More accurate value for log2(10)
[libav.git] / libswscale / utils.c
1 /*
2 * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 * the C code (not assembly, mmx, ...) of this file can be used
21 * under the LGPL license too
22 */
23
24 #define _SVID_SOURCE //needed for MAP_ANONYMOUS
25 #include <inttypes.h>
26 #include <string.h>
27 #include <math.h>
28 #include <stdio.h>
29 #include "config.h"
30 #include <assert.h>
31 #if HAVE_SYS_MMAN_H
32 #include <sys/mman.h>
33 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
34 #define MAP_ANONYMOUS MAP_ANON
35 #endif
36 #endif
37 #if HAVE_VIRTUALALLOC
38 #define WIN32_LEAN_AND_MEAN
39 #include <windows.h>
40 #endif
41 #include "swscale.h"
42 #include "swscale_internal.h"
43 #include "rgb2rgb.h"
44 #include "libavutil/intreadwrite.h"
45 #include "libavutil/x86_cpu.h"
46 #include "libavutil/avutil.h"
47 #include "libavutil/bswap.h"
48 #include "libavutil/pixdesc.h"
49
50 unsigned swscale_version(void)
51 {
52 return LIBSWSCALE_VERSION_INT;
53 }
54
55 const char *swscale_configuration(void)
56 {
57 return FFMPEG_CONFIGURATION;
58 }
59
60 const char *swscale_license(void)
61 {
62 #define LICENSE_PREFIX "libswscale license: "
63 return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
64 }
65
66 #define RET 0xC3 //near return opcode for x86
67
68 #define isSupportedIn(x) ( \
69 (x)==PIX_FMT_YUV420P \
70 || (x)==PIX_FMT_YUVA420P \
71 || (x)==PIX_FMT_YUYV422 \
72 || (x)==PIX_FMT_UYVY422 \
73 || (x)==PIX_FMT_RGB48BE \
74 || (x)==PIX_FMT_RGB48LE \
75 || (x)==PIX_FMT_RGB32 \
76 || (x)==PIX_FMT_RGB32_1 \
77 || (x)==PIX_FMT_BGR24 \
78 || (x)==PIX_FMT_BGR565 \
79 || (x)==PIX_FMT_BGR555 \
80 || (x)==PIX_FMT_BGR32 \
81 || (x)==PIX_FMT_BGR32_1 \
82 || (x)==PIX_FMT_RGB24 \
83 || (x)==PIX_FMT_RGB565 \
84 || (x)==PIX_FMT_RGB555 \
85 || (x)==PIX_FMT_GRAY8 \
86 || (x)==PIX_FMT_YUV410P \
87 || (x)==PIX_FMT_YUV440P \
88 || (x)==PIX_FMT_NV12 \
89 || (x)==PIX_FMT_NV21 \
90 || (x)==PIX_FMT_GRAY16BE \
91 || (x)==PIX_FMT_GRAY16LE \
92 || (x)==PIX_FMT_YUV444P \
93 || (x)==PIX_FMT_YUV422P \
94 || (x)==PIX_FMT_YUV411P \
95 || (x)==PIX_FMT_YUVJ420P \
96 || (x)==PIX_FMT_YUVJ422P \
97 || (x)==PIX_FMT_YUVJ440P \
98 || (x)==PIX_FMT_YUVJ444P \
99 || (x)==PIX_FMT_PAL8 \
100 || (x)==PIX_FMT_BGR8 \
101 || (x)==PIX_FMT_RGB8 \
102 || (x)==PIX_FMT_BGR4_BYTE \
103 || (x)==PIX_FMT_RGB4_BYTE \
104 || (x)==PIX_FMT_YUV440P \
105 || (x)==PIX_FMT_MONOWHITE \
106 || (x)==PIX_FMT_MONOBLACK \
107 || (x)==PIX_FMT_YUV420P16LE \
108 || (x)==PIX_FMT_YUV422P16LE \
109 || (x)==PIX_FMT_YUV444P16LE \
110 || (x)==PIX_FMT_YUV420P16BE \
111 || (x)==PIX_FMT_YUV422P16BE \
112 || (x)==PIX_FMT_YUV444P16BE \
113 )
114
115 int sws_isSupportedInput(enum PixelFormat pix_fmt)
116 {
117 return isSupportedIn(pix_fmt);
118 }
119
120 #define isSupportedOut(x) ( \
121 (x)==PIX_FMT_YUV420P \
122 || (x)==PIX_FMT_YUVA420P \
123 || (x)==PIX_FMT_YUYV422 \
124 || (x)==PIX_FMT_UYVY422 \
125 || (x)==PIX_FMT_YUV444P \
126 || (x)==PIX_FMT_YUV422P \
127 || (x)==PIX_FMT_YUV411P \
128 || (x)==PIX_FMT_YUVJ420P \
129 || (x)==PIX_FMT_YUVJ422P \
130 || (x)==PIX_FMT_YUVJ440P \
131 || (x)==PIX_FMT_YUVJ444P \
132 || isAnyRGB(x) \
133 || (x)==PIX_FMT_NV12 \
134 || (x)==PIX_FMT_NV21 \
135 || (x)==PIX_FMT_GRAY16BE \
136 || (x)==PIX_FMT_GRAY16LE \
137 || (x)==PIX_FMT_GRAY8 \
138 || (x)==PIX_FMT_YUV410P \
139 || (x)==PIX_FMT_YUV440P \
140 || (x)==PIX_FMT_YUV420P16LE \
141 || (x)==PIX_FMT_YUV422P16LE \
142 || (x)==PIX_FMT_YUV444P16LE \
143 || (x)==PIX_FMT_YUV420P16BE \
144 || (x)==PIX_FMT_YUV422P16BE \
145 || (x)==PIX_FMT_YUV444P16BE \
146 )
147
148 int sws_isSupportedOutput(enum PixelFormat pix_fmt)
149 {
150 return isSupportedOut(pix_fmt);
151 }
152
153 #define usePal(x) (av_pix_fmt_descriptors[x].flags & PIX_FMT_PAL)
154
155 extern const int32_t ff_yuv2rgb_coeffs[8][4];
156
157 const char *sws_format_name(enum PixelFormat format)
158 {
159 if ((unsigned)format < PIX_FMT_NB && av_pix_fmt_descriptors[format].name)
160 return av_pix_fmt_descriptors[format].name;
161 else
162 return "Unknown format";
163 }
164
165 static double getSplineCoeff(double a, double b, double c, double d, double dist)
166 {
167 // printf("%f %f %f %f %f\n", a,b,c,d,dist);
168 if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
169 else return getSplineCoeff( 0.0,
170 b+ 2.0*c + 3.0*d,
171 c + 3.0*d,
172 -b- 3.0*c - 6.0*d,
173 dist-1.0);
174 }
175
176 static int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
177 int srcW, int dstW, int filterAlign, int one, int flags,
178 SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
179 {
180 int i;
181 int filterSize;
182 int filter2Size;
183 int minFilterSize;
184 int64_t *filter=NULL;
185 int64_t *filter2=NULL;
186 const int64_t fone= 1LL<<54;
187 int ret= -1;
188 #if ARCH_X86
189 if (flags & SWS_CPU_CAPS_MMX)
190 __asm__ volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
191 #endif
192
193 // NOTE: the +1 is for the MMX scaler which reads over the end
194 FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW+1)*sizeof(int16_t), fail);
195
196 if (FFABS(xInc - 0x10000) <10) { // unscaled
197 int i;
198 filterSize= 1;
199 FF_ALLOCZ_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
200
201 for (i=0; i<dstW; i++) {
202 filter[i*filterSize]= fone;
203 (*filterPos)[i]=i;
204 }
205
206 } else if (flags&SWS_POINT) { // lame looking point sampling mode
207 int i;
208 int xDstInSrc;
209 filterSize= 1;
210 FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
211
212 xDstInSrc= xInc/2 - 0x8000;
213 for (i=0; i<dstW; i++) {
214 int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
215
216 (*filterPos)[i]= xx;
217 filter[i]= fone;
218 xDstInSrc+= xInc;
219 }
220 } else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) { // bilinear upscale
221 int i;
222 int xDstInSrc;
223 filterSize= 2;
224 FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
225
226 xDstInSrc= xInc/2 - 0x8000;
227 for (i=0; i<dstW; i++) {
228 int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
229 int j;
230
231 (*filterPos)[i]= xx;
232 //bilinear upscale / linear interpolate / area averaging
233 for (j=0; j<filterSize; j++) {
234 int64_t coeff= fone - FFABS((xx<<16) - xDstInSrc)*(fone>>16);
235 if (coeff<0) coeff=0;
236 filter[i*filterSize + j]= coeff;
237 xx++;
238 }
239 xDstInSrc+= xInc;
240 }
241 } else {
242 int xDstInSrc;
243 int sizeFactor;
244
245 if (flags&SWS_BICUBIC) sizeFactor= 4;
246 else if (flags&SWS_X) sizeFactor= 8;
247 else if (flags&SWS_AREA) sizeFactor= 1; //downscale only, for upscale it is bilinear
248 else if (flags&SWS_GAUSS) sizeFactor= 8; // infinite ;)
249 else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6;
250 else if (flags&SWS_SINC) sizeFactor= 20; // infinite ;)
251 else if (flags&SWS_SPLINE) sizeFactor= 20; // infinite ;)
252 else if (flags&SWS_BILINEAR) sizeFactor= 2;
253 else {
254 sizeFactor= 0; //GCC warning killer
255 assert(0);
256 }
257
258 if (xInc <= 1<<16) filterSize= 1 + sizeFactor; // upscale
259 else filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;
260
261 if (filterSize > srcW-2) filterSize=srcW-2;
262
263 FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
264
265 xDstInSrc= xInc - 0x10000;
266 for (i=0; i<dstW; i++) {
267 int xx= (xDstInSrc - ((filterSize-2)<<16)) / (1<<17);
268 int j;
269 (*filterPos)[i]= xx;
270 for (j=0; j<filterSize; j++) {
271 int64_t d= ((int64_t)FFABS((xx<<17) - xDstInSrc))<<13;
272 double floatd;
273 int64_t coeff;
274
275 if (xInc > 1<<16)
276 d= d*dstW/srcW;
277 floatd= d * (1.0/(1<<30));
278
279 if (flags & SWS_BICUBIC) {
280 int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1<<24);
281 int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24);
282 int64_t dd = ( d*d)>>30;
283 int64_t ddd= (dd*d)>>30;
284
285 if (d < 1LL<<30)
286 coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30);
287 else if (d < 1LL<<31)
288 coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30);
289 else
290 coeff=0.0;
291 coeff *= fone>>(30+24);
292 }
293 /* else if (flags & SWS_X) {
294 double p= param ? param*0.01 : 0.3;
295 coeff = d ? sin(d*PI)/(d*PI) : 1.0;
296 coeff*= pow(2.0, - p*d*d);
297 }*/
298 else if (flags & SWS_X) {
299 double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
300 double c;
301
302 if (floatd<1.0)
303 c = cos(floatd*M_PI);
304 else
305 c=-1.0;
306 if (c<0.0) c= -pow(-c, A);
307 else c= pow( c, A);
308 coeff= (c*0.5 + 0.5)*fone;
309 } else if (flags & SWS_AREA) {
310 int64_t d2= d - (1<<29);
311 if (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16));
312 else if (d2*xInc < (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16));
313 else coeff=0.0;
314 coeff *= fone>>(30+16);
315 } else if (flags & SWS_GAUSS) {
316 double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
317 coeff = (pow(2.0, - p*floatd*floatd))*fone;
318 } else if (flags & SWS_SINC) {
319 coeff = (d ? sin(floatd*M_PI)/(floatd*M_PI) : 1.0)*fone;
320 } else if (flags & SWS_LANCZOS) {
321 double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
322 coeff = (d ? sin(floatd*M_PI)*sin(floatd*M_PI/p)/(floatd*floatd*M_PI*M_PI/p) : 1.0)*fone;
323 if (floatd>p) coeff=0;
324 } else if (flags & SWS_BILINEAR) {
325 coeff= (1<<30) - d;
326 if (coeff<0) coeff=0;
327 coeff *= fone >> 30;
328 } else if (flags & SWS_SPLINE) {
329 double p=-2.196152422706632;
330 coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone;
331 } else {
332 coeff= 0.0; //GCC warning killer
333 assert(0);
334 }
335
336 filter[i*filterSize + j]= coeff;
337 xx++;
338 }
339 xDstInSrc+= 2*xInc;
340 }
341 }
342
343 /* apply src & dst Filter to filter -> filter2
344 av_free(filter);
345 */
346 assert(filterSize>0);
347 filter2Size= filterSize;
348 if (srcFilter) filter2Size+= srcFilter->length - 1;
349 if (dstFilter) filter2Size+= dstFilter->length - 1;
350 assert(filter2Size>0);
351 FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size*dstW*sizeof(*filter2), fail);
352
353 for (i=0; i<dstW; i++) {
354 int j, k;
355
356 if(srcFilter) {
357 for (k=0; k<srcFilter->length; k++) {
358 for (j=0; j<filterSize; j++)
359 filter2[i*filter2Size + k + j] += srcFilter->coeff[k]*filter[i*filterSize + j];
360 }
361 } else {
362 for (j=0; j<filterSize; j++)
363 filter2[i*filter2Size + j]= filter[i*filterSize + j];
364 }
365 //FIXME dstFilter
366
367 (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
368 }
369 av_freep(&filter);
370
371 /* try to reduce the filter-size (step1 find size and shift left) */
372 // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
373 minFilterSize= 0;
374 for (i=dstW-1; i>=0; i--) {
375 int min= filter2Size;
376 int j;
377 int64_t cutOff=0.0;
378
379 /* get rid of near zero elements on the left by shifting left */
380 for (j=0; j<filter2Size; j++) {
381 int k;
382 cutOff += FFABS(filter2[i*filter2Size]);
383
384 if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
385
386 /* preserve monotonicity because the core can't handle the filter otherwise */
387 if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
388
389 // move filter coefficients left
390 for (k=1; k<filter2Size; k++)
391 filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
392 filter2[i*filter2Size + k - 1]= 0;
393 (*filterPos)[i]++;
394 }
395
396 cutOff=0;
397 /* count near zeros on the right */
398 for (j=filter2Size-1; j>0; j--) {
399 cutOff += FFABS(filter2[i*filter2Size + j]);
400
401 if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
402 min--;
403 }
404
405 if (min>minFilterSize) minFilterSize= min;
406 }
407
408 if (flags & SWS_CPU_CAPS_ALTIVEC) {
409 // we can handle the special case 4,
410 // so we don't want to go to the full 8
411 if (minFilterSize < 5)
412 filterAlign = 4;
413
414 // We really don't want to waste our time
415 // doing useless computation, so fall back on
416 // the scalar C code for very small filters.
417 // Vectorizing is worth it only if you have a
418 // decent-sized vector.
419 if (minFilterSize < 3)
420 filterAlign = 1;
421 }
422
423 if (flags & SWS_CPU_CAPS_MMX) {
424 // special case for unscaled vertical filtering
425 if (minFilterSize == 1 && filterAlign == 2)
426 filterAlign= 1;
427 }
428
429 assert(minFilterSize > 0);
430 filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
431 assert(filterSize > 0);
432 filter= av_malloc(filterSize*dstW*sizeof(*filter));
433 if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
434 goto fail;
435 *outFilterSize= filterSize;
436
437 if (flags&SWS_PRINT_INFO)
438 av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
439 /* try to reduce the filter-size (step2 reduce it) */
440 for (i=0; i<dstW; i++) {
441 int j;
442
443 for (j=0; j<filterSize; j++) {
444 if (j>=filter2Size) filter[i*filterSize + j]= 0;
445 else filter[i*filterSize + j]= filter2[i*filter2Size + j];
446 if((flags & SWS_BITEXACT) && j>=minFilterSize)
447 filter[i*filterSize + j]= 0;
448 }
449 }
450
451 //FIXME try to align filterPos if possible
452
453 //fix borders
454 for (i=0; i<dstW; i++) {
455 int j;
456 if ((*filterPos)[i] < 0) {
457 // move filter coefficients left to compensate for filterPos
458 for (j=1; j<filterSize; j++) {
459 int left= FFMAX(j + (*filterPos)[i], 0);
460 filter[i*filterSize + left] += filter[i*filterSize + j];
461 filter[i*filterSize + j]=0;
462 }
463 (*filterPos)[i]= 0;
464 }
465
466 if ((*filterPos)[i] + filterSize > srcW) {
467 int shift= (*filterPos)[i] + filterSize - srcW;
468 // move filter coefficients right to compensate for filterPos
469 for (j=filterSize-2; j>=0; j--) {
470 int right= FFMIN(j + shift, filterSize-1);
471 filter[i*filterSize +right] += filter[i*filterSize +j];
472 filter[i*filterSize +j]=0;
473 }
474 (*filterPos)[i]= srcW - filterSize;
475 }
476 }
477
478 // Note the +1 is for the MMX scaler which reads over the end
479 /* align at 16 for AltiVec (needed by hScale_altivec_real) */
480 FF_ALLOCZ_OR_GOTO(NULL, *outFilter, *outFilterSize*(dstW+1)*sizeof(int16_t), fail);
481
482 /* normalize & store in outFilter */
483 for (i=0; i<dstW; i++) {
484 int j;
485 int64_t error=0;
486 int64_t sum=0;
487
488 for (j=0; j<filterSize; j++) {
489 sum+= filter[i*filterSize + j];
490 }
491 sum= (sum + one/2)/ one;
492 for (j=0; j<*outFilterSize; j++) {
493 int64_t v= filter[i*filterSize + j] + error;
494 int intV= ROUNDED_DIV(v, sum);
495 (*outFilter)[i*(*outFilterSize) + j]= intV;
496 error= v - intV*sum;
497 }
498 }
499
500 (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
501 for (i=0; i<*outFilterSize; i++) {
502 int j= dstW*(*outFilterSize);
503 (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
504 }
505
506 ret=0;
507 fail:
508 av_free(filter);
509 av_free(filter2);
510 return ret;
511 }
512
513 #if ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
514 static int initMMX2HScaler(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits)
515 {
516 uint8_t *fragmentA;
517 x86_reg imm8OfPShufW1A;
518 x86_reg imm8OfPShufW2A;
519 x86_reg fragmentLengthA;
520 uint8_t *fragmentB;
521 x86_reg imm8OfPShufW1B;
522 x86_reg imm8OfPShufW2B;
523 x86_reg fragmentLengthB;
524 int fragmentPos;
525
526 int xpos, i;
527
528 // create an optimized horizontal scaling routine
529 /* This scaler is made of runtime-generated MMX2 code using specially
530 * tuned pshufw instructions. For every four output pixels, if four
531 * input pixels are enough for the fast bilinear scaling, then a chunk
532 * of fragmentB is used. If five input pixels are needed, then a chunk
533 * of fragmentA is used.
534 */
535
536 //code fragment
537
538 __asm__ volatile(
539 "jmp 9f \n\t"
540 // Begin
541 "0: \n\t"
542 "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
543 "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
544 "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
545 "punpcklbw %%mm7, %%mm1 \n\t"
546 "punpcklbw %%mm7, %%mm0 \n\t"
547 "pshufw $0xFF, %%mm1, %%mm1 \n\t"
548 "1: \n\t"
549 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
550 "2: \n\t"
551 "psubw %%mm1, %%mm0 \n\t"
552 "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
553 "pmullw %%mm3, %%mm0 \n\t"
554 "psllw $7, %%mm1 \n\t"
555 "paddw %%mm1, %%mm0 \n\t"
556
557 "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
558
559 "add $8, %%"REG_a" \n\t"
560 // End
561 "9: \n\t"
562 // "int $3 \n\t"
563 "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
564 "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
565 "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
566 "dec %1 \n\t"
567 "dec %2 \n\t"
568 "sub %0, %1 \n\t"
569 "sub %0, %2 \n\t"
570 "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
571 "sub %0, %3 \n\t"
572
573
574 :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
575 "=r" (fragmentLengthA)
576 );
577
578 __asm__ volatile(
579 "jmp 9f \n\t"
580 // Begin
581 "0: \n\t"
582 "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
583 "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
584 "punpcklbw %%mm7, %%mm0 \n\t"
585 "pshufw $0xFF, %%mm0, %%mm1 \n\t"
586 "1: \n\t"
587 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
588 "2: \n\t"
589 "psubw %%mm1, %%mm0 \n\t"
590 "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
591 "pmullw %%mm3, %%mm0 \n\t"
592 "psllw $7, %%mm1 \n\t"
593 "paddw %%mm1, %%mm0 \n\t"
594
595 "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
596
597 "add $8, %%"REG_a" \n\t"
598 // End
599 "9: \n\t"
600 // "int $3 \n\t"
601 "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
602 "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
603 "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
604 "dec %1 \n\t"
605 "dec %2 \n\t"
606 "sub %0, %1 \n\t"
607 "sub %0, %2 \n\t"
608 "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
609 "sub %0, %3 \n\t"
610
611
612 :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
613 "=r" (fragmentLengthB)
614 );
615
616 xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
617 fragmentPos=0;
618
619 for (i=0; i<dstW/numSplits; i++) {
620 int xx=xpos>>16;
621
622 if ((i&3) == 0) {
623 int a=0;
624 int b=((xpos+xInc)>>16) - xx;
625 int c=((xpos+xInc*2)>>16) - xx;
626 int d=((xpos+xInc*3)>>16) - xx;
627 int inc = (d+1<4);
628 uint8_t *fragment = (d+1<4) ? fragmentB : fragmentA;
629 x86_reg imm8OfPShufW1 = (d+1<4) ? imm8OfPShufW1B : imm8OfPShufW1A;
630 x86_reg imm8OfPShufW2 = (d+1<4) ? imm8OfPShufW2B : imm8OfPShufW2A;
631 x86_reg fragmentLength = (d+1<4) ? fragmentLengthB : fragmentLengthA;
632 int maxShift= 3-(d+inc);
633 int shift=0;
634
635 if (filterCode) {
636 filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
637 filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
638 filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
639 filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
640 filterPos[i/2]= xx;
641
642 memcpy(filterCode + fragmentPos, fragment, fragmentLength);
643
644 filterCode[fragmentPos + imm8OfPShufW1]=
645 (a+inc) | ((b+inc)<<2) | ((c+inc)<<4) | ((d+inc)<<6);
646 filterCode[fragmentPos + imm8OfPShufW2]=
647 a | (b<<2) | (c<<4) | (d<<6);
648
649 if (i+4-inc>=dstW) shift=maxShift; //avoid overread
650 else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
651
652 if (shift && i>=shift) {
653 filterCode[fragmentPos + imm8OfPShufW1]+= 0x55*shift;
654 filterCode[fragmentPos + imm8OfPShufW2]+= 0x55*shift;
655 filterPos[i/2]-=shift;
656 }
657 }
658
659 fragmentPos+= fragmentLength;
660
661 if (filterCode)
662 filterCode[fragmentPos]= RET;
663 }
664 xpos+=xInc;
665 }
666 if (filterCode)
667 filterPos[((i/2)+1)&(~1)]= xpos>>16; // needed to jump to the next part
668
669 return fragmentPos + 1;
670 }
671 #endif /* ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL */
672
673 static void getSubSampleFactors(int *h, int *v, enum PixelFormat format)
674 {
675 *h = av_pix_fmt_descriptors[format].log2_chroma_w;
676 *v = av_pix_fmt_descriptors[format].log2_chroma_h;
677 }
678
679 static uint16_t roundToInt16(int64_t f)
680 {
681 int r= (f + (1<<15))>>16;
682 if (r<-0x7FFF) return 0x8000;
683 else if (r> 0x7FFF) return 0x7FFF;
684 else return r;
685 }
686
687 int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation)
688 {
689 int64_t crv = inv_table[0];
690 int64_t cbu = inv_table[1];
691 int64_t cgu = -inv_table[2];
692 int64_t cgv = -inv_table[3];
693 int64_t cy = 1<<16;
694 int64_t oy = 0;
695
696 memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
697 memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
698
699 c->brightness= brightness;
700 c->contrast = contrast;
701 c->saturation= saturation;
702 c->srcRange = srcRange;
703 c->dstRange = dstRange;
704 if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
705
706 c->uOffset= 0x0400040004000400LL;
707 c->vOffset= 0x0400040004000400LL;
708
709 if (!srcRange) {
710 cy= (cy*255) / 219;
711 oy= 16<<16;
712 } else {
713 crv= (crv*224) / 255;
714 cbu= (cbu*224) / 255;
715 cgu= (cgu*224) / 255;
716 cgv= (cgv*224) / 255;
717 }
718
719 cy = (cy *contrast )>>16;
720 crv= (crv*contrast * saturation)>>32;
721 cbu= (cbu*contrast * saturation)>>32;
722 cgu= (cgu*contrast * saturation)>>32;
723 cgv= (cgv*contrast * saturation)>>32;
724
725 oy -= 256*brightness;
726
727 c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
728 c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
729 c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
730 c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
731 c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
732 c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
733
734 c->yuv2rgb_y_coeff = (int16_t)roundToInt16(cy <<13);
735 c->yuv2rgb_y_offset = (int16_t)roundToInt16(oy << 9);
736 c->yuv2rgb_v2r_coeff= (int16_t)roundToInt16(crv<<13);
737 c->yuv2rgb_v2g_coeff= (int16_t)roundToInt16(cgv<<13);
738 c->yuv2rgb_u2g_coeff= (int16_t)roundToInt16(cgu<<13);
739 c->yuv2rgb_u2b_coeff= (int16_t)roundToInt16(cbu<<13);
740
741 ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
742 //FIXME factorize
743
744 #if ARCH_PPC && (HAVE_ALTIVEC || CONFIG_RUNTIME_CPUDETECT)
745 if (c->flags & SWS_CPU_CAPS_ALTIVEC)
746 ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness, contrast, saturation);
747 #endif
748 return 0;
749 }
750
751 int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation)
752 {
753 if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
754
755 *inv_table = c->srcColorspaceTable;
756 *table = c->dstColorspaceTable;
757 *srcRange = c->srcRange;
758 *dstRange = c->dstRange;
759 *brightness= c->brightness;
760 *contrast = c->contrast;
761 *saturation= c->saturation;
762
763 return 0;
764 }
765
766 static int handle_jpeg(enum PixelFormat *format)
767 {
768 switch (*format) {
769 case PIX_FMT_YUVJ420P:
770 *format = PIX_FMT_YUV420P;
771 return 1;
772 case PIX_FMT_YUVJ422P:
773 *format = PIX_FMT_YUV422P;
774 return 1;
775 case PIX_FMT_YUVJ444P:
776 *format = PIX_FMT_YUV444P;
777 return 1;
778 case PIX_FMT_YUVJ440P:
779 *format = PIX_FMT_YUV440P;
780 return 1;
781 default:
782 return 0;
783 }
784 }
785
786 SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat,
787 int dstW, int dstH, enum PixelFormat dstFormat, int flags,
788 SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
789 {
790
791 SwsContext *c;
792 int i;
793 int usesVFilter, usesHFilter;
794 int unscaled;
795 int srcRange, dstRange;
796 SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
797 #if ARCH_X86
798 if (flags & SWS_CPU_CAPS_MMX)
799 __asm__ volatile("emms\n\t"::: "memory");
800 #endif
801
802 #if !CONFIG_RUNTIME_CPUDETECT //ensure that the flags match the compiled variant if cpudetect is off
803 flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC|SWS_CPU_CAPS_BFIN);
804 flags |= ff_hardcodedcpuflags();
805 #endif /* CONFIG_RUNTIME_CPUDETECT */
806 if (!rgb15to16) sws_rgb2rgb_init(flags);
807
808 unscaled = (srcW == dstW && srcH == dstH);
809
810 srcRange = handle_jpeg(&srcFormat);
811 dstRange = handle_jpeg(&dstFormat);
812
813 if (!isSupportedIn(srcFormat)) {
814 av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", sws_format_name(srcFormat));
815 return NULL;
816 }
817 if (!isSupportedOut(dstFormat)) {
818 av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", sws_format_name(dstFormat));
819 return NULL;
820 }
821
822 i= flags & ( SWS_POINT
823 |SWS_AREA
824 |SWS_BILINEAR
825 |SWS_FAST_BILINEAR
826 |SWS_BICUBIC
827 |SWS_X
828 |SWS_GAUSS
829 |SWS_LANCZOS
830 |SWS_SINC
831 |SWS_SPLINE
832 |SWS_BICUBLIN);
833 if(!i || (i & (i-1))) {
834 av_log(NULL, AV_LOG_ERROR, "swScaler: Exactly one scaler algorithm must be chosen\n");
835 return NULL;
836 }
837
838 /* sanity check */
839 if (srcW<4 || srcH<1 || dstW<8 || dstH<1) { //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
840 av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
841 srcW, srcH, dstW, dstH);
842 return NULL;
843 }
844 if(srcW > VOFW || dstW > VOFW) {
845 av_log(NULL, AV_LOG_ERROR, "swScaler: Compile-time maximum width is "AV_STRINGIFY(VOFW)" change VOF/VOFW and recompile\n");
846 return NULL;
847 }
848
849 if (!dstFilter) dstFilter= &dummyFilter;
850 if (!srcFilter) srcFilter= &dummyFilter;
851
852 FF_ALLOCZ_OR_GOTO(NULL, c, sizeof(SwsContext), fail);
853
854 c->av_class = &sws_context_class;
855 c->srcW= srcW;
856 c->srcH= srcH;
857 c->dstW= dstW;
858 c->dstH= dstH;
859 c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
860 c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
861 c->flags= flags;
862 c->dstFormat= dstFormat;
863 c->srcFormat= srcFormat;
864 c->dstFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[dstFormat]);
865 c->srcFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[srcFormat]);
866 c->vRounder= 4* 0x0001000100010001ULL;
867
868 usesVFilter = (srcFilter->lumV && srcFilter->lumV->length>1) ||
869 (srcFilter->chrV && srcFilter->chrV->length>1) ||
870 (dstFilter->lumV && dstFilter->lumV->length>1) ||
871 (dstFilter->chrV && dstFilter->chrV->length>1);
872 usesHFilter = (srcFilter->lumH && srcFilter->lumH->length>1) ||
873 (srcFilter->chrH && srcFilter->chrH->length>1) ||
874 (dstFilter->lumH && dstFilter->lumH->length>1) ||
875 (dstFilter->chrH && dstFilter->chrH->length>1);
876
877 getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
878 getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
879
880 // reuse chroma for 2 pixels RGB/BGR unless user wants full chroma interpolation
881 if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
882
883 // drop some chroma lines if the user wants it
884 c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
885 c->chrSrcVSubSample+= c->vChrDrop;
886
887 // drop every other pixel for chroma calculation unless user wants full chroma
888 if (isAnyRGB(srcFormat) && !(flags&SWS_FULL_CHR_H_INP)
889 && srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
890 && srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
891 && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
892 && ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&(SWS_FAST_BILINEAR|SWS_POINT))))
893 c->chrSrcHSubSample=1;
894
895 if (param) {
896 c->param[0] = param[0];
897 c->param[1] = param[1];
898 } else {
899 c->param[0] =
900 c->param[1] = SWS_PARAM_DEFAULT;
901 }
902
903 // Note the -((-x)>>y) is so that we always round toward +inf.
904 c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
905 c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
906 c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
907 c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
908
909 sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
910
911 /* unscaled special cases */
912 if (unscaled && !usesHFilter && !usesVFilter && (srcRange == dstRange || isAnyRGB(dstFormat))) {
913 ff_get_unscaled_swscale(c);
914
915 if (c->swScale) {
916 if (flags&SWS_PRINT_INFO)
917 av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
918 sws_format_name(srcFormat), sws_format_name(dstFormat));
919 return c;
920 }
921 }
922
923 if (flags & SWS_CPU_CAPS_MMX2) {
924 c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
925 if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR)) {
926 if (flags&SWS_PRINT_INFO)
927 av_log(c, AV_LOG_INFO, "output width is not a multiple of 32 -> no MMX2 scaler\n");
928 }
929 if (usesHFilter) c->canMMX2BeUsed=0;
930 }
931 else
932 c->canMMX2BeUsed=0;
933
934 c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
935 c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
936
937 // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
938 // but only for the FAST_BILINEAR mode otherwise do correct scaling
939 // n-2 is the last chrominance sample available
940 // this is not perfect, but no one should notice the difference, the more correct variant
941 // would be like the vertical one, but that would require some special code for the
942 // first and last pixel
943 if (flags&SWS_FAST_BILINEAR) {
944 if (c->canMMX2BeUsed) {
945 c->lumXInc+= 20;
946 c->chrXInc+= 20;
947 }
948 //we don't use the x86 asm scaler if MMX is available
949 else if (flags & SWS_CPU_CAPS_MMX) {
950 c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
951 c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
952 }
953 }
954
955 /* precalculate horizontal scaler filter coefficients */
956 {
957 #if ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
958 // can't downscale !!!
959 if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR)) {
960 c->lumMmx2FilterCodeSize = initMMX2HScaler( dstW, c->lumXInc, NULL, NULL, NULL, 8);
961 c->chrMmx2FilterCodeSize = initMMX2HScaler(c->chrDstW, c->chrXInc, NULL, NULL, NULL, 4);
962
963 #ifdef MAP_ANONYMOUS
964 c->lumMmx2FilterCode = mmap(NULL, c->lumMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
965 c->chrMmx2FilterCode = mmap(NULL, c->chrMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
966 #elif HAVE_VIRTUALALLOC
967 c->lumMmx2FilterCode = VirtualAlloc(NULL, c->lumMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
968 c->chrMmx2FilterCode = VirtualAlloc(NULL, c->chrMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
969 #else
970 c->lumMmx2FilterCode = av_malloc(c->lumMmx2FilterCodeSize);
971 c->chrMmx2FilterCode = av_malloc(c->chrMmx2FilterCodeSize);
972 #endif
973
974 FF_ALLOCZ_OR_GOTO(c, c->hLumFilter , (dstW /8+8)*sizeof(int16_t), fail);
975 FF_ALLOCZ_OR_GOTO(c, c->hChrFilter , (c->chrDstW /4+8)*sizeof(int16_t), fail);
976 FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW /2/8+8)*sizeof(int32_t), fail);
977 FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW/2/4+8)*sizeof(int32_t), fail);
978
979 initMMX2HScaler( dstW, c->lumXInc, c->lumMmx2FilterCode, c->hLumFilter, c->hLumFilterPos, 8);
980 initMMX2HScaler(c->chrDstW, c->chrXInc, c->chrMmx2FilterCode, c->hChrFilter, c->hChrFilterPos, 4);
981
982 #ifdef MAP_ANONYMOUS
983 mprotect(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
984 mprotect(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
985 #endif
986 } else
987 #endif /* ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL */
988 {
989 const int filterAlign=
990 (flags & SWS_CPU_CAPS_MMX) ? 4 :
991 (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
992 1;
993
994 if (initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
995 srcW , dstW, filterAlign, 1<<14,
996 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
997 srcFilter->lumH, dstFilter->lumH, c->param) < 0)
998 goto fail;
999 if (initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
1000 c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
1001 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
1002 srcFilter->chrH, dstFilter->chrH, c->param) < 0)
1003 goto fail;
1004 }
1005 } // initialize horizontal stuff
1006
1007 /* precalculate vertical scaler filter coefficients */
1008 {
1009 const int filterAlign=
1010 (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
1011 (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
1012 1;
1013
1014 if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
1015 srcH , dstH, filterAlign, (1<<12),
1016 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
1017 srcFilter->lumV, dstFilter->lumV, c->param) < 0)
1018 goto fail;
1019 if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
1020 c->chrSrcH, c->chrDstH, filterAlign, (1<<12),
1021 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
1022 srcFilter->chrV, dstFilter->chrV, c->param) < 0)
1023 goto fail;
1024
1025 #if ARCH_PPC && (HAVE_ALTIVEC || CONFIG_RUNTIME_CPUDETECT)
1026 FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof (vector signed short)*c->vLumFilterSize*c->dstH, fail);
1027 FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH, fail);
1028
1029 for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
1030 int j;
1031 short *p = (short *)&c->vYCoeffsBank[i];
1032 for (j=0;j<8;j++)
1033 p[j] = c->vLumFilter[i];
1034 }
1035
1036 for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
1037 int j;
1038 short *p = (short *)&c->vCCoeffsBank[i];
1039 for (j=0;j<8;j++)
1040 p[j] = c->vChrFilter[i];
1041 }
1042 #endif
1043 }
1044
1045 // calculate buffer sizes so that they won't run out while handling these damn slices
1046 c->vLumBufSize= c->vLumFilterSize;
1047 c->vChrBufSize= c->vChrFilterSize;
1048 for (i=0; i<dstH; i++) {
1049 int chrI= i*c->chrDstH / dstH;
1050 int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
1051 ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
1052
1053 nextSlice>>= c->chrSrcVSubSample;
1054 nextSlice<<= c->chrSrcVSubSample;
1055 if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
1056 c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
1057 if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
1058 c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
1059 }
1060
1061 // allocate pixbufs (we use dynamic allocation because otherwise we would need to
1062 // allocate several megabytes to handle all possible cases)
1063 FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
1064 FF_ALLOC_OR_GOTO(c, c->chrPixBuf, c->vChrBufSize*2*sizeof(int16_t*), fail);
1065 if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
1066 FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
1067 //Note we need at least one pixel more at the end because of the MMX code (just in case someone wanna replace the 4000/8000)
1068 /* align at 16 bytes for AltiVec */
1069 for (i=0; i<c->vLumBufSize; i++) {
1070 FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i+c->vLumBufSize], VOF+1, fail);
1071 c->lumPixBuf[i] = c->lumPixBuf[i+c->vLumBufSize];
1072 }
1073 for (i=0; i<c->vChrBufSize; i++) {
1074 FF_ALLOC_OR_GOTO(c, c->chrPixBuf[i+c->vChrBufSize], (VOF+1)*2, fail);
1075 c->chrPixBuf[i] = c->chrPixBuf[i+c->vChrBufSize];
1076 }
1077 if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
1078 for (i=0; i<c->vLumBufSize; i++) {
1079 FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i+c->vLumBufSize], VOF+1, fail);
1080 c->alpPixBuf[i] = c->alpPixBuf[i+c->vLumBufSize];
1081 }
1082
1083 //try to avoid drawing green stuff between the right end and the stride end
1084 for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, (VOF+1)*2);
1085
1086 assert(2*VOFW == VOF);
1087
1088 assert(c->chrDstH <= dstH);
1089
1090 if (flags&SWS_PRINT_INFO) {
1091 if (flags&SWS_FAST_BILINEAR)
1092 av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
1093 else if (flags&SWS_BILINEAR)
1094 av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
1095 else if (flags&SWS_BICUBIC)
1096 av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
1097 else if (flags&SWS_X)
1098 av_log(c, AV_LOG_INFO, "Experimental scaler, ");
1099 else if (flags&SWS_POINT)
1100 av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
1101 else if (flags&SWS_AREA)
1102 av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
1103 else if (flags&SWS_BICUBLIN)
1104 av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
1105 else if (flags&SWS_GAUSS)
1106 av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
1107 else if (flags&SWS_SINC)
1108 av_log(c, AV_LOG_INFO, "Sinc scaler, ");
1109 else if (flags&SWS_LANCZOS)
1110 av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
1111 else if (flags&SWS_SPLINE)
1112 av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
1113 else
1114 av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
1115
1116 av_log(c, AV_LOG_INFO, "from %s to %s%s ",
1117 sws_format_name(srcFormat),
1118 #ifdef DITHER1XBPP
1119 dstFormat == PIX_FMT_BGR555 || dstFormat == PIX_FMT_BGR565 ? "dithered " : "",
1120 #else
1121 "",
1122 #endif
1123 sws_format_name(dstFormat));
1124
1125 if (flags & SWS_CPU_CAPS_MMX2)
1126 av_log(c, AV_LOG_INFO, "using MMX2\n");
1127 else if (flags & SWS_CPU_CAPS_3DNOW)
1128 av_log(c, AV_LOG_INFO, "using 3DNOW\n");
1129 else if (flags & SWS_CPU_CAPS_MMX)
1130 av_log(c, AV_LOG_INFO, "using MMX\n");
1131 else if (flags & SWS_CPU_CAPS_ALTIVEC)
1132 av_log(c, AV_LOG_INFO, "using AltiVec\n");
1133 else
1134 av_log(c, AV_LOG_INFO, "using C\n");
1135
1136 if (flags & SWS_CPU_CAPS_MMX) {
1137 if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
1138 av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
1139 else {
1140 if (c->hLumFilterSize==4)
1141 av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
1142 else if (c->hLumFilterSize==8)
1143 av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
1144 else
1145 av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");
1146
1147 if (c->hChrFilterSize==4)
1148 av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
1149 else if (c->hChrFilterSize==8)
1150 av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
1151 else
1152 av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
1153 }
1154 } else {
1155 #if ARCH_X86
1156 av_log(c, AV_LOG_VERBOSE, "using x86 asm scaler for horizontal scaling\n");
1157 #else
1158 if (flags & SWS_FAST_BILINEAR)
1159 av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
1160 else
1161 av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
1162 #endif
1163 }
1164 if (isPlanarYUV(dstFormat)) {
1165 if (c->vLumFilterSize==1)
1166 av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1167 else
1168 av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1169 } else {
1170 if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
1171 av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
1172 " 2-tap scaler for vertical chrominance scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1173 else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
1174 av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1175 else
1176 av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1177 }
1178
1179 if (dstFormat==PIX_FMT_BGR24)
1180 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 converter\n",
1181 (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
1182 else if (dstFormat==PIX_FMT_RGB32)
1183 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1184 else if (dstFormat==PIX_FMT_BGR565)
1185 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1186 else if (dstFormat==PIX_FMT_BGR555)
1187 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1188
1189 av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
1190 av_log(c, AV_LOG_DEBUG, "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1191 c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
1192 av_log(c, AV_LOG_DEBUG, "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1193 c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
1194 }
1195
1196 c->swScale= ff_getSwsFunc(c);
1197 return c;
1198
1199 fail:
1200 sws_freeContext(c);
1201 return NULL;
1202 }
1203
1204 SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
1205 float lumaSharpen, float chromaSharpen,
1206 float chromaHShift, float chromaVShift,
1207 int verbose)
1208 {
1209 SwsFilter *filter= av_malloc(sizeof(SwsFilter));
1210 if (!filter)
1211 return NULL;
1212
1213 if (lumaGBlur!=0.0) {
1214 filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
1215 filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
1216 } else {
1217 filter->lumH= sws_getIdentityVec();
1218 filter->lumV= sws_getIdentityVec();
1219 }
1220
1221 if (chromaGBlur!=0.0) {
1222 filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
1223 filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
1224 } else {
1225 filter->chrH= sws_getIdentityVec();
1226 filter->chrV= sws_getIdentityVec();
1227 }
1228
1229 if (chromaSharpen!=0.0) {
1230 SwsVector *id= sws_getIdentityVec();
1231 sws_scaleVec(filter->chrH, -chromaSharpen);
1232 sws_scaleVec(filter->chrV, -chromaSharpen);
1233 sws_addVec(filter->chrH, id);
1234 sws_addVec(filter->chrV, id);
1235 sws_freeVec(id);
1236 }
1237
1238 if (lumaSharpen!=0.0) {
1239 SwsVector *id= sws_getIdentityVec();
1240 sws_scaleVec(filter->lumH, -lumaSharpen);
1241 sws_scaleVec(filter->lumV, -lumaSharpen);
1242 sws_addVec(filter->lumH, id);
1243 sws_addVec(filter->lumV, id);
1244 sws_freeVec(id);
1245 }
1246
1247 if (chromaHShift != 0.0)
1248 sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
1249
1250 if (chromaVShift != 0.0)
1251 sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
1252
1253 sws_normalizeVec(filter->chrH, 1.0);
1254 sws_normalizeVec(filter->chrV, 1.0);
1255 sws_normalizeVec(filter->lumH, 1.0);
1256 sws_normalizeVec(filter->lumV, 1.0);
1257
1258 if (verbose) sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
1259 if (verbose) sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
1260
1261 return filter;
1262 }
1263
1264 SwsVector *sws_allocVec(int length)
1265 {
1266 SwsVector *vec = av_malloc(sizeof(SwsVector));
1267 if (!vec)
1268 return NULL;
1269 vec->length = length;
1270 vec->coeff = av_malloc(sizeof(double) * length);
1271 if (!vec->coeff)
1272 av_freep(&vec);
1273 return vec;
1274 }
1275
1276 SwsVector *sws_getGaussianVec(double variance, double quality)
1277 {
1278 const int length= (int)(variance*quality + 0.5) | 1;
1279 int i;
1280 double middle= (length-1)*0.5;
1281 SwsVector *vec= sws_allocVec(length);
1282
1283 if (!vec)
1284 return NULL;
1285
1286 for (i=0; i<length; i++) {
1287 double dist= i-middle;
1288 vec->coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*M_PI);
1289 }
1290
1291 sws_normalizeVec(vec, 1.0);
1292
1293 return vec;
1294 }
1295
1296 SwsVector *sws_getConstVec(double c, int length)
1297 {
1298 int i;
1299 SwsVector *vec= sws_allocVec(length);
1300
1301 if (!vec)
1302 return NULL;
1303
1304 for (i=0; i<length; i++)
1305 vec->coeff[i]= c;
1306
1307 return vec;
1308 }
1309
1310 SwsVector *sws_getIdentityVec(void)
1311 {
1312 return sws_getConstVec(1.0, 1);
1313 }
1314
1315 double sws_dcVec(SwsVector *a)
1316 {
1317 int i;
1318 double sum=0;
1319
1320 for (i=0; i<a->length; i++)
1321 sum+= a->coeff[i];
1322
1323 return sum;
1324 }
1325
1326 void sws_scaleVec(SwsVector *a, double scalar)
1327 {
1328 int i;
1329
1330 for (i=0; i<a->length; i++)
1331 a->coeff[i]*= scalar;
1332 }
1333
1334 void sws_normalizeVec(SwsVector *a, double height)
1335 {
1336 sws_scaleVec(a, height/sws_dcVec(a));
1337 }
1338
1339 static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
1340 {
1341 int length= a->length + b->length - 1;
1342 int i, j;
1343 SwsVector *vec= sws_getConstVec(0.0, length);
1344
1345 if (!vec)
1346 return NULL;
1347
1348 for (i=0; i<a->length; i++) {
1349 for (j=0; j<b->length; j++) {
1350 vec->coeff[i+j]+= a->coeff[i]*b->coeff[j];
1351 }
1352 }
1353
1354 return vec;
1355 }
1356
1357 static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
1358 {
1359 int length= FFMAX(a->length, b->length);
1360 int i;
1361 SwsVector *vec= sws_getConstVec(0.0, length);
1362
1363 if (!vec)
1364 return NULL;
1365
1366 for (i=0; i<a->length; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
1367 for (i=0; i<b->length; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
1368
1369 return vec;
1370 }
1371
1372 static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
1373 {
1374 int length= FFMAX(a->length, b->length);
1375 int i;
1376 SwsVector *vec= sws_getConstVec(0.0, length);
1377
1378 if (!vec)
1379 return NULL;
1380
1381 for (i=0; i<a->length; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
1382 for (i=0; i<b->length; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
1383
1384 return vec;
1385 }
1386
1387 /* shift left / or right if "shift" is negative */
1388 static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
1389 {
1390 int length= a->length + FFABS(shift)*2;
1391 int i;
1392 SwsVector *vec= sws_getConstVec(0.0, length);
1393
1394 if (!vec)
1395 return NULL;
1396
1397 for (i=0; i<a->length; i++) {
1398 vec->coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
1399 }
1400
1401 return vec;
1402 }
1403
1404 void sws_shiftVec(SwsVector *a, int shift)
1405 {
1406 SwsVector *shifted= sws_getShiftedVec(a, shift);
1407 av_free(a->coeff);
1408 a->coeff= shifted->coeff;
1409 a->length= shifted->length;
1410 av_free(shifted);
1411 }
1412
1413 void sws_addVec(SwsVector *a, SwsVector *b)
1414 {
1415 SwsVector *sum= sws_sumVec(a, b);
1416 av_free(a->coeff);
1417 a->coeff= sum->coeff;
1418 a->length= sum->length;
1419 av_free(sum);
1420 }
1421
1422 void sws_subVec(SwsVector *a, SwsVector *b)
1423 {
1424 SwsVector *diff= sws_diffVec(a, b);
1425 av_free(a->coeff);
1426 a->coeff= diff->coeff;
1427 a->length= diff->length;
1428 av_free(diff);
1429 }
1430
1431 void sws_convVec(SwsVector *a, SwsVector *b)
1432 {
1433 SwsVector *conv= sws_getConvVec(a, b);
1434 av_free(a->coeff);
1435 a->coeff= conv->coeff;
1436 a->length= conv->length;
1437 av_free(conv);
1438 }
1439
1440 SwsVector *sws_cloneVec(SwsVector *a)
1441 {
1442 int i;
1443 SwsVector *vec= sws_allocVec(a->length);
1444
1445 if (!vec)
1446 return NULL;
1447
1448 for (i=0; i<a->length; i++) vec->coeff[i]= a->coeff[i];
1449
1450 return vec;
1451 }
1452
1453 void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
1454 {
1455 int i;
1456 double max=0;
1457 double min=0;
1458 double range;
1459
1460 for (i=0; i<a->length; i++)
1461 if (a->coeff[i]>max) max= a->coeff[i];
1462
1463 for (i=0; i<a->length; i++)
1464 if (a->coeff[i]<min) min= a->coeff[i];
1465
1466 range= max - min;
1467
1468 for (i=0; i<a->length; i++) {
1469 int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
1470 av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
1471 for (;x>0; x--) av_log(log_ctx, log_level, " ");
1472 av_log(log_ctx, log_level, "|\n");
1473 }
1474 }
1475
1476 #if LIBSWSCALE_VERSION_MAJOR < 1
1477 void sws_printVec(SwsVector *a)
1478 {
1479 sws_printVec2(a, NULL, AV_LOG_DEBUG);
1480 }
1481 #endif
1482
1483 void sws_freeVec(SwsVector *a)
1484 {
1485 if (!a) return;
1486 av_freep(&a->coeff);
1487 a->length=0;
1488 av_free(a);
1489 }
1490
1491 void sws_freeFilter(SwsFilter *filter)
1492 {
1493 if (!filter) return;
1494
1495 if (filter->lumH) sws_freeVec(filter->lumH);
1496 if (filter->lumV) sws_freeVec(filter->lumV);
1497 if (filter->chrH) sws_freeVec(filter->chrH);
1498 if (filter->chrV) sws_freeVec(filter->chrV);
1499 av_free(filter);
1500 }
1501
1502 void sws_freeContext(SwsContext *c)
1503 {
1504 int i;
1505 if (!c) return;
1506
1507 if (c->lumPixBuf) {
1508 for (i=0; i<c->vLumBufSize; i++)
1509 av_freep(&c->lumPixBuf[i]);
1510 av_freep(&c->lumPixBuf);
1511 }
1512
1513 if (c->chrPixBuf) {
1514 for (i=0; i<c->vChrBufSize; i++)
1515 av_freep(&c->chrPixBuf[i]);
1516 av_freep(&c->chrPixBuf);
1517 }
1518
1519 if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
1520 for (i=0; i<c->vLumBufSize; i++)
1521 av_freep(&c->alpPixBuf[i]);
1522 av_freep(&c->alpPixBuf);
1523 }
1524
1525 av_freep(&c->vLumFilter);
1526 av_freep(&c->vChrFilter);
1527 av_freep(&c->hLumFilter);
1528 av_freep(&c->hChrFilter);
1529 #if ARCH_PPC && (HAVE_ALTIVEC || CONFIG_RUNTIME_CPUDETECT)
1530 av_freep(&c->vYCoeffsBank);
1531 av_freep(&c->vCCoeffsBank);
1532 #endif
1533
1534 av_freep(&c->vLumFilterPos);
1535 av_freep(&c->vChrFilterPos);
1536 av_freep(&c->hLumFilterPos);
1537 av_freep(&c->hChrFilterPos);
1538
1539 #if ARCH_X86 && CONFIG_GPL
1540 #ifdef MAP_ANONYMOUS
1541 if (c->lumMmx2FilterCode) munmap(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize);
1542 if (c->chrMmx2FilterCode) munmap(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize);
1543 #elif HAVE_VIRTUALALLOC
1544 if (c->lumMmx2FilterCode) VirtualFree(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize, MEM_RELEASE);
1545 if (c->chrMmx2FilterCode) VirtualFree(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize, MEM_RELEASE);
1546 #else
1547 av_free(c->lumMmx2FilterCode);
1548 av_free(c->chrMmx2FilterCode);
1549 #endif
1550 c->lumMmx2FilterCode=NULL;
1551 c->chrMmx2FilterCode=NULL;
1552 #endif /* ARCH_X86 && CONFIG_GPL */
1553
1554 av_freep(&c->yuvTable);
1555
1556 av_free(c);
1557 }
1558
1559 struct SwsContext *sws_getCachedContext(struct SwsContext *context,
1560 int srcW, int srcH, enum PixelFormat srcFormat,
1561 int dstW, int dstH, enum PixelFormat dstFormat, int flags,
1562 SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
1563 {
1564 static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};
1565
1566 if (!param)
1567 param = default_param;
1568
1569 if (context &&
1570 (context->srcW != srcW ||
1571 context->srcH != srcH ||
1572 context->srcFormat != srcFormat ||
1573 context->dstW != dstW ||
1574 context->dstH != dstH ||
1575 context->dstFormat != dstFormat ||
1576 context->flags != flags ||
1577 context->param[0] != param[0] ||
1578 context->param[1] != param[1])) {
1579 sws_freeContext(context);
1580 context = NULL;
1581 }
1582
1583 if (!context) {
1584 return sws_getContext(srcW, srcH, srcFormat,
1585 dstW, dstH, dstFormat, flags,
1586 srcFilter, dstFilter, param);
1587 }
1588 return context;
1589 }
1590