & SWS_BITEXACT) && j>=minFilterSize)
444 filter[i*filterSize + j]= 0;
445 }
446 }
447
448 //FIXME try to align filterPos if possible
449
450 //fix borders
451 for (i=0; i<dstW; i++) {
452 int j;
453 if ((*filterPos)[i] < 0) {
454 // move filter coefficients left to compensate for filterPos
455 for (j=1; j<filterSize; j++) {
456 int left= FFMAX(j + (*filterPos)[i], 0);
457 filter[i*filterSize + left] += filter[i*filterSize + j];
458 filter[i*filterSize + j]=0;
459 }
460 (*filterPos)[i]= 0;
461 }
462
463 if ((*filterPos)[i] + filterSize > srcW) {
464 int shift= (*filterPos)[i] + filterSize - srcW;
465 // move filter coefficients right to compensate for filterPos
466 for (j=filterSize-2; j>=0; j--) {
467 int right= FFMIN(j + shift, filterSize-1);
468 filter[i*filterSize +right] += filter[i*filterSize +j];
469 filter[i*filterSize +j]=0;
470 }
471 (*filterPos)[i]= srcW - filterSize;
472 }
473 }
474
475 // Note the +1 is for the MMX scaler which reads over the end
476 /* align at 16 for AltiVec (needed by hScale_altivec_real) */
477 FF_ALLOCZ_OR_GOTO(NULL, *outFilter, *outFilterSize*(dstW+1)*sizeof(int16_t), fail);
478
479 /* normalize & store in outFilter */
480 for (i=0; i<dstW; i++) {
481 int j;
482 int64_t error=0;
483 int64_t sum=0;
484
485 for (j=0; j<filterSize; j++) {
486 sum+= filter[i*filterSize + j];
487 }
488 sum= (sum + one/2)/ one;
489 for (j=0; j<*outFilterSize; j++) {
490 int64_t v= filter[i*filterSize + j] + error;
491 int intV= ROUNDED_DIV(v, sum);
492 (*outFilter)[i*(*outFilterSize) + j]= intV;
493 error= v - intV*sum;
494 }
495 }
496
497 (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
498 for (i=0; i<*outFilterSize; i++) {
499 int j= dstW*(*outFilterSize);
500 (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
501 }
502
503 ret=0;
504 fail:
505 av_free(filter);
506 av_free(filter2);
507 return ret;
508 }
509
510 #if ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT)
511 static int initMMX2HScaler(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits)
512 {
513 uint8_t *fragmentA;
514 x86_reg imm8OfPShufW1A;
515 x86_reg imm8OfPShufW2A;
516 x86_reg fragmentLengthA;
517 uint8_t *fragmentB;
518 x86_reg imm8OfPShufW1B;
519 x86_reg imm8OfPShufW2B;
520 x86_reg fragmentLengthB;
521 int fragmentPos;
522
523 int xpos, i;
524
525 // create an optimized horizontal scaling routine
526 /* This scaler is made of runtime-generated MMX2 code using specially
527 * tuned pshufw instructions. For every four output pixels, if four
528 * input pixels are enough for the fast bilinear scaling, then a chunk
529 * of fragmentB is used. If five input pixels are needed, then a chunk
530 * of fragmentA is used.
531 */
532
533 //code fragment
534
535 __asm__ volatile(
536 "jmp 9f \n\t"
537 // Begin
538 "0: \n\t"
539 "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
540 "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
541 "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
542 "punpcklbw %%mm7, %%mm1 \n\t"
543 "punpcklbw %%mm7, %%mm0 \n\t"
544 "pshufw $0xFF, %%mm1, %%mm1 \n\t"
545 "1: \n\t"
546 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
547 "2: \n\t"
548 "psubw %%mm1, %%mm0 \n\t"
549 "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
550 "pmullw %%mm3, %%mm0 \n\t"
551 "psllw $7, %%mm1 \n\t"
552 "paddw %%mm1, %%mm0 \n\t"
553
554 "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
555
556 "add $8, %%"REG_a" \n\t"
557 // End
558 "9: \n\t"
559 // "int $3 \n\t"
560 "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
561 "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
562 "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
563 "dec %1 \n\t"
564 "dec %2 \n\t"
565 "sub %0, %1 \n\t"
566 "sub %0, %2 \n\t"
567 "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
568 "sub %0, %3 \n\t"
569
570
571 :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
572 "=r" (fragmentLengthA)
573 );
574
575 __asm__ volatile(
576 "jmp 9f \n\t"
577 // Begin
578 "0: \n\t"
579 "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
580 "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
581 "punpcklbw %%mm7, %%mm0 \n\t"
582 "pshufw $0xFF, %%mm0, %%mm1 \n\t"
583 "1: \n\t"
584 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
585 "2: \n\t"
586 "psubw %%mm1, %%mm0 \n\t"
587 "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
588 "pmullw %%mm3, %%mm0 \n\t"
589 "psllw $7, %%mm1 \n\t"
590 "paddw %%mm1, %%mm0 \n\t"
591
592 "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
593
594 "add $8, %%"REG_a" \n\t"
595 // End
596 "9: \n\t"
597 // "int $3 \n\t"
598 "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
599 "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
600 "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
601 "dec %1 \n\t"
602 "dec %2 \n\t"
603 "sub %0, %1 \n\t"
604 "sub %0, %2 \n\t"
605 "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
606 "sub %0, %3 \n\t"
607
608
609 :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
610 "=r" (fragmentLengthB)
611 );
612
613 xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
614 fragmentPos=0;
615
616 for (i=0; i<dstW/numSplits; i++) {
617 int xx=xpos>>16;
618
619 if ((i&3) == 0) {
620 int a=0;
621 int b=((xpos+xInc)>>16) - xx;
622 int c=((xpos+xInc*2)>>16) - xx;
623 int d=((xpos+xInc*3)>>16) - xx;
624 int inc = (d+1<4);
625 uint8_t *fragment = (d+1<4) ? fragmentB : fragmentA;
626 x86_reg imm8OfPShufW1 = (d+1<4) ? imm8OfPShufW1B : imm8OfPShufW1A;
627 x86_reg imm8OfPShufW2 = (d+1<4) ? imm8OfPShufW2B : imm8OfPShufW2A;
628 x86_reg fragmentLength = (d+1<4) ? fragmentLengthB : fragmentLengthA;
629 int maxShift= 3-(d+inc);
630 int shift=0;
631
632 if (filterCode) {
633 filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
634 filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
635 filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
636 filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
637 filterPos[i/2]= xx;
638
639 memcpy(filterCode + fragmentPos, fragment, fragmentLength);
640
641 filterCode[fragmentPos + imm8OfPShufW1]=
642 (a+inc) | ((b+inc)<<2) | ((c+inc)<<4) | ((d+inc)<<6);
643 filterCode[fragmentPos + imm8OfPShufW2]=
644 a | (b<<2) | (c<<4) | (d<<6);
645
646 if (i+4-inc>=dstW) shift=maxShift; //avoid overread
647 else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
648
649 if (shift && i>=shift) {
650 filterCode[fragmentPos + imm8OfPShufW1]+= 0x55*shift;
651 filterCode[fragmentPos + imm8OfPShufW2]+= 0x55*shift;
652 filterPos[i/2]-=shift;
653 }
654 }
655
656 fragmentPos+= fragmentLength;
657
658 if (filterCode)
659 filterCode[fragmentPos]= RET;
660 }
661 xpos+=xInc;
662 }
663 if (filterCode)
664 filterPos[((i/2)+1)&(~1)]= xpos>>16; // needed to jump to the next part
665
666 return fragmentPos + 1;
667 }
668 #endif /* ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) */
669
670 static void getSubSampleFactors(int *h, int *v, enum PixelFormat format)
671 {
672 *h = av_pix_fmt_descriptors[format].log2_chroma_w;
673 *v = av_pix_fmt_descriptors[format].log2_chroma_h;
674 }
675
676 static int update_flags_cpu(int flags);
677
678 int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation)
679 {
680 memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
681 memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
682
683 c->brightness= brightness;
684 c->contrast = contrast;
685 c->saturation= saturation;
686 c->srcRange = srcRange;
687 c->dstRange = dstRange;
688 if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
689
690 c->dstFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[c->dstFormat]);
691 c->srcFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[c->srcFormat]);
692 c->flags = update_flags_cpu(c->flags);
693
694 ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
695 //FIXME factorize
696
697 #if HAVE_ALTIVEC
698 if (c->flags & SWS_CPU_CAPS_ALTIVEC)
699 ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness, contrast, saturation);
700 #endif
701 return 0;
702 }
703
704 int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation)
705 {
706 if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
707
708 *inv_table = c->srcColorspaceTable;
709 *table = c->dstColorspaceTable;
710 *srcRange = c->srcRange;
711 *dstRange = c->dstRange;
712 *brightness= c->brightness;
713 *contrast = c->contrast;
714 *saturation= c->saturation;
715
716 return 0;
717 }
718
719 static int handle_jpeg(enum PixelFormat *format)
720 {
721 switch (*format) {
722 case PIX_FMT_YUVJ420P: *format = PIX_FMT_YUV420P; return 1;
723 case PIX_FMT_YUVJ422P: *format = PIX_FMT_YUV422P; return 1;
724 case PIX_FMT_YUVJ444P: *format = PIX_FMT_YUV444P; return 1;
725 case PIX_FMT_YUVJ440P: *format = PIX_FMT_YUV440P; return 1;
726 default: return 0;
727 }
728 }
729
730 static int update_flags_cpu(int flags)
731 {
732 #if !CONFIG_RUNTIME_CPUDETECT //ensure that the flags match the compiled variant if cpudetect is off
733 flags &= ~( SWS_CPU_CAPS_MMX
734 |SWS_CPU_CAPS_MMX2
735 |SWS_CPU_CAPS_3DNOW
736 |SWS_CPU_CAPS_SSE2
737 |SWS_CPU_CAPS_ALTIVEC
738 |SWS_CPU_CAPS_BFIN);
739 flags |= ff_hardcodedcpuflags();
740 #endif /* CONFIG_RUNTIME_CPUDETECT */
741 return flags;
742 }
743
744 SwsContext *sws_alloc_context(void)
745 {
746 SwsContext *c= av_mallocz(sizeof(SwsContext));
747
748 c->av_class = &sws_context_class;
749
750 return c;
751 }
752
753 int sws_init_context(SwsContext *c, SwsFilter *srcFilter, SwsFilter *dstFilter)
754 {
755 int i;
756 int usesVFilter, usesHFilter;
757 int unscaled;
758 SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
759 int srcW= c->srcW;
760 int srcH= c->srcH;
761 int dstW= c->dstW;
762 int dstH= c->dstH;
763 int flags;
764 enum PixelFormat srcFormat= c->srcFormat;
765 enum PixelFormat dstFormat= c->dstFormat;
766
767 flags= c->flags = update_flags_cpu(c->flags);
768 #if ARCH_X86
769 if (flags & SWS_CPU_CAPS_MMX)
770 __asm__ volatile("emms\n\t"::: "memory");
771 #endif
772 if (!rgb15to16) sws_rgb2rgb_init(flags);
773
774 unscaled = (srcW == dstW && srcH == dstH);
775
776 if (!isSupportedIn(srcFormat)) {
777 av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", sws_format_name(srcFormat));
778 return AVERROR(EINVAL);
779 }
780 if (!isSupportedOut(dstFormat)) {
781 av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", sws_format_name(dstFormat));
782 return AVERROR(EINVAL);
783 }
784
785 i= flags & ( SWS_POINT
786 |SWS_AREA
787 |SWS_BILINEAR
788 |SWS_FAST_BILINEAR
789 |SWS_BICUBIC
790 |SWS_X
791 |SWS_GAUSS
792 |SWS_LANCZOS
793 |SWS_SINC
794 |SWS_SPLINE
795 |SWS_BICUBLIN);
796 if(!i || (i & (i-1))) {
797 av_log(NULL, AV_LOG_ERROR, "swScaler: Exactly one scaler algorithm must be chosen\n");
798 return AVERROR(EINVAL);
799 }
800 /* sanity check */
801 if (srcW<4 || srcH<1 || dstW<8 || dstH<1) { //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
802 av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
803 srcW, srcH, dstW, dstH);
804 return AVERROR(EINVAL);
805 }
806 if(srcW > VOFW || dstW > VOFW) {
807 av_log(NULL, AV_LOG_ERROR, "swScaler: Compile-time maximum width is "AV_STRINGIFY(VOFW)" change VOF/VOFW and recompile\n");
808 return AVERROR(EINVAL);
809 }
810
811 if (!dstFilter) dstFilter= &dummyFilter;
812 if (!srcFilter) srcFilter= &dummyFilter;
813
814 c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
815 c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
816 c->dstFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[dstFormat]);
817 c->srcFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[srcFormat]);
818 c->vRounder= 4* 0x0001000100010001ULL;
819
820 usesVFilter = (srcFilter->lumV && srcFilter->lumV->length>1) ||
821 (srcFilter->chrV && srcFilter->chrV->length>1) ||
822 (dstFilter->lumV && dstFilter->lumV->length>1) ||
823 (dstFilter->chrV && dstFilter->chrV->length>1);
824 usesHFilter = (srcFilter->lumH && srcFilter->lumH->length>1) ||
825 (srcFilter->chrH && srcFilter->chrH->length>1) ||
826 (dstFilter->lumH && dstFilter->lumH->length>1) ||
827 (dstFilter->chrH && dstFilter->chrH->length>1);
828
829 getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
830 getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
831
832 // reuse chroma for 2 pixels RGB/BGR unless user wants full chroma interpolation
833 if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
834
835 // drop some chroma lines if the user wants it
836 c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
837 c->chrSrcVSubSample+= c->vChrDrop;
838
839 // drop every other pixel for chroma calculation unless user wants full chroma
840 if (isAnyRGB(srcFormat) && !(flags&SWS_FULL_CHR_H_INP)
841 && srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
842 && srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
843 && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
844 && ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&SWS_FAST_BILINEAR)))
845 c->chrSrcHSubSample=1;
846
847 // Note the -((-x)>>y) is so that we always round toward +inf.
848 c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
849 c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
850 c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
851 c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
852
853 /* unscaled special cases */
854 if (unscaled && !usesHFilter && !usesVFilter && (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
855 ff_get_unscaled_swscale(c);
856
857 if (c->swScale) {
858 if (flags&SWS_PRINT_INFO)
859 av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
860 sws_format_name(srcFormat), sws_format_name(dstFormat));
861 return 0;
862 }
863 }
864
865 if (flags & SWS_CPU_CAPS_MMX2) {
866 c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
867 if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR)) {
868 if (flags&SWS_PRINT_INFO)
869 av_log(c, AV_LOG_INFO, "output width is not a multiple of 32 -> no MMX2 scaler\n");
870 }
871 if (usesHFilter) c->canMMX2BeUsed=0;
872 }
873 else
874 c->canMMX2BeUsed=0;
875
876 c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
877 c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
878
879 // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
880 // but only for the FAST_BILINEAR mode otherwise do correct scaling
881 // n-2 is the last chrominance sample available
882 // this is not perfect, but no one should notice the difference, the more correct variant
883 // would be like the vertical one, but that would require some special code for the
884 // first and last pixel
885 if (flags&SWS_FAST_BILINEAR) {
886 if (c->canMMX2BeUsed) {
887 c->lumXInc+= 20;
888 c->chrXInc+= 20;
889 }
890 //we don't use the x86 asm scaler if MMX is available
891 else if (flags & SWS_CPU_CAPS_MMX) {
892 c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
893 c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
894 }
895 }
896
897 /* precalculate horizontal scaler filter coefficients */
898 {
899 #if ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT)
900 // can't downscale !!!
901 if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR)) {
902 c->lumMmx2FilterCodeSize = initMMX2HScaler( dstW, c->lumXInc, NULL, NULL, NULL, 8);
903 c->chrMmx2FilterCodeSize = initMMX2HScaler(c->chrDstW, c->chrXInc, NULL, NULL, NULL, 4);
904
905 #ifdef MAP_ANONYMOUS
906 c->lumMmx2FilterCode = mmap(NULL, c->lumMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
907 c->chrMmx2FilterCode = mmap(NULL, c->chrMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
908 #elif HAVE_VIRTUALALLOC
909 c->lumMmx2FilterCode = VirtualAlloc(NULL, c->lumMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
910 c->chrMmx2FilterCode = VirtualAlloc(NULL, c->chrMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
911 #else
912 c->lumMmx2FilterCode = av_malloc(c->lumMmx2FilterCodeSize);
913 c->chrMmx2FilterCode = av_malloc(c->chrMmx2FilterCodeSize);
914 #endif
915
916 if (!c->lumMmx2FilterCode || !c->chrMmx2FilterCode)
917 return AVERROR(ENOMEM);
918 FF_ALLOCZ_OR_GOTO(c, c->hLumFilter , (dstW /8+8)*sizeof(int16_t), fail);
919 FF_ALLOCZ_OR_GOTO(c, c->hChrFilter , (c->chrDstW /4+8)*sizeof(int16_t), fail);
920 FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW /2/8+8)*sizeof(int32_t), fail);
921 FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW/2/4+8)*sizeof(int32_t), fail);
922
923 initMMX2HScaler( dstW, c->lumXInc, c->lumMmx2FilterCode, c->hLumFilter, c->hLumFilterPos, 8);
924 initMMX2HScaler(c->chrDstW, c->chrXInc, c->chrMmx2FilterCode, c->hChrFilter, c->hChrFilterPos, 4);
925
926 #ifdef MAP_ANONYMOUS
927 mprotect(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
928 mprotect(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
929 #endif
930 } else
931 #endif /* ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) */
932 {
933 const int filterAlign=
934 (flags & SWS_CPU_CAPS_MMX) ? 4 :
935 (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
936 1;
937
938 if (initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
939 srcW , dstW, filterAlign, 1<<14,
940 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
941 srcFilter->lumH, dstFilter->lumH, c->param) < 0)
942 goto fail;
943 if (initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
944 c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
945 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
946 srcFilter->chrH, dstFilter->chrH, c->param) < 0)
947 goto fail;
948 }
949 } // initialize horizontal stuff
950
951 /* precalculate vertical scaler filter coefficients */
952 {
953 const int filterAlign=
954 (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
955 (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
956 1;
957
958 if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
959 srcH , dstH, filterAlign, (1<<12),
960 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
961 srcFilter->lumV, dstFilter->lumV, c->param) < 0)
962 goto fail;
963 if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
964 c->chrSrcH, c->chrDstH, filterAlign, (1<<12),
965 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
966 srcFilter->chrV, dstFilter->chrV, c->param) < 0)
967 goto fail;
968
969 #if HAVE_ALTIVEC
970 FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof (vector signed short)*c->vLumFilterSize*c->dstH, fail);
971 FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH, fail);
972
973 for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
974 int j;
975 short *p = (short *)&c->vYCoeffsBank[i];
976 for (j=0;j<8;j++)
977 p[j] = c->vLumFilter[i];
978 }
979
980 for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
981 int j;
982 short *p = (short *)&c->vCCoeffsBank[i];
983 for (j=0;j<8;j++)
984 p[j] = c->vChrFilter[i];
985 }
986 #endif
987 }
988
989 // calculate buffer sizes so that they won't run out while handling these damn slices
990 c->vLumBufSize= c->vLumFilterSize;
991 c->vChrBufSize= c->vChrFilterSize;
992 for (i=0; i<dstH; i++) {
993 int chrI= i*c->chrDstH / dstH;
994 int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
995 ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
996
997 nextSlice>>= c->chrSrcVSubSample;
998 nextSlice<<= c->chrSrcVSubSample;
999 if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
1000 c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
1001 if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
1002 c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
1003 }
1004
1005 // allocate pixbufs (we use dynamic allocation because otherwise we would need to
1006 // allocate several megabytes to handle all possible cases)
1007 FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
1008 FF_ALLOC_OR_GOTO(c, c->chrPixBuf, c->vChrBufSize*2*sizeof(int16_t*), fail);
1009 if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
1010 FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
1011 //Note we need at least one pixel more at the end because of the MMX code (just in case someone wanna replace the 4000/8000)
1012 /* align at 16 bytes for AltiVec */
1013 for (i=0; i<c->vLumBufSize; i++) {
1014 FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i+c->vLumBufSize], VOF+1, fail);
1015 c->lumPixBuf[i] = c->lumPixBuf[i+c->vLumBufSize];
1016 }
1017 for (i=0; i<c->vChrBufSize; i++) {
1018 FF_ALLOC_OR_GOTO(c, c->chrPixBuf[i+c->vChrBufSize], (VOF+1)*2, fail);
1019 c->chrPixBuf[i] = c->chrPixBuf[i+c->vChrBufSize];
1020 }
1021 if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
1022 for (i=0; i<c->vLumBufSize; i++) {
1023 FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i+c->vLumBufSize], VOF+1, fail);
1024 c->alpPixBuf[i] = c->alpPixBuf[i+c->vLumBufSize];
1025 }
1026
1027 //try to avoid drawing green stuff between the right end and the stride end
1028 for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, (VOF+1)*2);
1029
1030 assert(2*VOFW == VOF);
1031
1032 assert(c->chrDstH <= dstH);
1033
1034 if (flags&SWS_PRINT_INFO) {
1035 if (flags&SWS_FAST_BILINEAR)
1036 av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
1037 else if (flags&SWS_BILINEAR)
1038 av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
1039 else if (flags&SWS_BICUBIC)
1040 av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
1041 else if (flags&SWS_X)
1042 av_log(c, AV_LOG_INFO, "Experimental scaler, ");
1043 else if (flags&SWS_POINT)
1044 av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
1045 else if (flags&SWS_AREA)
1046 av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
1047 else if (flags&SWS_BICUBLIN)
1048 av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
1049 else if (flags&SWS_GAUSS)
1050 av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
1051 else if (flags&SWS_SINC)
1052 av_log(c, AV_LOG_INFO, "Sinc scaler, ");
1053 else if (flags&SWS_LANCZOS)
1054 av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
1055 else if (flags&SWS_SPLINE)
1056 av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
1057 else
1058 av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
1059
1060 av_log(c, AV_LOG_INFO, "from %s to %s%s ",
1061 sws_format_name(srcFormat),
1062 #ifdef DITHER1XBPP
1063 dstFormat == PIX_FMT_BGR555 || dstFormat == PIX_FMT_BGR565 ||
1064 dstFormat == PIX_FMT_RGB444BE || dstFormat == PIX_FMT_RGB444LE ||
1065 dstFormat == PIX_FMT_BGR444BE || dstFormat == PIX_FMT_BGR444LE ? "dithered " : "",
1066 #else
1067 "",
1068 #endif
1069 sws_format_name(dstFormat));
1070
1071 if (flags & SWS_CPU_CAPS_MMX2)
1072 av_log(c, AV_LOG_INFO, "using MMX2\n");
1073 else if (flags & SWS_CPU_CAPS_3DNOW)
1074 av_log(c, AV_LOG_INFO, "using 3DNOW\n");
1075 else if (flags & SWS_CPU_CAPS_MMX)
1076 av_log(c, AV_LOG_INFO, "using MMX\n");
1077 else if (flags & SWS_CPU_CAPS_ALTIVEC)
1078 av_log(c, AV_LOG_INFO, "using AltiVec\n");
1079 else
1080 av_log(c, AV_LOG_INFO, "using C\n");
1081
1082 if (flags & SWS_CPU_CAPS_MMX) {
1083 if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
1084 av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
1085 else {
1086 if (c->hLumFilterSize==4)
1087 av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
1088 else if (c->hLumFilterSize==8)
1089 av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
1090 else
1091 av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");
1092
1093 if (c->hChrFilterSize==4)
1094 av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
1095 else if (c->hChrFilterSize==8)
1096 av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
1097 else
1098 av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
1099 }
1100 } else {
1101 #if ARCH_X86
1102 av_log(c, AV_LOG_VERBOSE, "using x86 asm scaler for horizontal scaling\n");
1103 #else
1104 if (flags & SWS_FAST_BILINEAR)
1105 av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
1106 else
1107 av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
1108 #endif
1109 }
1110 if (isPlanarYUV(dstFormat)) {
1111 if (c->vLumFilterSize==1)
1112 av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1113 else
1114 av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1115 } else {
1116 if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
1117 av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
1118 " 2-tap scaler for vertical chrominance scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1119 else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
1120 av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1121 else
1122 av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1123 }
1124
1125 if (dstFormat==PIX_FMT_BGR24)
1126 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 converter\n",
1127 (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
1128 else if (dstFormat==PIX_FMT_RGB32)
1129 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1130 else if (dstFormat==PIX_FMT_BGR565)
1131 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1132 else if (dstFormat==PIX_FMT_BGR555)
1133 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1134 else if (dstFormat == PIX_FMT_RGB444BE || dstFormat == PIX_FMT_RGB444LE ||
1135 dstFormat == PIX_FMT_BGR444BE || dstFormat == PIX_FMT_BGR444LE)
1136 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR12 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1137
1138 av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
1139 av_log(c, AV_LOG_DEBUG, "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1140 c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
1141 av_log(c, AV_LOG_DEBUG, "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1142 c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
1143 }
1144
1145 c->swScale= ff_getSwsFunc(c);
1146 return 0;
1147 fail: //FIXME replace things by appropriate error codes
1148 return -1;
1149 }
1150
1151 #if FF_API_SWS_GETCONTEXT
1152 SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat,
1153 int dstW, int dstH, enum PixelFormat dstFormat, int flags,
1154 SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
1155 {
1156 SwsContext *c;
1157
1158 if(!(c=sws_alloc_context()))
1159 return NULL;
1160
1161 c->flags= flags;
1162 c->srcW= srcW;
1163 c->srcH= srcH;
1164 c->dstW= dstW;
1165 c->dstH= dstH;
1166 c->srcRange = handle_jpeg(&srcFormat);
1167 c->dstRange = handle_jpeg(&dstFormat);
1168 c->srcFormat= srcFormat;
1169 c->dstFormat= dstFormat;
1170
1171 if (param) {
1172 c->param[0] = param[0];
1173 c->param[1] = param[1];
1174 } else {
1175 c->param[0] =
1176 c->param[1] = SWS_PARAM_DEFAULT;
1177 }
1178 sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, c->dstRange, 0, 1<<16, 1<<16);
1179
1180 if(sws_init_context(c, srcFilter, dstFilter) < 0){
1181 sws_freeContext(c);
1182 return NULL;
1183 }
1184
1185 return c;
1186 }
1187 #endif
1188
1189 SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
1190 float lumaSharpen, float chromaSharpen,
1191 float chromaHShift, float chromaVShift,
1192 int verbose)
1193 {
1194 SwsFilter *filter= av_malloc(sizeof(SwsFilter));
1195 if (!filter)
1196 return NULL;
1197
1198 if (lumaGBlur!=0.0) {
1199 filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
1200 filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
1201 } else {
1202 filter->lumH= sws_getIdentityVec();
1203 filter->lumV= sws_getIdentityVec();
1204 }
1205
1206 if (chromaGBlur!=0.0) {
1207 filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
1208 filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
1209 } else {
1210 filter->chrH= sws_getIdentityVec();
1211 filter->chrV= sws_getIdentityVec();
1212 }
1213
1214 if (chromaSharpen!=0.0) {
1215 SwsVector *id= sws_getIdentityVec();
1216 sws_scaleVec(filter->chrH, -chromaSharpen);
1217 sws_scaleVec(filter->chrV, -chromaSharpen);
1218 sws_addVec(filter->chrH, id);
1219 sws_addVec(filter->chrV, id);
1220 sws_freeVec(id);
1221 }
1222
1223 if (lumaSharpen!=0.0) {
1224 SwsVector *id= sws_getIdentityVec();
1225 sws_scaleVec(filter->lumH, -lumaSharpen);
1226 sws_scaleVec(filter->lumV, -lumaSharpen);
1227 sws_addVec(filter->lumH, id);
1228 sws_addVec(filter->lumV, id);
1229 sws_freeVec(id);
1230 }
1231
1232 if (chromaHShift != 0.0)
1233 sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
1234
1235 if (chromaVShift != 0.0)
1236 sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
1237
1238 sws_normalizeVec(filter->chrH, 1.0);
1239 sws_normalizeVec(filter->chrV, 1.0);
1240 sws_normalizeVec(filter->lumH, 1.0);
1241 sws_normalizeVec(filter->lumV, 1.0);
1242
1243 if (verbose) sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
1244 if (verbose) sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
1245
1246 return filter;
1247 }
1248
1249 SwsVector *sws_allocVec(int length)
1250 {
1251 SwsVector *vec = av_malloc(sizeof(SwsVector));
1252 if (!vec)
1253 return NULL;
1254 vec->length = length;
1255 vec->coeff = av_malloc(sizeof(double) * length);
1256 if (!vec->coeff)
1257 av_freep(&vec);
1258 return vec;
1259 }
1260
1261 SwsVector *sws_getGaussianVec(double variance, double quality)
1262 {
1263 const int length= (int)(variance*quality + 0.5) | 1;
1264 int i;
1265 double middle= (length-1)*0.5;
1266 SwsVector *vec= sws_allocVec(length);
1267
1268 if (!vec)
1269 return NULL;
1270
1271 for (i=0; i<length; i++) {
1272 double dist= i-middle;
1273 vec->coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*M_PI);
1274 }
1275
1276 sws_normalizeVec(vec, 1.0);
1277
1278 return vec;
1279 }
1280
1281 SwsVector *sws_getConstVec(double c, int length)
1282 {
1283 int i;
1284 SwsVector *vec= sws_allocVec(length);
1285
1286 if (!vec)
1287 return NULL;
1288
1289 for (i=0; i<length; i++)
1290 vec->coeff[i]= c;
1291
1292 return vec;
1293 }
1294
1295 SwsVector *sws_getIdentityVec(void)
1296 {
1297 return sws_getConstVec(1.0, 1);
1298 }
1299
1300 static double sws_dcVec(SwsVector *a)
1301 {
1302 int i;
1303 double sum=0;
1304
1305 for (i=0; i<a->length; i++)
1306 sum+= a->coeff[i];
1307
1308 return sum;
1309 }
1310
1311 void sws_scaleVec(SwsVector *a, double scalar)
1312 {
1313 int i;
1314
1315 for (i=0; i<a->length; i++)
1316 a->coeff[i]*= scalar;
1317 }
1318
1319 void sws_normalizeVec(SwsVector *a, double height)
1320 {
1321 sws_scaleVec(a, height/sws_dcVec(a));
1322 }
1323
1324 static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
1325 {
1326 int length= a->length + b->length - 1;
1327 int i, j;
1328 SwsVector *vec= sws_getConstVec(0.0, length);
1329
1330 if (!vec)
1331 return NULL;
1332
1333 for (i=0; i<a->length; i++) {
1334 for (j=0; j<b->length; j++) {
1335 vec->coeff[i+j]+= a->coeff[i]*b->coeff[j];
1336 }
1337 }
1338
1339 return vec;
1340 }
1341
1342 static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
1343 {
1344 int length= FFMAX(a->length, b->length);
1345 int i;
1346 SwsVector *vec= sws_getConstVec(0.0, length);
1347
1348 if (!vec)
1349 return NULL;
1350
1351 for (i=0; i<a->length; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
1352 for (i=0; i<b->length; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
1353
1354 return vec;
1355 }
1356
1357 static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
1358 {
1359 int length= FFMAX(a->length, b->length);
1360 int i;
1361 SwsVector *vec= sws_getConstVec(0.0, length);
1362
1363 if (!vec)
1364 return NULL;
1365
1366 for (i=0; i<a->length; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
1367 for (i=0; i<b->length; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
1368
1369 return vec;
1370 }
1371
1372 /* shift left / or right if "shift" is negative */
1373 static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
1374 {
1375 int length= a->length + FFABS(shift)*2;
1376 int i;
1377 SwsVector *vec= sws_getConstVec(0.0, length);
1378
1379 if (!vec)
1380 return NULL;
1381
1382 for (i=0; i<a->length; i++) {
1383 vec->coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
1384 }
1385
1386 return vec;
1387 }
1388
1389 void sws_shiftVec(SwsVector *a, int shift)
1390 {
1391 SwsVector *shifted= sws_getShiftedVec(a, shift);
1392 av_free(a->coeff);
1393 a->coeff= shifted->coeff;
1394 a->length= shifted->length;
1395 av_free(shifted);
1396 }
1397
1398 void sws_addVec(SwsVector *a, SwsVector *b)
1399 {
1400 SwsVector *sum= sws_sumVec(a, b);
1401 av_free(a->coeff);
1402 a->coeff= sum->coeff;
1403 a->length= sum->length;
1404 av_free(sum);
1405 }
1406
1407 void sws_subVec(SwsVector *a, SwsVector *b)
1408 {
1409 SwsVector *diff= sws_diffVec(a, b);
1410 av_free(a->coeff);
1411 a->coeff= diff->coeff;
1412 a->length= diff->length;
1413 av_free(diff);
1414 }
1415
1416 void sws_convVec(SwsVector *a, SwsVector *b)
1417 {
1418 SwsVector *conv= sws_getConvVec(a, b);
1419 av_free(a->coeff);
1420 a->coeff= conv->coeff;
1421 a->length= conv->length;
1422 av_free(conv);
1423 }
1424
1425 SwsVector *sws_cloneVec(SwsVector *a)
1426 {
1427 int i;
1428 SwsVector *vec= sws_allocVec(a->length);
1429
1430 if (!vec)
1431 return NULL;
1432
1433 for (i=0; i<a->length; i++) vec->coeff[i]= a->coeff[i];
1434
1435 return vec;
1436 }
1437
1438 void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
1439 {
1440 int i;
1441 double max=0;
1442 double min=0;
1443 double range;
1444
1445 for (i=0; i<a->length; i++)
1446 if (a->coeff[i]>max) max= a->coeff[i];
1447
1448 for (i=0; i<a->length; i++)
1449 if (a->coeff[i]<min) min= a->coeff[i];
1450
1451 range= max - min;
1452
1453 for (i=0; i<a->length; i++) {
1454 int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
1455 av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
1456 for (;x>0; x--) av_log(log_ctx, log_level, " ");
1457 av_log(log_ctx, log_level, "|\n");
1458 }
1459 }
1460
1461 #if LIBSWSCALE_VERSION_MAJOR < 1
1462 void sws_printVec(SwsVector *a)
1463 {
1464 sws_printVec2(a, NULL, AV_LOG_DEBUG);
1465 }
1466 #endif
1467
1468 void sws_freeVec(SwsVector *a)
1469 {
1470 if (!a) return;
1471 av_freep(&a->coeff);
1472 a->length=0;
1473 av_free(a);
1474 }
1475
1476 void sws_freeFilter(SwsFilter *filter)
1477 {
1478 if (!filter) return;
1479
1480 if (filter->lumH) sws_freeVec(filter->lumH);
1481 if (filter->lumV) sws_freeVec(filter->lumV);
1482 if (filter->chrH) sws_freeVec(filter->chrH);
1483 if (filter->chrV) sws_freeVec(filter->chrV);
1484 av_free(filter);
1485 }
1486
1487 void sws_freeContext(SwsContext *c)
1488 {
1489 int i;
1490 if (!c) return;
1491
1492 if (c->lumPixBuf) {
1493 for (i=0; i<c->vLumBufSize; i++)
1494 av_freep(&c->lumPixBuf[i]);
1495 av_freep(&c->lumPixBuf);
1496 }
1497
1498 if (c->chrPixBuf) {
1499 for (i=0; i<c->vChrBufSize; i++)
1500 av_freep(&c->chrPixBuf[i]);
1501 av_freep(&c->chrPixBuf);
1502 }
1503
1504 if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
1505 for (i=0; i<c->vLumBufSize; i++)
1506 av_freep(&c->alpPixBuf[i]);
1507 av_freep(&c->alpPixBuf);
1508 }
1509
1510 av_freep(&c->vLumFilter);
1511 av_freep(&c->vChrFilter);
1512 av_freep(&c->hLumFilter);
1513 av_freep(&c->hChrFilter);
1514 #if HAVE_ALTIVEC
1515 av_freep(&c->vYCoeffsBank);
1516 av_freep(&c->vCCoeffsBank);
1517 #endif
1518
1519 av_freep(&c->vLumFilterPos);
1520 av_freep(&c->vChrFilterPos);
1521 av_freep(&c->hLumFilterPos);
1522 av_freep(&c->hChrFilterPos);
1523
1524 #if ARCH_X86
1525 #ifdef MAP_ANONYMOUS
1526 if (c->lumMmx2FilterCode) munmap(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize);
1527 if (c->chrMmx2FilterCode) munmap(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize);
1528 #elif HAVE_VIRTUALALLOC
1529 if (c->lumMmx2FilterCode) VirtualFree(c->lumMmx2FilterCode, 0, MEM_RELEASE);
1530 if (c->chrMmx2FilterCode) VirtualFree(c->chrMmx2FilterCode, 0, MEM_RELEASE);
1531 #else
1532 av_free(c->lumMmx2FilterCode);
1533 av_free(c->chrMmx2FilterCode);
1534 #endif
1535 c->lumMmx2FilterCode=NULL;
1536 c->chrMmx2FilterCode=NULL;
1537 #endif /* ARCH_X86 */
1538
1539 av_freep(&c->yuvTable);
1540
1541 av_free(c);
1542 }
1543
1544 struct SwsContext *sws_getCachedContext(struct SwsContext *context,
1545 int srcW, int srcH, enum PixelFormat srcFormat,
1546 int dstW, int dstH, enum PixelFormat dstFormat, int flags,
1547 SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
1548 {
1549 static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};
1550
1551 if (!param)
1552 param = default_param;
1553
1554 flags = update_flags_cpu(flags);
1555
1556 if (context &&
1557 (context->srcW != srcW ||
1558 context->srcH != srcH ||
1559 context->srcFormat != srcFormat ||
1560 context->dstW != dstW ||
1561 context->dstH != dstH ||
1562 context->dstFormat != dstFormat ||
1563 context->flags != flags ||
1564 context->param[0] != param[0] ||
1565 context->param[1] != param[1])) {
1566 sws_freeContext(context);
1567 context = NULL;
1568 }
1569
1570 if (!context) {
1571 if (!(context = sws_alloc_context()))
1572 return NULL;
1573 context->srcW = srcW;
1574 context->srcH = srcH;
1575 context->srcFormat = srcFormat;
1576 context->dstFormat = dstFormat;
1577 context->flags = flags;
1578 context->param[0] = param[0];
1579 context->param[1] = param[1];
1580 if (sws_init_context(context, srcFilter, dstFilter) < 0) {
1581 sws_freeContext(context);
1582 return NULL;
1583 }
1584 }
1585 return context;
1586 }
1587