fe90a04f227d8d46a6b02507512256ef54c3646d
[libav.git] / libswscale / yuv2rgb.c
1 /*
2 * software YUV to RGB converter
3 *
4 * Copyright (C) 1999, Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
5 *
6 * Functions broken out from display_x11.c and several new modes
7 * added by HÃ¥kan Hjort <d95hjort@dtek.chalmers.se>
8 *
9 * 15 & 16 bpp support by Franck Sicard <Franck.Sicard@solsoft.fr>
10 *
11 * MMX/MMX2 template stuff (needed for fast movntq support),
12 * 1,4,8bpp support and context / deglobalize stuff
13 * by Michael Niedermayer (michaelni@gmx.at)
14 *
15 * This file is part of mpeg2dec, a free MPEG-2 video decoder
16 *
17 * mpeg2dec is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2, or (at your option)
20 * any later version.
21 *
22 * mpeg2dec is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 *
27 * You should have received a copy of the GNU General Public License
28 * along with mpeg2dec; if not, write to the Free Software
29 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
30 */
31
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <inttypes.h>
35 #include <assert.h>
36
37 #include "config.h"
38 #include "rgb2rgb.h"
39 #include "swscale.h"
40 #include "swscale_internal.h"
41
42 #define DITHER1XBPP // only for MMX
43
44 extern const uint8_t dither_8x8_32[8][8];
45 extern const uint8_t dither_8x8_73[8][8];
46 extern const uint8_t dither_8x8_220[8][8];
47
48 #if HAVE_MMX
49
50 /* hope these constant values are cache line aligned */
51 DECLARE_ASM_CONST(8, uint64_t, mmx_00ffw) = 0x00ff00ff00ff00ffULL;
52 DECLARE_ASM_CONST(8, uint64_t, mmx_redmask) = 0xf8f8f8f8f8f8f8f8ULL;
53 DECLARE_ASM_CONST(8, uint64_t, mmx_grnmask) = 0xfcfcfcfcfcfcfcfcULL;
54
55 //MMX versions
56 #undef RENAME
57 #undef HAVE_MMX2
58 #undef HAVE_AMD3DNOW
59 #define HAVE_MMX2 0
60 #define HAVE_AMD3DNOW 0
61 #define RENAME(a) a ## _MMX
62 #include "yuv2rgb_template.c"
63
64 //MMX2 versions
65 #undef RENAME
66 #undef HAVE_MMX2
67 #define HAVE_MMX2 1
68 #define RENAME(a) a ## _MMX2
69 #include "yuv2rgb_template.c"
70
71 #endif /* HAVE_MMX */
72
73 const int32_t ff_yuv2rgb_coeffs[8][4] = {
74 {117504, 138453, 13954, 34903}, /* no sequence_display_extension */
75 {117504, 138453, 13954, 34903}, /* ITU-R Rec. 709 (1990) */
76 {104597, 132201, 25675, 53279}, /* unspecified */
77 {104597, 132201, 25675, 53279}, /* reserved */
78 {104448, 132798, 24759, 53109}, /* FCC */
79 {104597, 132201, 25675, 53279}, /* ITU-R Rec. 624-4 System B, G */
80 {104597, 132201, 25675, 53279}, /* SMPTE 170M */
81 {117579, 136230, 16907, 35559} /* SMPTE 240M (1987) */
82 };
83
84 #define RGB(i) \
85 U = pu[i]; \
86 V = pv[i]; \
87 r = (void *)c->table_rV[V]; \
88 g = (void *)(c->table_gU[U] + c->table_gV[V]); \
89 b = (void *)c->table_bU[U];
90
91 #define DST1(i) \
92 Y = py_1[2*i]; \
93 dst_1[2*i] = r[Y] + g[Y] + b[Y]; \
94 Y = py_1[2*i+1]; \
95 dst_1[2*i+1] = r[Y] + g[Y] + b[Y];
96
97 #define DST2(i) \
98 Y = py_2[2*i]; \
99 dst_2[2*i] = r[Y] + g[Y] + b[Y]; \
100 Y = py_2[2*i+1]; \
101 dst_2[2*i+1] = r[Y] + g[Y] + b[Y];
102
103 #define DST1RGB(i) \
104 Y = py_1[2*i]; \
105 dst_1[6*i] = r[Y]; dst_1[6*i+1] = g[Y]; dst_1[6*i+2] = b[Y]; \
106 Y = py_1[2*i+1]; \
107 dst_1[6*i+3] = r[Y]; dst_1[6*i+4] = g[Y]; dst_1[6*i+5] = b[Y];
108
109 #define DST2RGB(i) \
110 Y = py_2[2*i]; \
111 dst_2[6*i] = r[Y]; dst_2[6*i+1] = g[Y]; dst_2[6*i+2] = b[Y]; \
112 Y = py_2[2*i+1]; \
113 dst_2[6*i+3] = r[Y]; dst_2[6*i+4] = g[Y]; dst_2[6*i+5] = b[Y];
114
115 #define DST1BGR(i) \
116 Y = py_1[2*i]; \
117 dst_1[6*i] = b[Y]; dst_1[6*i+1] = g[Y]; dst_1[6*i+2] = r[Y]; \
118 Y = py_1[2*i+1]; \
119 dst_1[6*i+3] = b[Y]; dst_1[6*i+4] = g[Y]; dst_1[6*i+5] = r[Y];
120
121 #define DST2BGR(i) \
122 Y = py_2[2*i]; \
123 dst_2[6*i] = b[Y]; dst_2[6*i+1] = g[Y]; dst_2[6*i+2] = r[Y]; \
124 Y = py_2[2*i+1]; \
125 dst_2[6*i+3] = b[Y]; dst_2[6*i+4] = g[Y]; dst_2[6*i+5] = r[Y];
126
127 #define PROLOG(func_name, dst_type) \
128 static int func_name(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, \
129 int srcSliceH, uint8_t* dst[], int dstStride[]){\
130 int y;\
131 \
132 if (c->srcFormat == PIX_FMT_YUV422P){\
133 srcStride[1] *= 2;\
134 srcStride[2] *= 2;\
135 }\
136 for (y=0; y<srcSliceH; y+=2){\
137 dst_type *dst_1= (dst_type*)(dst[0] + (y+srcSliceY )*dstStride[0]);\
138 dst_type *dst_2= (dst_type*)(dst[0] + (y+srcSliceY+1)*dstStride[0]);\
139 dst_type av_unused *r, *b;\
140 dst_type *g;\
141 uint8_t *py_1= src[0] + y*srcStride[0];\
142 uint8_t *py_2= py_1 + srcStride[0];\
143 uint8_t *pu= src[1] + (y>>1)*srcStride[1];\
144 uint8_t *pv= src[2] + (y>>1)*srcStride[2];\
145 unsigned int h_size= c->dstW>>3;\
146 while (h_size--) {\
147 int av_unused U, V;\
148 int Y;\
149
150 #define EPILOG1(dst_delta)\
151 pu += 4;\
152 pv += 4;\
153 py_1 += 8;\
154 py_2 += 8;\
155 dst_1 += dst_delta;\
156 dst_2 += dst_delta;\
157 }\
158 if (c->dstW & 4) {\
159 int av_unused Y, U, V;\
160
161 #define EPILOG2()\
162 }\
163 }\
164 return srcSliceH;\
165 }
166
167 #define EPILOG(dst_delta)\
168 EPILOG1(dst_delta)\
169 EPILOG2()
170
171 PROLOG(yuv2rgb_c_32, uint32_t)
172 RGB(0);
173 DST1(0);
174 DST2(0);
175
176 RGB(1);
177 DST2(1);
178 DST1(1);
179
180 RGB(2);
181 DST1(2);
182 DST2(2);
183
184 RGB(3);
185 DST2(3);
186 DST1(3);
187 EPILOG1(8)
188 RGB(0);
189 DST1(0);
190 DST2(0);
191
192 RGB(1);
193 DST2(1);
194 DST1(1);
195 EPILOG2()
196
197 PROLOG(yuv2rgb_c_24_rgb, uint8_t)
198 RGB(0);
199 DST1RGB(0);
200 DST2RGB(0);
201
202 RGB(1);
203 DST2RGB(1);
204 DST1RGB(1);
205
206 RGB(2);
207 DST1RGB(2);
208 DST2RGB(2);
209
210 RGB(3);
211 DST2RGB(3);
212 DST1RGB(3);
213 EPILOG1(24)
214 RGB(0);
215 DST1RGB(0);
216 DST2RGB(0);
217
218 RGB(1);
219 DST2RGB(1);
220 DST1RGB(1);
221 EPILOG2()
222
223 // only trivial mods from yuv2rgb_c_24_rgb
224 PROLOG(yuv2rgb_c_24_bgr, uint8_t)
225 RGB(0);
226 DST1BGR(0);
227 DST2BGR(0);
228
229 RGB(1);
230 DST2BGR(1);
231 DST1BGR(1);
232
233 RGB(2);
234 DST1BGR(2);
235 DST2BGR(2);
236
237 RGB(3);
238 DST2BGR(3);
239 DST1BGR(3);
240 EPILOG1(24)
241 RGB(0);
242 DST1BGR(0);
243 DST2BGR(0);
244
245 RGB(1);
246 DST2BGR(1);
247 DST1BGR(1);
248 EPILOG2()
249
250 // This is exactly the same code as yuv2rgb_c_32 except for the types of
251 // r, g, b, dst_1, dst_2
252 PROLOG(yuv2rgb_c_16, uint16_t)
253 RGB(0);
254 DST1(0);
255 DST2(0);
256
257 RGB(1);
258 DST2(1);
259 DST1(1);
260
261 RGB(2);
262 DST1(2);
263 DST2(2);
264
265 RGB(3);
266 DST2(3);
267 DST1(3);
268 EPILOG(8)
269
270 // This is exactly the same code as yuv2rgb_c_32 except for the types of
271 // r, g, b, dst_1, dst_2
272 PROLOG(yuv2rgb_c_8, uint8_t)
273 RGB(0);
274 DST1(0);
275 DST2(0);
276
277 RGB(1);
278 DST2(1);
279 DST1(1);
280
281 RGB(2);
282 DST1(2);
283 DST2(2);
284
285 RGB(3);
286 DST2(3);
287 DST1(3);
288 EPILOG(8)
289
290 // r, g, b, dst_1, dst_2
291 PROLOG(yuv2rgb_c_8_ordered_dither, uint8_t)
292 const uint8_t *d32= dither_8x8_32[y&7];
293 const uint8_t *d64= dither_8x8_73[y&7];
294 #define DST1bpp8(i,o) \
295 Y = py_1[2*i]; \
296 dst_1[2*i] = r[Y+d32[0+o]] + g[Y+d32[0+o]] + b[Y+d64[0+o]]; \
297 Y = py_1[2*i+1]; \
298 dst_1[2*i+1] = r[Y+d32[1+o]] + g[Y+d32[1+o]] + b[Y+d64[1+o]];
299
300 #define DST2bpp8(i,o) \
301 Y = py_2[2*i]; \
302 dst_2[2*i] = r[Y+d32[8+o]] + g[Y+d32[8+o]] + b[Y+d64[8+o]]; \
303 Y = py_2[2*i+1]; \
304 dst_2[2*i+1] = r[Y+d32[9+o]] + g[Y+d32[9+o]] + b[Y+d64[9+o]];
305
306
307 RGB(0);
308 DST1bpp8(0,0);
309 DST2bpp8(0,0);
310
311 RGB(1);
312 DST2bpp8(1,2);
313 DST1bpp8(1,2);
314
315 RGB(2);
316 DST1bpp8(2,4);
317 DST2bpp8(2,4);
318
319 RGB(3);
320 DST2bpp8(3,6);
321 DST1bpp8(3,6);
322 EPILOG(8)
323
324
325 // This is exactly the same code as yuv2rgb_c_32 except for the types of
326 // r, g, b, dst_1, dst_2
327 PROLOG(yuv2rgb_c_4, uint8_t)
328 int acc;
329 #define DST1_4(i) \
330 Y = py_1[2*i]; \
331 acc = r[Y] + g[Y] + b[Y]; \
332 Y = py_1[2*i+1]; \
333 acc |= (r[Y] + g[Y] + b[Y])<<4; \
334 dst_1[i] = acc;
335
336 #define DST2_4(i) \
337 Y = py_2[2*i]; \
338 acc = r[Y] + g[Y] + b[Y]; \
339 Y = py_2[2*i+1]; \
340 acc |= (r[Y] + g[Y] + b[Y])<<4; \
341 dst_2[i] = acc;
342
343 RGB(0);
344 DST1_4(0);
345 DST2_4(0);
346
347 RGB(1);
348 DST2_4(1);
349 DST1_4(1);
350
351 RGB(2);
352 DST1_4(2);
353 DST2_4(2);
354
355 RGB(3);
356 DST2_4(3);
357 DST1_4(3);
358 EPILOG(4)
359
360 PROLOG(yuv2rgb_c_4_ordered_dither, uint8_t)
361 const uint8_t *d64= dither_8x8_73[y&7];
362 const uint8_t *d128=dither_8x8_220[y&7];
363 int acc;
364
365 #define DST1bpp4(i,o) \
366 Y = py_1[2*i]; \
367 acc = r[Y+d128[0+o]] + g[Y+d64[0+o]] + b[Y+d128[0+o]]; \
368 Y = py_1[2*i+1]; \
369 acc |= (r[Y+d128[1+o]] + g[Y+d64[1+o]] + b[Y+d128[1+o]])<<4; \
370 dst_1[i]= acc;
371
372 #define DST2bpp4(i,o) \
373 Y = py_2[2*i]; \
374 acc = r[Y+d128[8+o]] + g[Y+d64[8+o]] + b[Y+d128[8+o]]; \
375 Y = py_2[2*i+1]; \
376 acc |= (r[Y+d128[9+o]] + g[Y+d64[9+o]] + b[Y+d128[9+o]])<<4; \
377 dst_2[i]= acc;
378
379
380 RGB(0);
381 DST1bpp4(0,0);
382 DST2bpp4(0,0);
383
384 RGB(1);
385 DST2bpp4(1,2);
386 DST1bpp4(1,2);
387
388 RGB(2);
389 DST1bpp4(2,4);
390 DST2bpp4(2,4);
391
392 RGB(3);
393 DST2bpp4(3,6);
394 DST1bpp4(3,6);
395 EPILOG(4)
396
397 // This is exactly the same code as yuv2rgb_c_32 except for the types of
398 // r, g, b, dst_1, dst_2
399 PROLOG(yuv2rgb_c_4b, uint8_t)
400 RGB(0);
401 DST1(0);
402 DST2(0);
403
404 RGB(1);
405 DST2(1);
406 DST1(1);
407
408 RGB(2);
409 DST1(2);
410 DST2(2);
411
412 RGB(3);
413 DST2(3);
414 DST1(3);
415 EPILOG(8)
416
417 PROLOG(yuv2rgb_c_4b_ordered_dither, uint8_t)
418 const uint8_t *d64= dither_8x8_73[y&7];
419 const uint8_t *d128=dither_8x8_220[y&7];
420
421 #define DST1bpp4b(i,o) \
422 Y = py_1[2*i]; \
423 dst_1[2*i] = r[Y+d128[0+o]] + g[Y+d64[0+o]] + b[Y+d128[0+o]]; \
424 Y = py_1[2*i+1]; \
425 dst_1[2*i+1] = r[Y+d128[1+o]] + g[Y+d64[1+o]] + b[Y+d128[1+o]];
426
427 #define DST2bpp4b(i,o) \
428 Y = py_2[2*i]; \
429 dst_2[2*i] = r[Y+d128[8+o]] + g[Y+d64[8+o]] + b[Y+d128[8+o]]; \
430 Y = py_2[2*i+1]; \
431 dst_2[2*i+1] = r[Y+d128[9+o]] + g[Y+d64[9+o]] + b[Y+d128[9+o]];
432
433
434 RGB(0);
435 DST1bpp4b(0,0);
436 DST2bpp4b(0,0);
437
438 RGB(1);
439 DST2bpp4b(1,2);
440 DST1bpp4b(1,2);
441
442 RGB(2);
443 DST1bpp4b(2,4);
444 DST2bpp4b(2,4);
445
446 RGB(3);
447 DST2bpp4b(3,6);
448 DST1bpp4b(3,6);
449 EPILOG(8)
450
451 PROLOG(yuv2rgb_c_1_ordered_dither, uint8_t)
452 const uint8_t *d128=dither_8x8_220[y&7];
453 char out_1=0, out_2=0;
454 g= c->table_gU[128] + c->table_gV[128];
455
456 #define DST1bpp1(i,o) \
457 Y = py_1[2*i]; \
458 out_1+= out_1 + g[Y+d128[0+o]]; \
459 Y = py_1[2*i+1]; \
460 out_1+= out_1 + g[Y+d128[1+o]];
461
462 #define DST2bpp1(i,o) \
463 Y = py_2[2*i]; \
464 out_2+= out_2 + g[Y+d128[8+o]]; \
465 Y = py_2[2*i+1]; \
466 out_2+= out_2 + g[Y+d128[9+o]];
467
468 DST1bpp1(0,0);
469 DST2bpp1(0,0);
470
471 DST2bpp1(1,2);
472 DST1bpp1(1,2);
473
474 DST1bpp1(2,4);
475 DST2bpp1(2,4);
476
477 DST2bpp1(3,6);
478 DST1bpp1(3,6);
479
480 dst_1[0]= out_1;
481 dst_2[0]= out_2;
482 EPILOG(1)
483
484 SwsFunc sws_yuv2rgb_get_func_ptr (SwsContext *c)
485 {
486 #if HAVE_MMX2 || HAVE_MMX
487 if (c->flags & SWS_CPU_CAPS_MMX2){
488 switch(c->dstFormat){
489 case PIX_FMT_RGB32: return yuv420_rgb32_MMX2;
490 case PIX_FMT_BGR24: return yuv420_rgb24_MMX2;
491 case PIX_FMT_RGB565: return yuv420_rgb16_MMX2;
492 case PIX_FMT_RGB555: return yuv420_rgb15_MMX2;
493 }
494 }
495 if (c->flags & SWS_CPU_CAPS_MMX){
496 switch(c->dstFormat){
497 case PIX_FMT_RGB32: return yuv420_rgb32_MMX;
498 case PIX_FMT_BGR24: return yuv420_rgb24_MMX;
499 case PIX_FMT_RGB565: return yuv420_rgb16_MMX;
500 case PIX_FMT_RGB555: return yuv420_rgb15_MMX;
501 }
502 }
503 #endif
504 #if HAVE_VIS
505 {
506 SwsFunc t= sws_yuv2rgb_init_vis(c);
507 if (t) return t;
508 }
509 #endif
510 #if CONFIG_MLIB
511 {
512 SwsFunc t= sws_yuv2rgb_init_mlib(c);
513 if (t) return t;
514 }
515 #endif
516 #if HAVE_ALTIVEC
517 if (c->flags & SWS_CPU_CAPS_ALTIVEC)
518 {
519 SwsFunc t = sws_yuv2rgb_init_altivec(c);
520 if (t) return t;
521 }
522 #endif
523
524 #if ARCH_BFIN
525 if (c->flags & SWS_CPU_CAPS_BFIN)
526 {
527 SwsFunc t = ff_bfin_yuv2rgb_get_func_ptr (c);
528 if (t) return t;
529 }
530 #endif
531
532 av_log(c, AV_LOG_WARNING, "No accelerated colorspace conversion found.\n");
533
534 switch(c->dstFormat){
535 case PIX_FMT_BGR32_1:
536 case PIX_FMT_RGB32_1:
537 case PIX_FMT_BGR32:
538 case PIX_FMT_RGB32: return yuv2rgb_c_32;
539 case PIX_FMT_RGB24: return yuv2rgb_c_24_rgb;
540 case PIX_FMT_BGR24: return yuv2rgb_c_24_bgr;
541 case PIX_FMT_RGB565:
542 case PIX_FMT_BGR565:
543 case PIX_FMT_RGB555:
544 case PIX_FMT_BGR555: return yuv2rgb_c_16;
545 case PIX_FMT_RGB8:
546 case PIX_FMT_BGR8: return yuv2rgb_c_8_ordered_dither;
547 case PIX_FMT_RGB4:
548 case PIX_FMT_BGR4: return yuv2rgb_c_4_ordered_dither;
549 case PIX_FMT_RGB4_BYTE:
550 case PIX_FMT_BGR4_BYTE: return yuv2rgb_c_4b_ordered_dither;
551 case PIX_FMT_MONOBLACK: return yuv2rgb_c_1_ordered_dither;
552 default:
553 assert(0);
554 }
555 return NULL;
556 }
557
558 static int div_round (int dividend, int divisor)
559 {
560 if (dividend > 0)
561 return (dividend + (divisor>>1)) / divisor;
562 else
563 return -((-dividend + (divisor>>1)) / divisor);
564 }
565
566 int sws_yuv2rgb_c_init_tables (SwsContext *c, const int inv_table[4], int fullRange, int brightness, int contrast, int saturation)
567 {
568 const int isRgb = c->dstFormat==PIX_FMT_RGB32
569 || c->dstFormat==PIX_FMT_RGB32_1
570 || c->dstFormat==PIX_FMT_BGR24
571 || c->dstFormat==PIX_FMT_RGB565
572 || c->dstFormat==PIX_FMT_RGB555
573 || c->dstFormat==PIX_FMT_RGB8
574 || c->dstFormat==PIX_FMT_RGB4
575 || c->dstFormat==PIX_FMT_RGB4_BYTE
576 || c->dstFormat==PIX_FMT_MONOBLACK;
577 const int bpp = fmt_depth(c->dstFormat);
578 int i, base;
579 uint8_t table_Y[1024];
580 uint32_t *table_32 = 0;
581 uint16_t *table_16 = 0;
582 uint8_t *table_8 = 0;
583 uint8_t *table_332 = 0;
584 uint8_t *table_121 = 0;
585 uint8_t *table_1 = 0;
586 int entry_size = 0;
587 void *table_r = 0, *table_g = 0, *table_b = 0;
588 void *table_start;
589
590 int64_t crv = inv_table[0];
591 int64_t cbu = inv_table[1];
592 int64_t cgu = -inv_table[2];
593 int64_t cgv = -inv_table[3];
594 int64_t cy = 1<<16;
595 int64_t oy = 0;
596
597 //printf("%lld %lld %lld %lld %lld\n", cy, crv, cbu, cgu, cgv);
598 if (!fullRange){
599 cy= (cy*255) / 219;
600 oy= 16<<16;
601 }else{
602 crv= (crv*224) / 255;
603 cbu= (cbu*224) / 255;
604 cgu= (cgu*224) / 255;
605 cgv= (cgv*224) / 255;
606 }
607
608 cy = (cy *contrast )>>16;
609 crv= (crv*contrast * saturation)>>32;
610 cbu= (cbu*contrast * saturation)>>32;
611 cgu= (cgu*contrast * saturation)>>32;
612 cgv= (cgv*contrast * saturation)>>32;
613 //printf("%lld %lld %lld %lld %lld\n", cy, crv, cbu, cgu, cgv);
614 oy -= 256*brightness;
615
616 for (i = 0; i < 1024; i++) {
617 int j;
618
619 j= (cy*(((i - 384)<<16) - oy) + (1<<31))>>32;
620 j = (j < 0) ? 0 : ((j > 255) ? 255 : j);
621 table_Y[i] = j;
622 }
623
624 switch (bpp) {
625 case 32:
626 table_start= table_32 = av_malloc ((197 + 2*682 + 256 + 132) * sizeof (uint32_t));
627 base= (c->dstFormat == PIX_FMT_RGB32_1 || c->dstFormat == PIX_FMT_BGR32_1) ? 8 : 0;
628
629 entry_size = sizeof (uint32_t);
630 table_r = table_32 + 197;
631 table_b = table_32 + 197 + 685;
632 table_g = table_32 + 197 + 2*682;
633
634 for (i = -197; i < 256+197; i++)
635 ((uint32_t *)table_r)[i] = table_Y[i+384] << ((isRgb ? 16 : 0) + base);
636 for (i = -132; i < 256+132; i++)
637 ((uint32_t *)table_g)[i] = table_Y[i+384] << (8 + base);
638 for (i = -232; i < 256+232; i++)
639 ((uint32_t *)table_b)[i] = table_Y[i+384] << ((isRgb ? 0 : 16) + base);
640 break;
641
642 case 24:
643 table_start= table_8 = av_malloc ((256 + 2*232) * sizeof (uint8_t));
644
645 entry_size = sizeof (uint8_t);
646 table_r = table_g = table_b = table_8 + 232;
647
648 for (i = -232; i < 256+232; i++)
649 ((uint8_t * )table_b)[i] = table_Y[i+384];
650 break;
651
652 case 15:
653 case 16:
654 table_start= table_16 = av_malloc ((197 + 2*682 + 256 + 132) * sizeof (uint16_t));
655
656 entry_size = sizeof (uint16_t);
657 table_r = table_16 + 197;
658 table_b = table_16 + 197 + 685;
659 table_g = table_16 + 197 + 2*682;
660
661 for (i = -197; i < 256+197; i++) {
662 int j = table_Y[i+384] >> 3;
663
664 if (isRgb)
665 j <<= ((bpp==16) ? 11 : 10);
666
667 ((uint16_t *)table_r)[i] = j;
668 }
669 for (i = -132; i < 256+132; i++) {
670 int j = table_Y[i+384] >> ((bpp==16) ? 2 : 3);
671
672 ((uint16_t *)table_g)[i] = j << 5;
673 }
674 for (i = -232; i < 256+232; i++) {
675 int j = table_Y[i+384] >> 3;
676
677 if (!isRgb)
678 j <<= ((bpp==16) ? 11 : 10);
679
680 ((uint16_t *)table_b)[i] = j;
681 }
682 break;
683
684 case 8:
685 table_start= table_332 = av_malloc ((197 + 2*682 + 256 + 132) * sizeof (uint8_t));
686
687 entry_size = sizeof (uint8_t);
688 table_r = table_332 + 197;
689 table_b = table_332 + 197 + 685;
690 table_g = table_332 + 197 + 2*682;
691
692 for (i = -197; i < 256+197; i++) {
693 int j = (table_Y[i+384 - 16] + 18)/36;
694
695 if (isRgb)
696 j <<= 5;
697
698 ((uint8_t *)table_r)[i] = j;
699 }
700 for (i = -132; i < 256+132; i++) {
701 int j = (table_Y[i+384 - 16] + 18)/36;
702
703 if (!isRgb)
704 j <<= 1;
705
706 ((uint8_t *)table_g)[i] = j << 2;
707 }
708 for (i = -232; i < 256+232; i++) {
709 int j = (table_Y[i+384 - 37] + 43)/85;
710
711 if (!isRgb)
712 j <<= 6;
713
714 ((uint8_t *)table_b)[i] = j;
715 }
716 break;
717 case 4:
718 case 4|128:
719 table_start= table_121 = av_malloc ((197 + 2*682 + 256 + 132) * sizeof (uint8_t));
720
721 entry_size = sizeof (uint8_t);
722 table_r = table_121 + 197;
723 table_b = table_121 + 197 + 685;
724 table_g = table_121 + 197 + 2*682;
725
726 for (i = -197; i < 256+197; i++) {
727 int j = table_Y[i+384 - 110] >> 7;
728
729 if (isRgb)
730 j <<= 3;
731
732 ((uint8_t *)table_r)[i] = j;
733 }
734 for (i = -132; i < 256+132; i++) {
735 int j = (table_Y[i+384 - 37]+ 43)/85;
736
737 ((uint8_t *)table_g)[i] = j << 1;
738 }
739 for (i = -232; i < 256+232; i++) {
740 int j =table_Y[i+384 - 110] >> 7;
741
742 if (!isRgb)
743 j <<= 3;
744
745 ((uint8_t *)table_b)[i] = j;
746 }
747 break;
748
749 case 1:
750 table_start= table_1 = av_malloc (256*2 * sizeof (uint8_t));
751
752 entry_size = sizeof (uint8_t);
753 table_g = table_1;
754 table_r = table_b = NULL;
755
756 for (i = 0; i < 256+256; i++) {
757 int j = table_Y[i + 384 - 110]>>7;
758
759 ((uint8_t *)table_g)[i] = j;
760 }
761 break;
762
763 default:
764 table_start= NULL;
765 av_log(c, AV_LOG_ERROR, "%ibpp not supported by yuv2rgb\n", bpp);
766 //free mem?
767 return -1;
768 }
769
770 for (i = 0; i < 256; i++) {
771 c->table_rV[i] = (uint8_t *)table_r + entry_size * div_round (crv * (i-128), cy);
772 c->table_gU[i] = (uint8_t *)table_g + entry_size * div_round (cgu * (i-128), cy);
773 c->table_gV[i] = entry_size * div_round (cgv * (i-128), cy);
774 c->table_bU[i] = (uint8_t *)table_b + entry_size * div_round (cbu * (i-128), cy);
775 }
776
777 av_free(c->yuvTable);
778 c->yuvTable= table_start;
779 return 0;
780 }