2 Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 2 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program; if not, write to the Free Software
16 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09
21 supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
22 {BGR,RGB}{1,4,8,15,16} support dithering
24 unscaled special converters (YV12=I420=IYUV, Y800=Y8)
25 YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
30 BGR24 -> BGR32 & RGB24 -> RGB32
31 BGR32 -> BGR24 & RGB32 -> RGB24
36 tested special converters (most are tested actually but i didnt write it down ...)
43 untested special converters
44 YV12/I420 -> BGR15/BGR24/BGR32 (its the yuv2rgb stuff, so it should be ok)
45 YV12/I420 -> YV12/I420
46 YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
47 BGR24 -> BGR32 & RGB24 -> RGB32
48 BGR32 -> BGR24 & RGB32 -> RGB24
56 #include "../config.h"
57 #include "../mangle.h"
65 #include "swscale_internal.h"
66 #include "../cpudetect.h"
68 #include "../libvo/img_format.h"
70 #include "../libvo/fastmemcpy.h"
79 //#define WORDS_BIGENDIAN
82 #define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
84 #define RET 0xC3 //near return opcode for X86
87 #define ASSERT(x) assert(x);
95 #define PI 3.14159265358979323846
98 //FIXME replace this with something faster
99 #define isPlanarYUV(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YVU9 \
100 || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P)
101 #define isYUV(x) ((x)==IMGFMT_UYVY || (x)==IMGFMT_YUY2 || isPlanarYUV(x))
102 #define isGray(x) ((x)==IMGFMT_Y800)
103 #define isRGB(x) (((x)&IMGFMT_RGB_MASK)==IMGFMT_RGB)
104 #define isBGR(x) (((x)&IMGFMT_BGR_MASK)==IMGFMT_BGR)
105 #define isSupportedIn(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY\
106 || (x)==IMGFMT_BGR32|| (x)==IMGFMT_BGR24|| (x)==IMGFMT_BGR16|| (x)==IMGFMT_BGR15\
107 || (x)==IMGFMT_RGB32|| (x)==IMGFMT_RGB24\
108 || (x)==IMGFMT_Y800 || (x)==IMGFMT_YVU9\
109 || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P)
110 #define isSupportedOut(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY\
111 || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P\
112 || isRGB(x) || isBGR(x)\
113 || (x)==IMGFMT_Y800 || (x)==IMGFMT_YVU9)
114 #define isPacked(x) ((x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY ||isRGB(x) || isBGR(x))
116 #define RGB2YUV_SHIFT 16
117 #define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
118 #define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
119 #define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
120 #define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
121 #define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
122 #define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
123 #define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
124 #define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
125 #define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))
127 extern const int32_t Inverse_Table_6_9
[8][4];
131 Special versions: fast Y 1:1 scaling (no interpolation in y direction)
134 more intelligent missalignment avoidance for the horizontal scaler
135 write special vertical cubic upscale version
136 Optimize C code (yv12 / minmax)
137 add support for packed pixel yuv input & output
138 add support for Y8 output
139 optimize bgr24 & bgr32
140 add BGR4 output support
141 write special BGR->BGR scaler
144 #define ABS(a) ((a) > 0 ? (a) : (-(a)))
145 #define MIN(a,b) ((a) > (b) ? (b) : (a))
146 #define MAX(a,b) ((a) < (b) ? (b) : (a))
149 static uint64_t attribute_used
__attribute__((aligned(8))) bF8
= 0xF8F8F8F8F8F8F8F8LL
;
150 static uint64_t attribute_used
__attribute__((aligned(8))) bFC
= 0xFCFCFCFCFCFCFCFCLL
;
151 static uint64_t __attribute__((aligned(8))) w10
= 0x0010001000100010LL
;
152 static uint64_t attribute_used
__attribute__((aligned(8))) w02
= 0x0002000200020002LL
;
153 static uint64_t attribute_used
__attribute__((aligned(8))) bm00001111
=0x00000000FFFFFFFFLL
;
154 static uint64_t attribute_used
__attribute__((aligned(8))) bm00000111
=0x0000000000FFFFFFLL
;
155 static uint64_t attribute_used
__attribute__((aligned(8))) bm11111000
=0xFFFFFFFFFF000000LL
;
156 static uint64_t attribute_used
__attribute__((aligned(8))) bm01010101
=0x00FF00FF00FF00FFLL
;
158 static volatile uint64_t attribute_used
__attribute__((aligned(8))) b5Dither
;
159 static volatile uint64_t attribute_used
__attribute__((aligned(8))) g5Dither
;
160 static volatile uint64_t attribute_used
__attribute__((aligned(8))) g6Dither
;
161 static volatile uint64_t attribute_used
__attribute__((aligned(8))) r5Dither
;
163 static uint64_t __attribute__((aligned(8))) dither4
[2]={
164 0x0103010301030103LL
,
165 0x0200020002000200LL
,};
167 static uint64_t __attribute__((aligned(8))) dither8
[2]={
168 0x0602060206020602LL
,
169 0x0004000400040004LL
,};
171 static uint64_t __attribute__((aligned(8))) b16Mask
= 0x001F001F001F001FLL
;
172 static uint64_t attribute_used
__attribute__((aligned(8))) g16Mask
= 0x07E007E007E007E0LL
;
173 static uint64_t attribute_used
__attribute__((aligned(8))) r16Mask
= 0xF800F800F800F800LL
;
174 static uint64_t __attribute__((aligned(8))) b15Mask
= 0x001F001F001F001FLL
;
175 static uint64_t attribute_used
__attribute__((aligned(8))) g15Mask
= 0x03E003E003E003E0LL
;
176 static uint64_t attribute_used
__attribute__((aligned(8))) r15Mask
= 0x7C007C007C007C00LL
;
178 static uint64_t attribute_used
__attribute__((aligned(8))) M24A
= 0x00FF0000FF0000FFLL
;
179 static uint64_t attribute_used
__attribute__((aligned(8))) M24B
= 0xFF0000FF0000FF00LL
;
180 static uint64_t attribute_used
__attribute__((aligned(8))) M24C
= 0x0000FF0000FF0000LL
;
183 static const uint64_t bgr2YCoeff attribute_used
__attribute__((aligned(8))) = 0x000000210041000DULL
;
184 static const uint64_t bgr2UCoeff attribute_used
__attribute__((aligned(8))) = 0x0000FFEEFFDC0038ULL
;
185 static const uint64_t bgr2VCoeff attribute_used
__attribute__((aligned(8))) = 0x00000038FFD2FFF8ULL
;
187 static const uint64_t bgr2YCoeff attribute_used
__attribute__((aligned(8))) = 0x000020E540830C8BULL
;
188 static const uint64_t bgr2UCoeff attribute_used
__attribute__((aligned(8))) = 0x0000ED0FDAC23831ULL
;
189 static const uint64_t bgr2VCoeff attribute_used
__attribute__((aligned(8))) = 0x00003831D0E6F6EAULL
;
191 static const uint64_t bgr2YOffset attribute_used
__attribute__((aligned(8))) = 0x1010101010101010ULL
;
192 static const uint64_t bgr2UVOffset attribute_used
__attribute__((aligned(8)))= 0x8080808080808080ULL
;
193 static const uint64_t w1111 attribute_used
__attribute__((aligned(8))) = 0x0001000100010001ULL
;
196 // clipping helper table for C implementations:
197 static unsigned char clip_table
[768];
199 static SwsVector
*sws_getConvVec(SwsVector
*a
, SwsVector
*b
);
201 extern const uint8_t dither_2x2_4
[2][8];
202 extern const uint8_t dither_2x2_8
[2][8];
203 extern const uint8_t dither_8x8_32
[8][8];
204 extern const uint8_t dither_8x8_73
[8][8];
205 extern const uint8_t dither_8x8_220
[8][8];
208 void in_asm_used_var_warning_killer()
210 volatile int i
= bF8
+bFC
+w10
+
211 bm00001111
+bm00000111
+bm11111000
+b16Mask
+g16Mask
+r16Mask
+b15Mask
+g15Mask
+r15Mask
+
212 M24A
+M24B
+M24C
+w02
+ b5Dither
+g5Dither
+r5Dither
+g6Dither
+dither4
[0]+dither8
[0]+bm01010101
;
217 static inline void yuv2yuvXinC(int16_t *lumFilter
, int16_t **lumSrc
, int lumFilterSize
,
218 int16_t *chrFilter
, int16_t **chrSrc
, int chrFilterSize
,
219 uint8_t *dest
, uint8_t *uDest
, uint8_t *vDest
, int dstW
, int chrDstW
)
221 //FIXME Optimize (just quickly writen not opti..)
223 for(i
=0; i
<dstW
; i
++)
227 for(j
=0; j
<lumFilterSize
; j
++)
228 val
+= lumSrc
[j
][i
] * lumFilter
[j
];
230 dest
[i
]= MIN(MAX(val
>>19, 0), 255);
234 for(i
=0; i
<chrDstW
; i
++)
239 for(j
=0; j
<chrFilterSize
; j
++)
241 u
+= chrSrc
[j
][i
] * chrFilter
[j
];
242 v
+= chrSrc
[j
][i
+ 2048] * chrFilter
[j
];
245 uDest
[i
]= MIN(MAX(u
>>19, 0), 255);
246 vDest
[i
]= MIN(MAX(v
>>19, 0), 255);
251 #define YSCALE_YUV_2_PACKEDX_C(type) \
252 for(i=0; i<(dstW>>1); i++){\
261 for(j=0; j<lumFilterSize; j++)\
263 Y1 += lumSrc[j][i2] * lumFilter[j];\
264 Y2 += lumSrc[j][i2+1] * lumFilter[j];\
266 for(j=0; j<chrFilterSize; j++)\
268 U += chrSrc[j][i] * chrFilter[j];\
269 V += chrSrc[j][i+2048] * chrFilter[j];\
287 #define YSCALE_YUV_2_RGBX_C(type) \
288 YSCALE_YUV_2_PACKEDX_C(type)\
290 g = c->table_gU[U] + c->table_gV[V];\
293 #define YSCALE_YUV_2_PACKED2_C \
294 for(i=0; i<(dstW>>1); i++){\
296 int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19;\
297 int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19;\
298 int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19;\
299 int V= (uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19;\
301 #define YSCALE_YUV_2_RGB2_C(type) \
302 YSCALE_YUV_2_PACKED2_C\
305 g = c->table_gU[U] + c->table_gV[V];\
308 #define YSCALE_YUV_2_PACKED1_C \
309 for(i=0; i<(dstW>>1); i++){\
311 int Y1= buf0[i2 ]>>7;\
312 int Y2= buf0[i2+1]>>7;\
313 int U= (uvbuf1[i ])>>7;\
314 int V= (uvbuf1[i+2048])>>7;\
316 #define YSCALE_YUV_2_RGB1_C(type) \
317 YSCALE_YUV_2_PACKED1_C\
320 g = c->table_gU[U] + c->table_gV[V];\
323 #define YSCALE_YUV_2_PACKED1B_C \
324 for(i=0; i<(dstW>>1); i++){\
326 int Y1= buf0[i2 ]>>7;\
327 int Y2= buf0[i2+1]>>7;\
328 int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\
329 int V= (uvbuf0[i+2048] + uvbuf1[i+2048])>>8;\
331 #define YSCALE_YUV_2_RGB1B_C(type) \
332 YSCALE_YUV_2_PACKED1B_C\
335 g = c->table_gU[U] + c->table_gV[V];\
338 #define YSCALE_YUV_2_ANYRGB_C(func, func2)\
339 switch(c->dstFormat)\
344 ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
345 ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
350 ((uint8_t*)dest)[0]= r[Y1];\
351 ((uint8_t*)dest)[1]= g[Y1];\
352 ((uint8_t*)dest)[2]= b[Y1];\
353 ((uint8_t*)dest)[3]= r[Y2];\
354 ((uint8_t*)dest)[4]= g[Y2];\
355 ((uint8_t*)dest)[5]= b[Y2];\
361 ((uint8_t*)dest)[0]= b[Y1];\
362 ((uint8_t*)dest)[1]= g[Y1];\
363 ((uint8_t*)dest)[2]= r[Y1];\
364 ((uint8_t*)dest)[3]= b[Y2];\
365 ((uint8_t*)dest)[4]= g[Y2];\
366 ((uint8_t*)dest)[5]= r[Y2];\
373 const int dr1= dither_2x2_8[y&1 ][0];\
374 const int dg1= dither_2x2_4[y&1 ][0];\
375 const int db1= dither_2x2_8[(y&1)^1][0];\
376 const int dr2= dither_2x2_8[y&1 ][1];\
377 const int dg2= dither_2x2_4[y&1 ][1];\
378 const int db2= dither_2x2_8[(y&1)^1][1];\
380 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
381 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
388 const int dr1= dither_2x2_8[y&1 ][0];\
389 const int dg1= dither_2x2_8[y&1 ][1];\
390 const int db1= dither_2x2_8[(y&1)^1][0];\
391 const int dr2= dither_2x2_8[y&1 ][1];\
392 const int dg2= dither_2x2_8[y&1 ][0];\
393 const int db2= dither_2x2_8[(y&1)^1][1];\
395 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
396 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
403 const uint8_t * const d64= dither_8x8_73[y&7];\
404 const uint8_t * const d32= dither_8x8_32[y&7];\
406 ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
407 ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
414 const uint8_t * const d64= dither_8x8_73 [y&7];\
415 const uint8_t * const d128=dither_8x8_220[y&7];\
417 ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
418 + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
425 const uint8_t * const d64= dither_8x8_73 [y&7];\
426 const uint8_t * const d128=dither_8x8_220[y&7];\
428 ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
429 ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
436 const uint8_t * const d128=dither_8x8_220[y&7];\
437 uint8_t *g= c->table_gU[128] + c->table_gV[128];\
438 for(i=0; i<dstW-7; i+=8){\
440 acc = g[((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19) + d128[0]];\
441 acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
442 acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
443 acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
444 acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
445 acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
446 acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
447 acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
448 ((uint8_t*)dest)[0]= acc;\
453 ((uint8_t*)dest)-= dstW>>4;\
457 static int top[1024];\
458 static int last_new[1024][1024];\
459 static int last_in3[1024][1024];\
460 static int drift[1024][1024];\
464 const uint8_t * const d128=dither_8x8_220[y&7];\
469 for(i=dstW>>1; i<dstW; i++){\
470 int in= ((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19);\
471 int in2 = (76309 * (in - 16) + 32768) >> 16;\
472 int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
473 int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
474 + (last_new[y][i] - in3)*f/256;\
475 int new= old> 128 ? 255 : 0;\
477 error_new+= ABS(last_new[y][i] - new);\
478 error_in3+= ABS(last_in3[y][i] - in3);\
479 f= error_new - error_in3*4;\
484 left= top[i]= old - new;\
485 last_new[y][i]= new;\
486 last_in3[y][i]= in3;\
488 acc+= acc + (new&1);\
490 ((uint8_t*)dest)[0]= acc;\
500 ((uint8_t*)dest)[2*i2+0]= Y1;\
501 ((uint8_t*)dest)[2*i2+1]= U;\
502 ((uint8_t*)dest)[2*i2+2]= Y2;\
503 ((uint8_t*)dest)[2*i2+3]= V;\
508 ((uint8_t*)dest)[2*i2+0]= U;\
509 ((uint8_t*)dest)[2*i2+1]= Y1;\
510 ((uint8_t*)dest)[2*i2+2]= V;\
511 ((uint8_t*)dest)[2*i2+3]= Y2;\
517 static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
518 int16_t *chrFilter
, int16_t **chrSrc
, int chrFilterSize
,
519 uint8_t *dest
, int dstW
, int y
)
526 YSCALE_YUV_2_RGBX_C(uint32_t)
527 ((uint32_t*)dest
)[i2
+0]= r
[Y1
] + g
[Y1
] + b
[Y1
];
528 ((uint32_t*)dest
)[i2
+1]= r
[Y2
] + g
[Y2
] + b
[Y2
];
532 YSCALE_YUV_2_RGBX_C(uint8_t)
533 ((uint8_t*)dest
)[0]= r
[Y1
];
534 ((uint8_t*)dest
)[1]= g
[Y1
];
535 ((uint8_t*)dest
)[2]= b
[Y1
];
536 ((uint8_t*)dest
)[3]= r
[Y2
];
537 ((uint8_t*)dest
)[4]= g
[Y2
];
538 ((uint8_t*)dest
)[5]= b
[Y2
];
543 YSCALE_YUV_2_RGBX_C(uint8_t)
544 ((uint8_t*)dest
)[0]= b
[Y1
];
545 ((uint8_t*)dest
)[1]= g
[Y1
];
546 ((uint8_t*)dest
)[2]= r
[Y1
];
547 ((uint8_t*)dest
)[3]= b
[Y2
];
548 ((uint8_t*)dest
)[4]= g
[Y2
];
549 ((uint8_t*)dest
)[5]= r
[Y2
];
556 const int dr1
= dither_2x2_8
[y
&1 ][0];
557 const int dg1
= dither_2x2_4
[y
&1 ][0];
558 const int db1
= dither_2x2_8
[(y
&1)^1][0];
559 const int dr2
= dither_2x2_8
[y
&1 ][1];
560 const int dg2
= dither_2x2_4
[y
&1 ][1];
561 const int db2
= dither_2x2_8
[(y
&1)^1][1];
562 YSCALE_YUV_2_RGBX_C(uint16_t)
563 ((uint16_t*)dest
)[i2
+0]= r
[Y1
+dr1
] + g
[Y1
+dg1
] + b
[Y1
+db1
];
564 ((uint16_t*)dest
)[i2
+1]= r
[Y2
+dr2
] + g
[Y2
+dg2
] + b
[Y2
+db2
];
571 const int dr1
= dither_2x2_8
[y
&1 ][0];
572 const int dg1
= dither_2x2_8
[y
&1 ][1];
573 const int db1
= dither_2x2_8
[(y
&1)^1][0];
574 const int dr2
= dither_2x2_8
[y
&1 ][1];
575 const int dg2
= dither_2x2_8
[y
&1 ][0];
576 const int db2
= dither_2x2_8
[(y
&1)^1][1];
577 YSCALE_YUV_2_RGBX_C(uint16_t)
578 ((uint16_t*)dest
)[i2
+0]= r
[Y1
+dr1
] + g
[Y1
+dg1
] + b
[Y1
+db1
];
579 ((uint16_t*)dest
)[i2
+1]= r
[Y2
+dr2
] + g
[Y2
+dg2
] + b
[Y2
+db2
];
586 const uint8_t * const d64
= dither_8x8_73
[y
&7];
587 const uint8_t * const d32
= dither_8x8_32
[y
&7];
588 YSCALE_YUV_2_RGBX_C(uint8_t)
589 ((uint8_t*)dest
)[i2
+0]= r
[Y1
+d32
[(i2
+0)&7]] + g
[Y1
+d32
[(i2
+0)&7]] + b
[Y1
+d64
[(i2
+0)&7]];
590 ((uint8_t*)dest
)[i2
+1]= r
[Y2
+d32
[(i2
+1)&7]] + g
[Y2
+d32
[(i2
+1)&7]] + b
[Y2
+d64
[(i2
+1)&7]];
597 const uint8_t * const d64
= dither_8x8_73
[y
&7];
598 const uint8_t * const d128
=dither_8x8_220
[y
&7];
599 YSCALE_YUV_2_RGBX_C(uint8_t)
600 ((uint8_t*)dest
)[i
]= r
[Y1
+d128
[(i2
+0)&7]] + g
[Y1
+d64
[(i2
+0)&7]] + b
[Y1
+d128
[(i2
+0)&7]]
601 +((r
[Y2
+d128
[(i2
+1)&7]] + g
[Y2
+d64
[(i2
+1)&7]] + b
[Y2
+d128
[(i2
+1)&7]])<<4);
608 const uint8_t * const d64
= dither_8x8_73
[y
&7];
609 const uint8_t * const d128
=dither_8x8_220
[y
&7];
610 YSCALE_YUV_2_RGBX_C(uint8_t)
611 ((uint8_t*)dest
)[i2
+0]= r
[Y1
+d128
[(i2
+0)&7]] + g
[Y1
+d64
[(i2
+0)&7]] + b
[Y1
+d128
[(i2
+0)&7]];
612 ((uint8_t*)dest
)[i2
+1]= r
[Y2
+d128
[(i2
+1)&7]] + g
[Y2
+d64
[(i2
+1)&7]] + b
[Y2
+d128
[(i2
+1)&7]];
619 const uint8_t * const d128
=dither_8x8_220
[y
&7];
620 uint8_t *g
= c
->table_gU
[128] + c
->table_gV
[128];
622 for(i
=0; i
<dstW
-1; i
+=2){
627 for(j
=0; j
<lumFilterSize
; j
++)
629 Y1
+= lumSrc
[j
][i
] * lumFilter
[j
];
630 Y2
+= lumSrc
[j
][i
+1] * lumFilter
[j
];
641 acc
+= acc
+ g
[Y1
+d128
[(i
+0)&7]];
642 acc
+= acc
+ g
[Y2
+d128
[(i
+1)&7]];
644 ((uint8_t*)dest
)[0]= acc
;
651 YSCALE_YUV_2_PACKEDX_C(void)
652 ((uint8_t*)dest
)[2*i2
+0]= Y1
;
653 ((uint8_t*)dest
)[2*i2
+1]= U
;
654 ((uint8_t*)dest
)[2*i2
+2]= Y2
;
655 ((uint8_t*)dest
)[2*i2
+3]= V
;
659 YSCALE_YUV_2_PACKEDX_C(void)
660 ((uint8_t*)dest
)[2*i2
+0]= U
;
661 ((uint8_t*)dest
)[2*i2
+1]= Y1
;
662 ((uint8_t*)dest
)[2*i2
+2]= V
;
663 ((uint8_t*)dest
)[2*i2
+3]= Y2
;
670 //Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
672 #if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT)
678 #define COMPILE_ALTIVEC
679 #endif //HAVE_ALTIVEC
680 #endif //ARCH_POWERPC
684 #if (defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
688 #if defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)
692 #if (defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
693 #define COMPILE_3DNOW
706 #define RENAME(a) a ## _C
707 #include "swscale_template.c"
711 #ifdef COMPILE_ALTIVEC
714 #define RENAME(a) a ## _altivec
715 #include "swscale_template.c"
717 #endif //ARCH_POWERPC
728 #define RENAME(a) a ## _X86
729 #include "swscale_template.c"
737 #define RENAME(a) a ## _MMX
738 #include "swscale_template.c"
747 #define RENAME(a) a ## _MMX2
748 #include "swscale_template.c"
757 #define RENAME(a) a ## _3DNow
758 #include "swscale_template.c"
763 // minor note: the HAVE_xyz is messed up after that line so don't use it
765 static double getSplineCoeff(double a
, double b
, double c
, double d
, double dist
)
767 // printf("%f %f %f %f %f\n", a,b,c,d,dist);
768 if(dist
<=1.0) return ((d
*dist
+ c
)*dist
+ b
)*dist
+a
;
769 else return getSplineCoeff( 0.0,
776 static inline void initFilter(int16_t **outFilter
, int16_t **filterPos
, int *outFilterSize
, int xInc
,
777 int srcW
, int dstW
, int filterAlign
, int one
, int flags
,
778 SwsVector
*srcFilter
, SwsVector
*dstFilter
, double param
[2])
785 double *filter2
=NULL
;
787 if(flags
& SWS_CPU_CAPS_MMX
)
788 asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions)
791 // Note the +1 is for the MMXscaler which reads over the end
792 *filterPos
= (int16_t*)memalign(8, (dstW
+1)*sizeof(int16_t));
794 if(ABS(xInc
- 0x10000) <10) // unscaled
798 filter
= (double*)memalign(8, dstW
*sizeof(double)*filterSize
);
799 for(i
=0; i
<dstW
*filterSize
; i
++) filter
[i
]=0;
801 for(i
=0; i
<dstW
; i
++)
803 filter
[i
*filterSize
]=1;
808 else if(flags
&SWS_POINT
) // lame looking point sampling mode
813 filter
= (double*)memalign(8, dstW
*sizeof(double)*filterSize
);
815 xDstInSrc
= xInc
/2 - 0x8000;
816 for(i
=0; i
<dstW
; i
++)
818 int xx
= (xDstInSrc
- ((filterSize
-1)<<15) + (1<<15))>>16;
825 else if((xInc
<= (1<<16) && (flags
&SWS_AREA
)) || (flags
&SWS_FAST_BILINEAR
)) // bilinear upscale
829 if (flags
&SWS_BICUBIC
) filterSize
= 4;
830 else if(flags
&SWS_X
) filterSize
= 4;
831 else filterSize
= 2; // SWS_BILINEAR / SWS_AREA
832 filter
= (double*)memalign(8, dstW
*sizeof(double)*filterSize
);
834 xDstInSrc
= xInc
/2 - 0x8000;
835 for(i
=0; i
<dstW
; i
++)
837 int xx
= (xDstInSrc
- ((filterSize
-1)<<15) + (1<<15))>>16;
841 //Bilinear upscale / linear interpolate / Area averaging
842 for(j
=0; j
<filterSize
; j
++)
844 double d
= ABS((xx
<<16) - xDstInSrc
)/(double)(1<<16);
845 double coeff
= 1.0 - d
;
847 filter
[i
*filterSize
+ j
]= coeff
;
856 double sizeFactor
, filterSizeInSrc
;
857 const double xInc1
= (double)xInc
/ (double)(1<<16);
859 if (flags
&SWS_BICUBIC
) sizeFactor
= 4.0;
860 else if(flags
&SWS_X
) sizeFactor
= 8.0;
861 else if(flags
&SWS_AREA
) sizeFactor
= 1.0; //downscale only, for upscale it is bilinear
862 else if(flags
&SWS_GAUSS
) sizeFactor
= 8.0; // infinite ;)
863 else if(flags
&SWS_LANCZOS
) sizeFactor
= param
[0] != SWS_PARAM_DEFAULT ?
2.0*param
[0] : 6.0;
864 else if(flags
&SWS_SINC
) sizeFactor
= 20.0; // infinite ;)
865 else if(flags
&SWS_SPLINE
) sizeFactor
= 20.0; // infinite ;)
866 else if(flags
&SWS_BILINEAR
) sizeFactor
= 2.0;
868 sizeFactor
= 0.0; //GCC warning killer
872 if(xInc1
<= 1.0) filterSizeInSrc
= sizeFactor
; // upscale
873 else filterSizeInSrc
= sizeFactor
*srcW
/ (double)dstW
;
875 filterSize
= (int)ceil(1 + filterSizeInSrc
); // will be reduced later if possible
876 if(filterSize
> srcW
-2) filterSize
=srcW
-2;
878 filter
= (double*)memalign(16, dstW
*sizeof(double)*filterSize
);
880 xDstInSrc
= xInc1
/ 2.0 - 0.5;
881 for(i
=0; i
<dstW
; i
++)
883 int xx
= (int)(xDstInSrc
- (filterSize
-1)*0.5 + 0.5);
886 for(j
=0; j
<filterSize
; j
++)
888 double d
= ABS(xx
- xDstInSrc
)/filterSizeInSrc
*sizeFactor
;
890 if(flags
& SWS_BICUBIC
)
892 double B
= param
[0] != SWS_PARAM_DEFAULT ? param
[0] : 0.0;
893 double C
= param
[1] != SWS_PARAM_DEFAULT ? param
[1] : 0.6;
896 coeff
= (12-9*B
-6*C
)*d
*d
*d
+ (-18+12*B
+6*C
)*d
*d
+ 6-2*B
;
898 coeff
= (-B
-6*C
)*d
*d
*d
+ (6*B
+30*C
)*d
*d
+ (-12*B
-48*C
)*d
+8*B
+24*C
;
902 /* else if(flags & SWS_X)
904 double p= param ? param*0.01 : 0.3;
905 coeff = d ? sin(d*PI)/(d*PI) : 1.0;
906 coeff*= pow(2.0, - p*d*d);
908 else if(flags
& SWS_X
)
910 double A
= param
[0] != SWS_PARAM_DEFAULT ? param
[0] : 1.0;
916 if(coeff
<0.0) coeff
= -pow(-coeff
, A
);
917 else coeff
= pow( coeff
, A
);
918 coeff
= coeff
*0.5 + 0.5;
920 else if(flags
& SWS_AREA
)
922 double srcPixelSize
= 1.0/xInc1
;
923 if(d
+ srcPixelSize
/2 < 0.5) coeff
= 1.0;
924 else if(d
- srcPixelSize
/2 < 0.5) coeff
= (0.5-d
)/srcPixelSize
+ 0.5;
927 else if(flags
& SWS_GAUSS
)
929 double p
= param
[0] != SWS_PARAM_DEFAULT ? param
[0] : 3.0;
930 coeff
= pow(2.0, - p
*d
*d
);
932 else if(flags
& SWS_SINC
)
934 coeff
= d ?
sin(d
*PI
)/(d
*PI
) : 1.0;
936 else if(flags
& SWS_LANCZOS
)
938 double p
= param
[0] != SWS_PARAM_DEFAULT ? param
[0] : 3.0;
939 coeff
= d ?
sin(d
*PI
)*sin(d
*PI
/p
)/(d
*d
*PI
*PI
/p
) : 1.0;
942 else if(flags
& SWS_BILINEAR
)
947 else if(flags
& SWS_SPLINE
)
949 double p
=-2.196152422706632;
950 coeff
= getSplineCoeff(1.0, 0.0, p
, -p
-1.0, d
);
953 coeff
= 0.0; //GCC warning killer
957 filter
[i
*filterSize
+ j
]= coeff
;
964 /* apply src & dst Filter to filter -> filter2
968 filter2Size
= filterSize
;
969 if(srcFilter
) filter2Size
+= srcFilter
->length
- 1;
970 if(dstFilter
) filter2Size
+= dstFilter
->length
- 1;
971 ASSERT(filter2Size
>0)
972 filter2
= (double*)memalign(8, filter2Size
*dstW
*sizeof(double));
974 for(i
=0; i
<dstW
; i
++)
977 SwsVector scaleFilter
;
980 scaleFilter
.coeff
= filter
+ i
*filterSize
;
981 scaleFilter
.length
= filterSize
;
983 if(srcFilter
) outVec
= sws_getConvVec(srcFilter
, &scaleFilter
);
984 else outVec
= &scaleFilter
;
986 ASSERT(outVec
->length
== filter2Size
)
989 for(j
=0; j
<outVec
->length
; j
++)
991 filter2
[i
*filter2Size
+ j
]= outVec
->coeff
[j
];
994 (*filterPos
)[i
]+= (filterSize
-1)/2 - (filter2Size
-1)/2;
996 if(outVec
!= &scaleFilter
) sws_freeVec(outVec
);
998 free(filter
); filter
=NULL
;
1000 /* try to reduce the filter-size (step1 find size and shift left) */
1001 // Assume its near normalized (*0.5 or *2.0 is ok but * 0.001 is not)
1003 for(i
=dstW
-1; i
>=0; i
--)
1005 int min
= filter2Size
;
1009 /* get rid off near zero elements on the left by shifting left */
1010 for(j
=0; j
<filter2Size
; j
++)
1013 cutOff
+= ABS(filter2
[i
*filter2Size
]);
1015 if(cutOff
> SWS_MAX_REDUCE_CUTOFF
) break;
1017 /* preserve Monotonicity because the core can't handle the filter otherwise */
1018 if(i
<dstW
-1 && (*filterPos
)[i
] >= (*filterPos
)[i
+1]) break;
1020 // Move filter coeffs left
1021 for(k
=1; k
<filter2Size
; k
++)
1022 filter2
[i
*filter2Size
+ k
- 1]= filter2
[i
*filter2Size
+ k
];
1023 filter2
[i
*filter2Size
+ k
- 1]= 0.0;
1028 /* count near zeros on the right */
1029 for(j
=filter2Size
-1; j
>0; j
--)
1031 cutOff
+= ABS(filter2
[i
*filter2Size
+ j
]);
1033 if(cutOff
> SWS_MAX_REDUCE_CUTOFF
) break;
1037 if(min
>minFilterSize
) minFilterSize
= min
;
1040 if (flags
& SWS_CPU_CAPS_ALTIVEC
) {
1041 // we can handle the special case 4,
1042 // so we don't want to go to the full 8
1043 if (minFilterSize
< 5)
1046 // we really don't want to waste our time
1047 // doing useless computation, so fall-back on
1048 // the scalar C code for very small filter.
1049 // vectorizing is worth it only if you have
1050 // decent-sized vector.
1051 if (minFilterSize
< 3)
1055 ASSERT(minFilterSize
> 0)
1056 filterSize
= (minFilterSize
+(filterAlign
-1)) & (~(filterAlign
-1));
1057 ASSERT(filterSize
> 0)
1058 filter
= (double*)memalign(8, filterSize
*dstW
*sizeof(double));
1059 *outFilterSize
= filterSize
;
1061 if(flags
&SWS_PRINT_INFO
)
1062 MSG_INFO("SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size
, filterSize
);
1063 /* try to reduce the filter-size (step2 reduce it) */
1064 for(i
=0; i
<dstW
; i
++)
1068 for(j
=0; j
<filterSize
; j
++)
1070 if(j
>=filter2Size
) filter
[i
*filterSize
+ j
]= 0.0;
1071 else filter
[i
*filterSize
+ j
]= filter2
[i
*filter2Size
+ j
];
1074 free(filter2
); filter2
=NULL
;
1077 //FIXME try to align filterpos if possible
1080 for(i
=0; i
<dstW
; i
++)
1083 if((*filterPos
)[i
] < 0)
1085 // Move filter coeffs left to compensate for filterPos
1086 for(j
=1; j
<filterSize
; j
++)
1088 int left
= MAX(j
+ (*filterPos
)[i
], 0);
1089 filter
[i
*filterSize
+ left
] += filter
[i
*filterSize
+ j
];
1090 filter
[i
*filterSize
+ j
]=0;
1095 if((*filterPos
)[i
] + filterSize
> srcW
)
1097 int shift
= (*filterPos
)[i
] + filterSize
- srcW
;
1098 // Move filter coeffs right to compensate for filterPos
1099 for(j
=filterSize
-2; j
>=0; j
--)
1101 int right
= MIN(j
+ shift
, filterSize
-1);
1102 filter
[i
*filterSize
+right
] += filter
[i
*filterSize
+j
];
1103 filter
[i
*filterSize
+j
]=0;
1105 (*filterPos
)[i
]= srcW
- filterSize
;
1109 // Note the +1 is for the MMXscaler which reads over the end
1110 *outFilter
= (int16_t*)memalign(8, *outFilterSize
*(dstW
+1)*sizeof(int16_t));
1111 memset(*outFilter
, 0, *outFilterSize
*(dstW
+1)*sizeof(int16_t));
1113 /* Normalize & Store in outFilter */
1114 for(i
=0; i
<dstW
; i
++)
1121 for(j
=0; j
<filterSize
; j
++)
1123 sum
+= filter
[i
*filterSize
+ j
];
1126 for(j
=0; j
<*outFilterSize
; j
++)
1128 double v
= filter
[i
*filterSize
+ j
]*scale
+ error
;
1129 int intV
= floor(v
+ 0.5);
1130 (*outFilter
)[i
*(*outFilterSize
) + j
]= intV
;
1135 (*filterPos
)[dstW
]= (*filterPos
)[dstW
-1]; // the MMX scaler will read over the end
1136 for(i
=0; i
<*outFilterSize
; i
++)
1138 int j
= dstW
*(*outFilterSize
);
1139 (*outFilter
)[j
+ i
]= (*outFilter
)[j
+ i
- (*outFilterSize
)];
1146 static void initMMX2HScaler(int dstW
, int xInc
, uint8_t *funnyCode
, int16_t *filter
, int32_t *filterPos
, int numSplits
)
1151 int fragmentLengthA
;
1155 int fragmentLengthB
;
1160 // create an optimized horizontal scaling routine
1168 "movq (%%edx, %%eax), %%mm3 \n\t"
1169 "movd (%%ecx, %%esi), %%mm0 \n\t"
1170 "movd 1(%%ecx, %%esi), %%mm1 \n\t"
1171 "punpcklbw %%mm7, %%mm1 \n\t"
1172 "punpcklbw %%mm7, %%mm0 \n\t"
1173 "pshufw $0xFF, %%mm1, %%mm1 \n\t"
1175 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
1177 "psubw %%mm1, %%mm0 \n\t"
1178 "movl 8(%%ebx, %%eax), %%esi \n\t"
1179 "pmullw %%mm3, %%mm0 \n\t"
1180 "psllw $7, %%mm1 \n\t"
1181 "paddw %%mm1, %%mm0 \n\t"
1183 "movq %%mm0, (%%edi, %%eax) \n\t"
1185 "addl $8, %%eax \n\t"
1200 :"=r" (fragmentA
), "=r" (imm8OfPShufW1A
), "=r" (imm8OfPShufW2A
),
1201 "=r" (fragmentLengthA
)
1208 "movq (%%edx, %%eax), %%mm3 \n\t"
1209 "movd (%%ecx, %%esi), %%mm0 \n\t"
1210 "punpcklbw %%mm7, %%mm0 \n\t"
1211 "pshufw $0xFF, %%mm0, %%mm1 \n\t"
1213 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
1215 "psubw %%mm1, %%mm0 \n\t"
1216 "movl 8(%%ebx, %%eax), %%esi \n\t"
1217 "pmullw %%mm3, %%mm0 \n\t"
1218 "psllw $7, %%mm1 \n\t"
1219 "paddw %%mm1, %%mm0 \n\t"
1221 "movq %%mm0, (%%edi, %%eax) \n\t"
1223 "addl $8, %%eax \n\t"
1238 :"=r" (fragmentB
), "=r" (imm8OfPShufW1B
), "=r" (imm8OfPShufW2B
),
1239 "=r" (fragmentLengthB
)
1242 xpos
= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
1245 for(i
=0; i
<dstW
/numSplits
; i
++)
1252 int b
=((xpos
+xInc
)>>16) - xx
;
1253 int c
=((xpos
+xInc
*2)>>16) - xx
;
1254 int d
=((xpos
+xInc
*3)>>16) - xx
;
1256 filter
[i
] = (( xpos
& 0xFFFF) ^ 0xFFFF)>>9;
1257 filter
[i
+1] = (((xpos
+xInc
) & 0xFFFF) ^ 0xFFFF)>>9;
1258 filter
[i
+2] = (((xpos
+xInc
*2) & 0xFFFF) ^ 0xFFFF)>>9;
1259 filter
[i
+3] = (((xpos
+xInc
*3) & 0xFFFF) ^ 0xFFFF)>>9;
1264 int maxShift
= 3-(d
+1);
1267 memcpy(funnyCode
+ fragmentPos
, fragmentB
, fragmentLengthB
);
1269 funnyCode
[fragmentPos
+ imm8OfPShufW1B
]=
1270 (a
+1) | ((b
+1)<<2) | ((c
+1)<<4) | ((d
+1)<<6);
1271 funnyCode
[fragmentPos
+ imm8OfPShufW2B
]=
1272 a
| (b
<<2) | (c
<<4) | (d
<<6);
1274 if(i
+3>=dstW
) shift
=maxShift
; //avoid overread
1275 else if((filterPos
[i
/2]&3) <= maxShift
) shift
=filterPos
[i
/2]&3; //Align
1277 if(shift
&& i
>=shift
)
1279 funnyCode
[fragmentPos
+ imm8OfPShufW1B
]+= 0x55*shift
;
1280 funnyCode
[fragmentPos
+ imm8OfPShufW2B
]+= 0x55*shift
;
1281 filterPos
[i
/2]-=shift
;
1284 fragmentPos
+= fragmentLengthB
;
1291 memcpy(funnyCode
+ fragmentPos
, fragmentA
, fragmentLengthA
);
1293 funnyCode
[fragmentPos
+ imm8OfPShufW1A
]=
1294 funnyCode
[fragmentPos
+ imm8OfPShufW2A
]=
1295 a
| (b
<<2) | (c
<<4) | (d
<<6);
1297 if(i
+4>=dstW
) shift
=maxShift
; //avoid overread
1298 else if((filterPos
[i
/2]&3) <= maxShift
) shift
=filterPos
[i
/2]&3; //partial align
1300 if(shift
&& i
>=shift
)
1302 funnyCode
[fragmentPos
+ imm8OfPShufW1A
]+= 0x55*shift
;
1303 funnyCode
[fragmentPos
+ imm8OfPShufW2A
]+= 0x55*shift
;
1304 filterPos
[i
/2]-=shift
;
1307 fragmentPos
+= fragmentLengthA
;
1310 funnyCode
[fragmentPos
]= RET
;
1314 filterPos
[i
/2]= xpos
>>16; // needed to jump to the next part
1318 static void globalInit(){
1319 // generating tables:
1321 for(i
=0; i
<768; i
++){
1322 int c
= MIN(MAX(i
-256, 0), 255);
1327 static SwsFunc
getSwsFunc(int flags
){
1329 #ifdef RUNTIME_CPUDETECT
1331 // ordered per speed fasterst first
1332 if(flags
& SWS_CPU_CAPS_MMX2
)
1333 return swScale_MMX2
;
1334 else if(flags
& SWS_CPU_CAPS_3DNOW
)
1335 return swScale_3DNow
;
1336 else if(flags
& SWS_CPU_CAPS_MMX
)
1343 if(flags
& SWS_CPU_CAPS_ALTIVEC
)
1344 return swScale_altivec
;
1350 #else //RUNTIME_CPUDETECT
1352 return swScale_MMX2
;
1353 #elif defined (HAVE_3DNOW)
1354 return swScale_3DNow
;
1355 #elif defined (HAVE_MMX)
1357 #elif defined (HAVE_ALTIVEC)
1358 return swScale_altivec
;
1362 #endif //!RUNTIME_CPUDETECT
1365 static int PlanarToNV12Wrapper(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1366 int srcSliceH
, uint8_t* dstParam
[], int dstStride
[]){
1367 uint8_t *dst
=dstParam
[0] + dstStride
[0]*srcSliceY
;
1369 if(dstStride
[0]==srcStride
[0])
1370 memcpy(dst
, src
[0], srcSliceH
*dstStride
[0]);
1374 uint8_t *srcPtr
= src
[0];
1375 uint8_t *dstPtr
= dst
;
1376 for(i
=0; i
<srcSliceH
; i
++)
1378 memcpy(dstPtr
, srcPtr
, srcStride
[0]);
1379 srcPtr
+= srcStride
[0];
1380 dstPtr
+= dstStride
[0];
1383 dst
= dstParam
[1] + dstStride
[1]*srcSliceY
;
1384 interleaveBytes( src
[1],src
[2],dst
,c
->srcW
,srcSliceH
,srcStride
[1],srcStride
[2],dstStride
[0] );
1389 static int PlanarToYuy2Wrapper(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1390 int srcSliceH
, uint8_t* dstParam
[], int dstStride
[]){
1391 uint8_t *dst
=dstParam
[0] + dstStride
[0]*srcSliceY
;
1393 yv12toyuy2( src
[0],src
[1],src
[2],dst
,c
->srcW
,srcSliceH
,srcStride
[0],srcStride
[1],dstStride
[0] );
1398 static int PlanarToUyvyWrapper(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1399 int srcSliceH
, uint8_t* dstParam
[], int dstStride
[]){
1400 uint8_t *dst
=dstParam
[0] + dstStride
[0]*srcSliceY
;
1402 yv12touyvy( src
[0],src
[1],src
[2],dst
,c
->srcW
,srcSliceH
,srcStride
[0],srcStride
[1],dstStride
[0] );
1407 /* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
1408 static int rgb2rgbWrapper(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1409 int srcSliceH
, uint8_t* dst
[], int dstStride
[]){
1410 const int srcFormat
= c
->srcFormat
;
1411 const int dstFormat
= c
->dstFormat
;
1412 const int srcBpp
= ((srcFormat
&0xFF) + 7)>>3;
1413 const int dstBpp
= ((dstFormat
&0xFF) + 7)>>3;
1414 const int srcId
= (srcFormat
&0xFF)>>2; // 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8
1415 const int dstId
= (dstFormat
&0xFF)>>2;
1416 void (*conv
)(const uint8_t *src
, uint8_t *dst
, unsigned src_size
)=NULL
;
1419 if( (isBGR(srcFormat
) && isBGR(dstFormat
))
1420 || (isRGB(srcFormat
) && isRGB(dstFormat
))){
1421 switch(srcId
| (dstId
<<4)){
1422 case 0x34: conv
= rgb16to15
; break;
1423 case 0x36: conv
= rgb24to15
; break;
1424 case 0x38: conv
= rgb32to15
; break;
1425 case 0x43: conv
= rgb15to16
; break;
1426 case 0x46: conv
= rgb24to16
; break;
1427 case 0x48: conv
= rgb32to16
; break;
1428 case 0x63: conv
= rgb15to24
; break;
1429 case 0x64: conv
= rgb16to24
; break;
1430 case 0x68: conv
= rgb32to24
; break;
1431 case 0x83: conv
= rgb15to32
; break;
1432 case 0x84: conv
= rgb16to32
; break;
1433 case 0x86: conv
= rgb24to32
; break;
1434 default: MSG_ERR("swScaler: internal error %s -> %s converter\n",
1435 vo_format_name(srcFormat
), vo_format_name(dstFormat
)); break;
1437 }else if( (isBGR(srcFormat
) && isRGB(dstFormat
))
1438 || (isRGB(srcFormat
) && isBGR(dstFormat
))){
1439 switch(srcId
| (dstId
<<4)){
1440 case 0x33: conv
= rgb15tobgr15
; break;
1441 case 0x34: conv
= rgb16tobgr15
; break;
1442 case 0x36: conv
= rgb24tobgr15
; break;
1443 case 0x38: conv
= rgb32tobgr15
; break;
1444 case 0x43: conv
= rgb15tobgr16
; break;
1445 case 0x44: conv
= rgb16tobgr16
; break;
1446 case 0x46: conv
= rgb24tobgr16
; break;
1447 case 0x48: conv
= rgb32tobgr16
; break;
1448 case 0x63: conv
= rgb15tobgr24
; break;
1449 case 0x64: conv
= rgb16tobgr24
; break;
1450 case 0x66: conv
= rgb24tobgr24
; break;
1451 case 0x68: conv
= rgb32tobgr24
; break;
1452 case 0x83: conv
= rgb15tobgr32
; break;
1453 case 0x84: conv
= rgb16tobgr32
; break;
1454 case 0x86: conv
= rgb24tobgr32
; break;
1455 case 0x88: conv
= rgb32tobgr32
; break;
1456 default: MSG_ERR("swScaler: internal error %s -> %s converter\n",
1457 vo_format_name(srcFormat
), vo_format_name(dstFormat
)); break;
1460 MSG_ERR("swScaler: internal error %s -> %s converter\n",
1461 vo_format_name(srcFormat
), vo_format_name(dstFormat
));
1464 if(dstStride
[0]*srcBpp
== srcStride
[0]*dstBpp
)
1465 conv(src
[0], dst
[0] + dstStride
[0]*srcSliceY
, srcSliceH
*srcStride
[0]);
1469 uint8_t *srcPtr
= src
[0];
1470 uint8_t *dstPtr
= dst
[0] + dstStride
[0]*srcSliceY
;
1472 for(i
=0; i
<srcSliceH
; i
++)
1474 conv(srcPtr
, dstPtr
, c
->srcW
*srcBpp
);
1475 srcPtr
+= srcStride
[0];
1476 dstPtr
+= dstStride
[0];
1482 static int bgr24toyv12Wrapper(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1483 int srcSliceH
, uint8_t* dst
[], int dstStride
[]){
1487 dst
[0]+ srcSliceY
*dstStride
[0],
1488 dst
[1]+(srcSliceY
>>1)*dstStride
[1],
1489 dst
[2]+(srcSliceY
>>1)*dstStride
[2],
1491 dstStride
[0], dstStride
[1], srcStride
[0]);
1495 static int yvu9toyv12Wrapper(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1496 int srcSliceH
, uint8_t* dst
[], int dstStride
[]){
1500 if(srcStride
[0]==dstStride
[0])
1501 memcpy(dst
[0]+ srcSliceY
*dstStride
[0], src
[0], srcStride
[0]*srcSliceH
);
1503 uint8_t *srcPtr
= src
[0];
1504 uint8_t *dstPtr
= dst
[0] + dstStride
[0]*srcSliceY
;
1506 for(i
=0; i
<srcSliceH
; i
++)
1508 memcpy(dstPtr
, srcPtr
, c
->srcW
);
1509 srcPtr
+= srcStride
[0];
1510 dstPtr
+= dstStride
[0];
1514 if(c
->dstFormat
==IMGFMT_YV12
){
1515 planar2x(src
[1], dst
[1], c
->chrSrcW
, c
->chrSrcH
, srcStride
[1], dstStride
[1]);
1516 planar2x(src
[2], dst
[2], c
->chrSrcW
, c
->chrSrcH
, srcStride
[2], dstStride
[2]);
1518 planar2x(src
[1], dst
[2], c
->chrSrcW
, c
->chrSrcH
, srcStride
[1], dstStride
[2]);
1519 planar2x(src
[2], dst
[1], c
->chrSrcW
, c
->chrSrcH
, srcStride
[2], dstStride
[1]);
1525 * bring pointers in YUV order instead of YVU
1527 static inline void sws_orderYUV(int format
, uint8_t * sortedP
[], int sortedStride
[], uint8_t * p
[], int stride
[]){
1528 if(format
== IMGFMT_YV12
|| format
== IMGFMT_YVU9
1529 || format
== IMGFMT_444P
|| format
== IMGFMT_422P
|| format
== IMGFMT_411P
){
1533 sortedStride
[0]= stride
[0];
1534 sortedStride
[1]= stride
[2];
1535 sortedStride
[2]= stride
[1];
1537 else if(isPacked(format
) || isGray(format
) || format
== IMGFMT_Y8
)
1542 sortedStride
[0]= stride
[0];
1546 else if(format
== IMGFMT_I420
|| format
== IMGFMT_IYUV
)
1551 sortedStride
[0]= stride
[0];
1552 sortedStride
[1]= stride
[1];
1553 sortedStride
[2]= stride
[2];
1555 MSG_ERR("internal error in orderYUV\n");
1559 /* unscaled copy like stuff (assumes nearly identical formats) */
1560 static int simpleCopy(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1561 int srcSliceH
, uint8_t* dst
[], int dstStride
[]){
1563 if(isPacked(c
->srcFormat
))
1565 if(dstStride
[0]==srcStride
[0])
1566 memcpy(dst
[0] + dstStride
[0]*srcSliceY
, src
[0], srcSliceH
*dstStride
[0]);
1570 uint8_t *srcPtr
= src
[0];
1571 uint8_t *dstPtr
= dst
[0] + dstStride
[0]*srcSliceY
;
1574 /* universal length finder */
1575 while(length
+c
->srcW
<= ABS(dstStride
[0])
1576 && length
+c
->srcW
<= ABS(srcStride
[0])) length
+= c
->srcW
;
1579 for(i
=0; i
<srcSliceH
; i
++)
1581 memcpy(dstPtr
, srcPtr
, length
);
1582 srcPtr
+= srcStride
[0];
1583 dstPtr
+= dstStride
[0];
1588 { /* Planar YUV or gray */
1590 for(plane
=0; plane
<3; plane
++)
1592 int length
= plane
==0 ? c
->srcW
: -((-c
->srcW
)>>c
->chrDstHSubSample
);
1593 int y
= plane
==0 ? srcSliceY
: -((-srcSliceY
)>>c
->chrDstVSubSample
);
1594 int height
= plane
==0 ? srcSliceH
: -((-srcSliceH
)>>c
->chrDstVSubSample
);
1596 if((isGray(c
->srcFormat
) || isGray(c
->dstFormat
)) && plane
>0)
1598 if(!isGray(c
->dstFormat
))
1599 memset(dst
[plane
], 128, dstStride
[plane
]*height
);
1603 if(dstStride
[plane
]==srcStride
[plane
])
1604 memcpy(dst
[plane
] + dstStride
[plane
]*y
, src
[plane
], height
*dstStride
[plane
]);
1608 uint8_t *srcPtr
= src
[plane
];
1609 uint8_t *dstPtr
= dst
[plane
] + dstStride
[plane
]*y
;
1610 for(i
=0; i
<height
; i
++)
1612 memcpy(dstPtr
, srcPtr
, length
);
1613 srcPtr
+= srcStride
[plane
];
1614 dstPtr
+= dstStride
[plane
];
1623 static int remove_dup_fourcc(int fourcc
)
1628 case IMGFMT_IYUV
: return IMGFMT_YV12
;
1629 case IMGFMT_Y8
: return IMGFMT_Y800
;
1630 case IMGFMT_IF09
: return IMGFMT_YVU9
;
1631 default: return fourcc
;
1635 static void getSubSampleFactors(int *h
, int *v
, int format
){
1643 case IMGFMT_Y800
: //FIXME remove after different subsamplings are fully implemented
1670 static uint16_t roundToInt16(int64_t f
){
1671 int r
= (f
+ (1<<15))>>16;
1672 if(r
<-0x7FFF) return 0x8000;
1673 else if(r
> 0x7FFF) return 0x7FFF;
1678 * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
1679 * @param fullRange if 1 then the luma range is 0..255 if 0 its 16..235
1680 * @return -1 if not supported
1682 int sws_setColorspaceDetails(SwsContext
*c
, const int inv_table
[4], int srcRange
, const int table
[4], int dstRange
, int brightness
, int contrast
, int saturation
){
1683 int64_t crv
= inv_table
[0];
1684 int64_t cbu
= inv_table
[1];
1685 int64_t cgu
= -inv_table
[2];
1686 int64_t cgv
= -inv_table
[3];
1690 if(isYUV(c
->dstFormat
) || isGray(c
->dstFormat
)) return -1;
1691 memcpy(c
->srcColorspaceTable
, inv_table
, sizeof(int)*4);
1692 memcpy(c
->dstColorspaceTable
, table
, sizeof(int)*4);
1694 c
->brightness
= brightness
;
1695 c
->contrast
= contrast
;
1696 c
->saturation
= saturation
;
1697 c
->srcRange
= srcRange
;
1698 c
->dstRange
= dstRange
;
1700 c
->uOffset
= 0x0400040004000400LL
;
1701 c
->vOffset
= 0x0400040004000400LL
;
1708 cy
= (cy
*contrast
)>>16;
1709 crv
= (crv
*contrast
* saturation
)>>32;
1710 cbu
= (cbu
*contrast
* saturation
)>>32;
1711 cgu
= (cgu
*contrast
* saturation
)>>32;
1712 cgv
= (cgv
*contrast
* saturation
)>>32;
1714 oy
-= 256*brightness
;
1716 c
->yCoeff
= roundToInt16(cy
*8192) * 0x0001000100010001ULL
;
1717 c
->vrCoeff
= roundToInt16(crv
*8192) * 0x0001000100010001ULL
;
1718 c
->ubCoeff
= roundToInt16(cbu
*8192) * 0x0001000100010001ULL
;
1719 c
->vgCoeff
= roundToInt16(cgv
*8192) * 0x0001000100010001ULL
;
1720 c
->ugCoeff
= roundToInt16(cgu
*8192) * 0x0001000100010001ULL
;
1721 c
->yOffset
= roundToInt16(oy
* 8) * 0x0001000100010001ULL
;
1723 yuv2rgb_c_init_tables(c
, inv_table
, srcRange
, brightness
, contrast
, saturation
);
1727 yuv2rgb_altivec_init_tables (c
, inv_table
);
1733 * @return -1 if not supported
1735 int sws_getColorspaceDetails(SwsContext
*c
, int **inv_table
, int *srcRange
, int **table
, int *dstRange
, int *brightness
, int *contrast
, int *saturation
){
1736 if(isYUV(c
->dstFormat
) || isGray(c
->dstFormat
)) return -1;
1738 *inv_table
= c
->srcColorspaceTable
;
1739 *table
= c
->dstColorspaceTable
;
1740 *srcRange
= c
->srcRange
;
1741 *dstRange
= c
->dstRange
;
1742 *brightness
= c
->brightness
;
1743 *contrast
= c
->contrast
;
1744 *saturation
= c
->saturation
;
1749 SwsContext
*sws_getContext(int srcW
, int srcH
, int origSrcFormat
, int dstW
, int dstH
, int origDstFormat
, int flags
,
1750 SwsFilter
*srcFilter
, SwsFilter
*dstFilter
, double *param
){
1754 int usesVFilter
, usesHFilter
;
1755 int unscaled
, needsDither
;
1756 int srcFormat
, dstFormat
;
1757 SwsFilter dummyFilter
= {NULL
, NULL
, NULL
, NULL
};
1759 if(flags
& SWS_CPU_CAPS_MMX
)
1760 asm volatile("emms\n\t"::: "memory");
1763 #ifndef RUNTIME_CPUDETECT //ensure that the flags match the compiled variant if cpudetect is off
1764 flags
&= ~(SWS_CPU_CAPS_MMX
|SWS_CPU_CAPS_MMX2
|SWS_CPU_CAPS_3DNOW
|SWS_CPU_CAPS_ALTIVEC
);
1766 flags
|= SWS_CPU_CAPS_MMX
|SWS_CPU_CAPS_MMX2
;
1767 #elif defined (HAVE_3DNOW)
1768 flags
|= SWS_CPU_CAPS_MMX
|SWS_CPU_CAPS_3DNOW
;
1769 #elif defined (HAVE_MMX)
1770 flags
|= SWS_CPU_CAPS_MMX
;
1771 #elif defined (HAVE_ALTIVEC)
1772 flags
|= SWS_CPU_CAPS_ALTIVEC
;
1775 if(clip_table
[512] != 255) globalInit();
1776 if(rgb15to16
== NULL
) sws_rgb2rgb_init(flags
);
1778 /* avoid duplicate Formats, so we don't need to check to much */
1779 srcFormat
= remove_dup_fourcc(origSrcFormat
);
1780 dstFormat
= remove_dup_fourcc(origDstFormat
);
1782 unscaled
= (srcW
== dstW
&& srcH
== dstH
);
1783 needsDither
= (isBGR(dstFormat
) || isRGB(dstFormat
))
1784 && (dstFormat
&0xFF)<24
1785 && ((dstFormat
&0xFF)<(srcFormat
&0xFF) || (!(isRGB(srcFormat
) || isBGR(srcFormat
))));
1787 if(!isSupportedIn(srcFormat
))
1789 MSG_ERR("swScaler: %s is not supported as input format\n", vo_format_name(srcFormat
));
1792 if(!isSupportedOut(dstFormat
))
1794 MSG_ERR("swScaler: %s is not supported as output format\n", vo_format_name(dstFormat
));
1799 if(srcW
<4 || srcH
<1 || dstW
<8 || dstH
<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
1801 MSG_ERR("swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
1802 srcW
, srcH
, dstW
, dstH
);
1806 if(!dstFilter
) dstFilter
= &dummyFilter
;
1807 if(!srcFilter
) srcFilter
= &dummyFilter
;
1809 c
= memalign(64, sizeof(SwsContext
));
1810 memset(c
, 0, sizeof(SwsContext
));
1816 c
->lumXInc
= ((srcW
<<16) + (dstW
>>1))/dstW
;
1817 c
->lumYInc
= ((srcH
<<16) + (dstH
>>1))/dstH
;
1819 c
->dstFormat
= dstFormat
;
1820 c
->srcFormat
= srcFormat
;
1821 c
->origDstFormat
= origDstFormat
;
1822 c
->origSrcFormat
= origSrcFormat
;
1823 c
->vRounder
= 4* 0x0001000100010001ULL
;
1825 usesHFilter
= usesVFilter
= 0;
1826 if(dstFilter
->lumV
!=NULL
&& dstFilter
->lumV
->length
>1) usesVFilter
=1;
1827 if(dstFilter
->lumH
!=NULL
&& dstFilter
->lumH
->length
>1) usesHFilter
=1;
1828 if(dstFilter
->chrV
!=NULL
&& dstFilter
->chrV
->length
>1) usesVFilter
=1;
1829 if(dstFilter
->chrH
!=NULL
&& dstFilter
->chrH
->length
>1) usesHFilter
=1;
1830 if(srcFilter
->lumV
!=NULL
&& srcFilter
->lumV
->length
>1) usesVFilter
=1;
1831 if(srcFilter
->lumH
!=NULL
&& srcFilter
->lumH
->length
>1) usesHFilter
=1;
1832 if(srcFilter
->chrV
!=NULL
&& srcFilter
->chrV
->length
>1) usesVFilter
=1;
1833 if(srcFilter
->chrH
!=NULL
&& srcFilter
->chrH
->length
>1) usesHFilter
=1;
1835 getSubSampleFactors(&c
->chrSrcHSubSample
, &c
->chrSrcVSubSample
, srcFormat
);
1836 getSubSampleFactors(&c
->chrDstHSubSample
, &c
->chrDstVSubSample
, dstFormat
);
1838 // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
1839 if((isBGR(dstFormat
) || isRGB(dstFormat
)) && !(flags
&SWS_FULL_CHR_H_INT
)) c
->chrDstHSubSample
=1;
1841 // drop some chroma lines if the user wants it
1842 c
->vChrDrop
= (flags
&SWS_SRC_V_CHR_DROP_MASK
)>>SWS_SRC_V_CHR_DROP_SHIFT
;
1843 c
->chrSrcVSubSample
+= c
->vChrDrop
;
1845 // drop every 2. pixel for chroma calculation unless user wants full chroma
1846 if((isBGR(srcFormat
) || isRGB(srcFormat
)) && !(flags
&SWS_FULL_CHR_H_INP
))
1847 c
->chrSrcHSubSample
=1;
1850 c
->param
[0] = param
[0];
1851 c
->param
[1] = param
[1];
1854 c
->param
[1] = SWS_PARAM_DEFAULT
;
1857 c
->chrIntHSubSample
= c
->chrDstHSubSample
;
1858 c
->chrIntVSubSample
= c
->chrSrcVSubSample
;
1860 // note the -((-x)>>y) is so that we allways round toward +inf
1861 c
->chrSrcW
= -((-srcW
) >> c
->chrSrcHSubSample
);
1862 c
->chrSrcH
= -((-srcH
) >> c
->chrSrcVSubSample
);
1863 c
->chrDstW
= -((-dstW
) >> c
->chrDstHSubSample
);
1864 c
->chrDstH
= -((-dstH
) >> c
->chrDstVSubSample
);
1866 sws_setColorspaceDetails(c
, Inverse_Table_6_9
[SWS_CS_DEFAULT
], 0, Inverse_Table_6_9
[SWS_CS_DEFAULT
] /* FIXME*/, 0, 0, 1<<16, 1<<16);
1868 /* unscaled special Cases */
1869 if(unscaled
&& !usesHFilter
&& !usesVFilter
)
1872 if(srcFormat
== IMGFMT_YV12
&& dstFormat
== IMGFMT_NV12
)
1874 c
->swScale
= PlanarToNV12Wrapper
;
1877 if((srcFormat
==IMGFMT_YV12
|| srcFormat
==IMGFMT_422P
) && (isBGR(dstFormat
) || isRGB(dstFormat
)))
1879 c
->swScale
= yuv2rgb_get_func_ptr(c
);
1882 if( srcFormat
==IMGFMT_YVU9
&& dstFormat
==IMGFMT_YV12
)
1884 c
->swScale
= yvu9toyv12Wrapper
;
1888 if(srcFormat
==IMGFMT_BGR24
&& dstFormat
==IMGFMT_YV12
)
1889 c
->swScale
= bgr24toyv12Wrapper
;
1891 /* rgb/bgr -> rgb/bgr (no dither needed forms) */
1892 if( (isBGR(srcFormat
) || isRGB(srcFormat
))
1893 && (isBGR(dstFormat
) || isRGB(dstFormat
))
1895 c
->swScale
= rgb2rgbWrapper
;
1897 /* LQ converters if -sws 0 or -sws 4*/
1898 if(c
->flags
&(SWS_FAST_BILINEAR
|SWS_POINT
)){
1899 /* rgb/bgr -> rgb/bgr (dither needed forms) */
1900 if( (isBGR(srcFormat
) || isRGB(srcFormat
))
1901 && (isBGR(dstFormat
) || isRGB(dstFormat
))
1903 c
->swScale
= rgb2rgbWrapper
;
1906 if(srcFormat
== IMGFMT_YV12
&&
1907 (dstFormat
== IMGFMT_YUY2
|| dstFormat
== IMGFMT_UYVY
))
1909 if (dstFormat
== IMGFMT_YUY2
)
1910 c
->swScale
= PlanarToYuy2Wrapper
;
1912 c
->swScale
= PlanarToUyvyWrapper
;
1917 if ((c
->flags
& SWS_CPU_CAPS_ALTIVEC
) &&
1918 ((srcFormat
== IMGFMT_YV12
&&
1919 (dstFormat
== IMGFMT_YUY2
|| dstFormat
== IMGFMT_UYVY
)))) {
1920 // unscaled YV12 -> packed YUV, we want speed
1921 if (dstFormat
== IMGFMT_YUY2
)
1922 c
->swScale
= yv12toyuy2_unscaled_altivec
;
1924 c
->swScale
= yv12touyvy_unscaled_altivec
;
1929 if( srcFormat
== dstFormat
1930 || (isPlanarYUV(srcFormat
) && isGray(dstFormat
))
1931 || (isPlanarYUV(dstFormat
) && isGray(srcFormat
))
1934 c
->swScale
= simpleCopy
;
1938 if(flags
&SWS_PRINT_INFO
)
1939 MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n",
1940 vo_format_name(srcFormat
), vo_format_name(dstFormat
));
1945 if(flags
& SWS_CPU_CAPS_MMX2
)
1947 c
->canMMX2BeUsed
= (dstW
>=srcW
&& (dstW
&31)==0 && (srcW
&15)==0) ?
1 : 0;
1948 if(!c
->canMMX2BeUsed
&& dstW
>=srcW
&& (srcW
&15)==0 && (flags
&SWS_FAST_BILINEAR
))
1950 if(flags
&SWS_PRINT_INFO
)
1951 MSG_INFO("SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
1953 if(usesHFilter
) c
->canMMX2BeUsed
=0;
1958 c
->chrXInc
= ((c
->chrSrcW
<<16) + (c
->chrDstW
>>1))/c
->chrDstW
;
1959 c
->chrYInc
= ((c
->chrSrcH
<<16) + (c
->chrDstH
>>1))/c
->chrDstH
;
1961 // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
1962 // but only for the FAST_BILINEAR mode otherwise do correct scaling
1963 // n-2 is the last chrominance sample available
1964 // this is not perfect, but noone shuld notice the difference, the more correct variant
1965 // would be like the vertical one, but that would require some special code for the
1966 // first and last pixel
1967 if(flags
&SWS_FAST_BILINEAR
)
1969 if(c
->canMMX2BeUsed
)
1974 //we don't use the x86asm scaler if mmx is available
1975 else if(flags
& SWS_CPU_CAPS_MMX
)
1977 c
->lumXInc
= ((srcW
-2)<<16)/(dstW
-2) - 20;
1978 c
->chrXInc
= ((c
->chrSrcW
-2)<<16)/(c
->chrDstW
-2) - 20;
1982 /* precalculate horizontal scaler filter coefficients */
1984 const int filterAlign
=
1985 (flags
& SWS_CPU_CAPS_MMX
) ?
4 :
1986 (flags
& SWS_CPU_CAPS_ALTIVEC
) ?
8 :
1989 initFilter(&c
->hLumFilter
, &c
->hLumFilterPos
, &c
->hLumFilterSize
, c
->lumXInc
,
1990 srcW
, dstW
, filterAlign
, 1<<14,
1991 (flags
&SWS_BICUBLIN
) ?
(flags
|SWS_BICUBIC
) : flags
,
1992 srcFilter
->lumH
, dstFilter
->lumH
, c
->param
);
1993 initFilter(&c
->hChrFilter
, &c
->hChrFilterPos
, &c
->hChrFilterSize
, c
->chrXInc
,
1994 c
->chrSrcW
, c
->chrDstW
, filterAlign
, 1<<14,
1995 (flags
&SWS_BICUBLIN
) ?
(flags
|SWS_BILINEAR
) : flags
,
1996 srcFilter
->chrH
, dstFilter
->chrH
, c
->param
);
1999 // can't downscale !!!
2000 if(c
->canMMX2BeUsed
&& (flags
& SWS_FAST_BILINEAR
))
2002 c
->lumMmx2Filter
= (int16_t*)memalign(8, (dstW
/8+8)*sizeof(int16_t));
2003 c
->chrMmx2Filter
= (int16_t*)memalign(8, (c
->chrDstW
/4+8)*sizeof(int16_t));
2004 c
->lumMmx2FilterPos
= (int32_t*)memalign(8, (dstW
/2/8+8)*sizeof(int32_t));
2005 c
->chrMmx2FilterPos
= (int32_t*)memalign(8, (c
->chrDstW
/2/4+8)*sizeof(int32_t));
2007 initMMX2HScaler( dstW
, c
->lumXInc
, c
->funnyYCode
, c
->lumMmx2Filter
, c
->lumMmx2FilterPos
, 8);
2008 initMMX2HScaler(c
->chrDstW
, c
->chrXInc
, c
->funnyUVCode
, c
->chrMmx2Filter
, c
->chrMmx2FilterPos
, 4);
2011 } // Init Horizontal stuff
2015 /* precalculate vertical scaler filter coefficients */
2017 const int filterAlign
=
2018 (flags
& SWS_CPU_CAPS_ALTIVEC
) ?
8 :
2021 initFilter(&c
->vLumFilter
, &c
->vLumFilterPos
, &c
->vLumFilterSize
, c
->lumYInc
,
2022 srcH
, dstH
, filterAlign
, (1<<12)-4,
2023 (flags
&SWS_BICUBLIN
) ?
(flags
|SWS_BICUBIC
) : flags
,
2024 srcFilter
->lumV
, dstFilter
->lumV
, c
->param
);
2025 initFilter(&c
->vChrFilter
, &c
->vChrFilterPos
, &c
->vChrFilterSize
, c
->chrYInc
,
2026 c
->chrSrcH
, c
->chrDstH
, filterAlign
, (1<<12)-4,
2027 (flags
&SWS_BICUBLIN
) ?
(flags
|SWS_BILINEAR
) : flags
,
2028 srcFilter
->chrV
, dstFilter
->chrV
, c
->param
);
2031 // Calculate Buffer Sizes so that they won't run out while handling these damn slices
2032 c
->vLumBufSize
= c
->vLumFilterSize
;
2033 c
->vChrBufSize
= c
->vChrFilterSize
;
2034 for(i
=0; i
<dstH
; i
++)
2036 int chrI
= i
*c
->chrDstH
/ dstH
;
2037 int nextSlice
= MAX(c
->vLumFilterPos
[i
] + c
->vLumFilterSize
- 1,
2038 ((c
->vChrFilterPos
[chrI
] + c
->vChrFilterSize
- 1)<<c
->chrSrcVSubSample
));
2040 nextSlice
>>= c
->chrSrcVSubSample
;
2041 nextSlice
<<= c
->chrSrcVSubSample
;
2042 if(c
->vLumFilterPos
[i
] + c
->vLumBufSize
< nextSlice
)
2043 c
->vLumBufSize
= nextSlice
- c
->vLumFilterPos
[i
];
2044 if(c
->vChrFilterPos
[chrI
] + c
->vChrBufSize
< (nextSlice
>>c
->chrSrcVSubSample
))
2045 c
->vChrBufSize
= (nextSlice
>>c
->chrSrcVSubSample
) - c
->vChrFilterPos
[chrI
];
2048 // allocate pixbufs (we use dynamic allocation because otherwise we would need to
2049 c
->lumPixBuf
= (int16_t**)memalign(4, c
->vLumBufSize
*2*sizeof(int16_t*));
2050 c
->chrPixBuf
= (int16_t**)memalign(4, c
->vChrBufSize
*2*sizeof(int16_t*));
2051 //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
2052 for(i
=0; i
<c
->vLumBufSize
; i
++)
2053 c
->lumPixBuf
[i
]= c
->lumPixBuf
[i
+c
->vLumBufSize
]= (uint16_t*)memalign(8, 4000);
2054 for(i
=0; i
<c
->vChrBufSize
; i
++)
2055 c
->chrPixBuf
[i
]= c
->chrPixBuf
[i
+c
->vChrBufSize
]= (uint16_t*)memalign(8, 8000);
2057 //try to avoid drawing green stuff between the right end and the stride end
2058 for(i
=0; i
<c
->vLumBufSize
; i
++) memset(c
->lumPixBuf
[i
], 0, 4000);
2059 for(i
=0; i
<c
->vChrBufSize
; i
++) memset(c
->chrPixBuf
[i
], 64, 8000);
2061 ASSERT(c
->chrDstH
<= dstH
)
2063 if(flags
&SWS_PRINT_INFO
)
2066 char *dither
= " dithered";
2070 if(flags
&SWS_FAST_BILINEAR
)
2071 MSG_INFO("\nSwScaler: FAST_BILINEAR scaler, ");
2072 else if(flags
&SWS_BILINEAR
)
2073 MSG_INFO("\nSwScaler: BILINEAR scaler, ");
2074 else if(flags
&SWS_BICUBIC
)
2075 MSG_INFO("\nSwScaler: BICUBIC scaler, ");
2076 else if(flags
&SWS_X
)
2077 MSG_INFO("\nSwScaler: Experimental scaler, ");
2078 else if(flags
&SWS_POINT
)
2079 MSG_INFO("\nSwScaler: Nearest Neighbor / POINT scaler, ");
2080 else if(flags
&SWS_AREA
)
2081 MSG_INFO("\nSwScaler: Area Averageing scaler, ");
2082 else if(flags
&SWS_BICUBLIN
)
2083 MSG_INFO("\nSwScaler: luma BICUBIC / chroma BILINEAR scaler, ");
2084 else if(flags
&SWS_GAUSS
)
2085 MSG_INFO("\nSwScaler: Gaussian scaler, ");
2086 else if(flags
&SWS_SINC
)
2087 MSG_INFO("\nSwScaler: Sinc scaler, ");
2088 else if(flags
&SWS_LANCZOS
)
2089 MSG_INFO("\nSwScaler: Lanczos scaler, ");
2090 else if(flags
&SWS_SPLINE
)
2091 MSG_INFO("\nSwScaler: Bicubic spline scaler, ");
2093 MSG_INFO("\nSwScaler: ehh flags invalid?! ");
2095 if(dstFormat
==IMGFMT_BGR15
|| dstFormat
==IMGFMT_BGR16
)
2096 MSG_INFO("from %s to%s %s ",
2097 vo_format_name(srcFormat
), dither
, vo_format_name(dstFormat
));
2099 MSG_INFO("from %s to %s ",
2100 vo_format_name(srcFormat
), vo_format_name(dstFormat
));
2102 if(flags
& SWS_CPU_CAPS_MMX2
)
2103 MSG_INFO("using MMX2\n");
2104 else if(flags
& SWS_CPU_CAPS_3DNOW
)
2105 MSG_INFO("using 3DNOW\n");
2106 else if(flags
& SWS_CPU_CAPS_MMX
)
2107 MSG_INFO("using MMX\n");
2108 else if(flags
& SWS_CPU_CAPS_ALTIVEC
)
2109 MSG_INFO("using AltiVec\n");
2111 MSG_INFO("using C\n");
2114 if(flags
& SWS_PRINT_INFO
)
2116 if(flags
& SWS_CPU_CAPS_MMX
)
2118 if(c
->canMMX2BeUsed
&& (flags
&SWS_FAST_BILINEAR
))
2119 MSG_V("SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
2122 if(c
->hLumFilterSize
==4)
2123 MSG_V("SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
2124 else if(c
->hLumFilterSize
==8)
2125 MSG_V("SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
2127 MSG_V("SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");
2129 if(c
->hChrFilterSize
==4)
2130 MSG_V("SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
2131 else if(c
->hChrFilterSize
==8)
2132 MSG_V("SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
2134 MSG_V("SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
2140 MSG_V("SwScaler: using X86-Asm scaler for horizontal scaling\n");
2142 if(flags
& SWS_FAST_BILINEAR
)
2143 MSG_V("SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
2145 MSG_V("SwScaler: using C scaler for horizontal scaling\n");
2148 if(isPlanarYUV(dstFormat
))
2150 if(c
->vLumFilterSize
==1)
2151 MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags
& SWS_CPU_CAPS_MMX
) ?
"MMX" : "C");
2153 MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags
& SWS_CPU_CAPS_MMX
) ?
"MMX" : "C");
2157 if(c
->vLumFilterSize
==1 && c
->vChrFilterSize
==2)
2158 MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
2159 "SwScaler: 2-tap scaler for vertical chrominance scaling (BGR)\n",(flags
& SWS_CPU_CAPS_MMX
) ?
"MMX" : "C");
2160 else if(c
->vLumFilterSize
==2 && c
->vChrFilterSize
==2)
2161 MSG_V("SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags
& SWS_CPU_CAPS_MMX
) ?
"MMX" : "C");
2163 MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", (flags
& SWS_CPU_CAPS_MMX
) ?
"MMX" : "C");
2166 if(dstFormat
==IMGFMT_BGR24
)
2167 MSG_V("SwScaler: using %s YV12->BGR24 Converter\n",
2168 (flags
& SWS_CPU_CAPS_MMX2
) ?
"MMX2" : ((flags
& SWS_CPU_CAPS_MMX
) ?
"MMX" : "C"));
2169 else if(dstFormat
==IMGFMT_BGR32
)
2170 MSG_V("SwScaler: using %s YV12->BGR32 Converter\n", (flags
& SWS_CPU_CAPS_MMX
) ?
"MMX" : "C");
2171 else if(dstFormat
==IMGFMT_BGR16
)
2172 MSG_V("SwScaler: using %s YV12->BGR16 Converter\n", (flags
& SWS_CPU_CAPS_MMX
) ?
"MMX" : "C");
2173 else if(dstFormat
==IMGFMT_BGR15
)
2174 MSG_V("SwScaler: using %s YV12->BGR15 Converter\n", (flags
& SWS_CPU_CAPS_MMX
) ?
"MMX" : "C");
2176 MSG_V("SwScaler: %dx%d -> %dx%d\n", srcW
, srcH
, dstW
, dstH
);
2178 if(flags
& SWS_PRINT_INFO
)
2180 MSG_DBG2("SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2181 c
->srcW
, c
->srcH
, c
->dstW
, c
->dstH
, c
->lumXInc
, c
->lumYInc
);
2182 MSG_DBG2("SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2183 c
->chrSrcW
, c
->chrSrcH
, c
->chrDstW
, c
->chrDstH
, c
->chrXInc
, c
->chrYInc
);
2186 c
->swScale
= getSwsFunc(flags
);
2191 * swscale warper, so we don't need to export the SwsContext.
2192 * assumes planar YUV to be in YUV order instead of YVU
2194 int sws_scale_ordered(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
2195 int srcSliceH
, uint8_t* dst
[], int dstStride
[]){
2196 //copy strides, so they can safely be modified
2197 int srcStride2
[3]= {srcStride
[0], srcStride
[1], srcStride
[2]};
2198 int dstStride2
[3]= {dstStride
[0], dstStride
[1], dstStride
[2]};
2199 return c
->swScale(c
, src
, srcStride2
, srcSliceY
, srcSliceH
, dst
, dstStride2
);
2203 * swscale warper, so we don't need to export the SwsContext
2205 int sws_scale(SwsContext
*c
, uint8_t* srcParam
[], int srcStrideParam
[], int srcSliceY
,
2206 int srcSliceH
, uint8_t* dstParam
[], int dstStrideParam
[]){
2211 sws_orderYUV(c
->origSrcFormat
, src
, srcStride
, srcParam
, srcStrideParam
);
2212 sws_orderYUV(c
->origDstFormat
, dst
, dstStride
, dstParam
, dstStrideParam
);
2213 //printf("sws: slice %d %d\n", srcSliceY, srcSliceH);
2215 return c
->swScale(c
, src
, srcStride
, srcSliceY
, srcSliceH
, dst
, dstStride
);
2218 SwsFilter
*sws_getDefaultFilter(float lumaGBlur
, float chromaGBlur
,
2219 float lumaSharpen
, float chromaSharpen
,
2220 float chromaHShift
, float chromaVShift
,
2223 SwsFilter
*filter
= malloc(sizeof(SwsFilter
));
2226 filter
->lumH
= sws_getGaussianVec(lumaGBlur
, 3.0);
2227 filter
->lumV
= sws_getGaussianVec(lumaGBlur
, 3.0);
2229 filter
->lumH
= sws_getIdentityVec();
2230 filter
->lumV
= sws_getIdentityVec();
2233 if(chromaGBlur
!=0.0){
2234 filter
->chrH
= sws_getGaussianVec(chromaGBlur
, 3.0);
2235 filter
->chrV
= sws_getGaussianVec(chromaGBlur
, 3.0);
2237 filter
->chrH
= sws_getIdentityVec();
2238 filter
->chrV
= sws_getIdentityVec();
2241 if(chromaSharpen
!=0.0){
2242 SwsVector
*g
= sws_getConstVec(-1.0, 3);
2243 SwsVector
*id
= sws_getConstVec(10.0/chromaSharpen
, 1);
2246 sws_convVec(filter
->chrH
, id
);
2247 sws_convVec(filter
->chrV
, id
);
2252 if(lumaSharpen
!=0.0){
2253 SwsVector
*g
= sws_getConstVec(-1.0, 3);
2254 SwsVector
*id
= sws_getConstVec(10.0/lumaSharpen
, 1);
2257 sws_convVec(filter
->lumH
, id
);
2258 sws_convVec(filter
->lumV
, id
);
2263 if(chromaHShift
!= 0.0)
2264 sws_shiftVec(filter
->chrH
, (int)(chromaHShift
+0.5));
2266 if(chromaVShift
!= 0.0)
2267 sws_shiftVec(filter
->chrV
, (int)(chromaVShift
+0.5));
2269 sws_normalizeVec(filter
->chrH
, 1.0);
2270 sws_normalizeVec(filter
->chrV
, 1.0);
2271 sws_normalizeVec(filter
->lumH
, 1.0);
2272 sws_normalizeVec(filter
->lumV
, 1.0);
2274 if(verbose
) sws_printVec(filter
->chrH
);
2275 if(verbose
) sws_printVec(filter
->lumH
);
2281 * returns a normalized gaussian curve used to filter stuff
2282 * quality=3 is high quality, lowwer is lowwer quality
2284 SwsVector
*sws_getGaussianVec(double variance
, double quality
){
2285 const int length
= (int)(variance
*quality
+ 0.5) | 1;
2287 double *coeff
= memalign(sizeof(double), length
*sizeof(double));
2288 double middle
= (length
-1)*0.5;
2289 SwsVector
*vec
= malloc(sizeof(SwsVector
));
2292 vec
->length
= length
;
2294 for(i
=0; i
<length
; i
++)
2296 double dist
= i
-middle
;
2297 coeff
[i
]= exp( -dist
*dist
/(2*variance
*variance
) ) / sqrt(2*variance
*PI
);
2300 sws_normalizeVec(vec
, 1.0);
2305 SwsVector
*sws_getConstVec(double c
, int length
){
2307 double *coeff
= memalign(sizeof(double), length
*sizeof(double));
2308 SwsVector
*vec
= malloc(sizeof(SwsVector
));
2311 vec
->length
= length
;
2313 for(i
=0; i
<length
; i
++)
2320 SwsVector
*sws_getIdentityVec(void){
2321 double *coeff
= memalign(sizeof(double), sizeof(double));
2322 SwsVector
*vec
= malloc(sizeof(SwsVector
));
2331 void sws_normalizeVec(SwsVector
*a
, double height
){
2336 for(i
=0; i
<a
->length
; i
++)
2341 for(i
=0; i
<a
->length
; i
++)
2345 void sws_scaleVec(SwsVector
*a
, double scalar
){
2348 for(i
=0; i
<a
->length
; i
++)
2349 a
->coeff
[i
]*= scalar
;
2352 static SwsVector
*sws_getConvVec(SwsVector
*a
, SwsVector
*b
){
2353 int length
= a
->length
+ b
->length
- 1;
2354 double *coeff
= memalign(sizeof(double), length
*sizeof(double));
2356 SwsVector
*vec
= malloc(sizeof(SwsVector
));
2359 vec
->length
= length
;
2361 for(i
=0; i
<length
; i
++) coeff
[i
]= 0.0;
2363 for(i
=0; i
<a
->length
; i
++)
2365 for(j
=0; j
<b
->length
; j
++)
2367 coeff
[i
+j
]+= a
->coeff
[i
]*b
->coeff
[j
];
2374 static SwsVector
*sws_sumVec(SwsVector
*a
, SwsVector
*b
){
2375 int length
= MAX(a
->length
, b
->length
);
2376 double *coeff
= memalign(sizeof(double), length
*sizeof(double));
2378 SwsVector
*vec
= malloc(sizeof(SwsVector
));
2381 vec
->length
= length
;
2383 for(i
=0; i
<length
; i
++) coeff
[i
]= 0.0;
2385 for(i
=0; i
<a
->length
; i
++) coeff
[i
+ (length
-1)/2 - (a
->length
-1)/2]+= a
->coeff
[i
];
2386 for(i
=0; i
<b
->length
; i
++) coeff
[i
+ (length
-1)/2 - (b
->length
-1)/2]+= b
->coeff
[i
];
2391 static SwsVector
*sws_diffVec(SwsVector
*a
, SwsVector
*b
){
2392 int length
= MAX(a
->length
, b
->length
);
2393 double *coeff
= memalign(sizeof(double), length
*sizeof(double));
2395 SwsVector
*vec
= malloc(sizeof(SwsVector
));
2398 vec
->length
= length
;
2400 for(i
=0; i
<length
; i
++) coeff
[i
]= 0.0;
2402 for(i
=0; i
<a
->length
; i
++) coeff
[i
+ (length
-1)/2 - (a
->length
-1)/2]+= a
->coeff
[i
];
2403 for(i
=0; i
<b
->length
; i
++) coeff
[i
+ (length
-1)/2 - (b
->length
-1)/2]-= b
->coeff
[i
];
2408 /* shift left / or right if "shift" is negative */
2409 static SwsVector
*sws_getShiftedVec(SwsVector
*a
, int shift
){
2410 int length
= a
->length
+ ABS(shift
)*2;
2411 double *coeff
= memalign(sizeof(double), length
*sizeof(double));
2413 SwsVector
*vec
= malloc(sizeof(SwsVector
));
2416 vec
->length
= length
;
2418 for(i
=0; i
<length
; i
++) coeff
[i
]= 0.0;
2420 for(i
=0; i
<a
->length
; i
++)
2422 coeff
[i
+ (length
-1)/2 - (a
->length
-1)/2 - shift
]= a
->coeff
[i
];
2428 void sws_shiftVec(SwsVector
*a
, int shift
){
2429 SwsVector
*shifted
= sws_getShiftedVec(a
, shift
);
2431 a
->coeff
= shifted
->coeff
;
2432 a
->length
= shifted
->length
;
2436 void sws_addVec(SwsVector
*a
, SwsVector
*b
){
2437 SwsVector
*sum
= sws_sumVec(a
, b
);
2439 a
->coeff
= sum
->coeff
;
2440 a
->length
= sum
->length
;
2444 void sws_subVec(SwsVector
*a
, SwsVector
*b
){
2445 SwsVector
*diff
= sws_diffVec(a
, b
);
2447 a
->coeff
= diff
->coeff
;
2448 a
->length
= diff
->length
;
2452 void sws_convVec(SwsVector
*a
, SwsVector
*b
){
2453 SwsVector
*conv
= sws_getConvVec(a
, b
);
2455 a
->coeff
= conv
->coeff
;
2456 a
->length
= conv
->length
;
2460 SwsVector
*sws_cloneVec(SwsVector
*a
){
2461 double *coeff
= memalign(sizeof(double), a
->length
*sizeof(double));
2463 SwsVector
*vec
= malloc(sizeof(SwsVector
));
2466 vec
->length
= a
->length
;
2468 for(i
=0; i
<a
->length
; i
++) coeff
[i
]= a
->coeff
[i
];
2473 void sws_printVec(SwsVector
*a
){
2479 for(i
=0; i
<a
->length
; i
++)
2480 if(a
->coeff
[i
]>max
) max
= a
->coeff
[i
];
2482 for(i
=0; i
<a
->length
; i
++)
2483 if(a
->coeff
[i
]<min
) min
= a
->coeff
[i
];
2487 for(i
=0; i
<a
->length
; i
++)
2489 int x
= (int)((a
->coeff
[i
]-min
)*60.0/range
+0.5);
2490 MSG_DBG2("%1.3f ", a
->coeff
[i
]);
2491 for(;x
>0; x
--) MSG_DBG2(" ");
2496 void sws_freeVec(SwsVector
*a
){
2498 if(a
->coeff
) free(a
->coeff
);
2504 void sws_freeFilter(SwsFilter
*filter
){
2507 if(filter
->lumH
) sws_freeVec(filter
->lumH
);
2508 if(filter
->lumV
) sws_freeVec(filter
->lumV
);
2509 if(filter
->chrH
) sws_freeVec(filter
->chrH
);
2510 if(filter
->chrV
) sws_freeVec(filter
->chrV
);
2515 void sws_freeContext(SwsContext
*c
){
2521 for(i
=0; i
<c
->vLumBufSize
; i
++)
2523 if(c
->lumPixBuf
[i
]) free(c
->lumPixBuf
[i
]);
2524 c
->lumPixBuf
[i
]=NULL
;
2532 for(i
=0; i
<c
->vChrBufSize
; i
++)
2534 if(c
->chrPixBuf
[i
]) free(c
->chrPixBuf
[i
]);
2535 c
->chrPixBuf
[i
]=NULL
;
2541 if(c
->vLumFilter
) free(c
->vLumFilter
);
2542 c
->vLumFilter
= NULL
;
2543 if(c
->vChrFilter
) free(c
->vChrFilter
);
2544 c
->vChrFilter
= NULL
;
2545 if(c
->hLumFilter
) free(c
->hLumFilter
);
2546 c
->hLumFilter
= NULL
;
2547 if(c
->hChrFilter
) free(c
->hChrFilter
);
2548 c
->hChrFilter
= NULL
;
2550 if(c
->vLumFilterPos
) free(c
->vLumFilterPos
);
2551 c
->vLumFilterPos
= NULL
;
2552 if(c
->vChrFilterPos
) free(c
->vChrFilterPos
);
2553 c
->vChrFilterPos
= NULL
;
2554 if(c
->hLumFilterPos
) free(c
->hLumFilterPos
);
2555 c
->hLumFilterPos
= NULL
;
2556 if(c
->hChrFilterPos
) free(c
->hChrFilterPos
);
2557 c
->hChrFilterPos
= NULL
;
2559 if(c
->lumMmx2Filter
) free(c
->lumMmx2Filter
);
2560 c
->lumMmx2Filter
=NULL
;
2561 if(c
->chrMmx2Filter
) free(c
->chrMmx2Filter
);
2562 c
->chrMmx2Filter
=NULL
;
2563 if(c
->lumMmx2FilterPos
) free(c
->lumMmx2FilterPos
);
2564 c
->lumMmx2FilterPos
=NULL
;
2565 if(c
->chrMmx2FilterPos
) free(c
->chrMmx2FilterPos
);
2566 c
->chrMmx2FilterPos
=NULL
;
2567 if(c
->yuvTable
) free(c
->yuvTable
);