-sws 0 && -ssf chs fixed
[libav.git] / postproc / swscale.c
1 /*
2 Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 2 of the License, or
7 (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
13
14 You should have received a copy of the GNU General Public License
15 along with this program; if not, write to the Free Software
16 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19 /*
20 supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09
21 supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
22 {BGR,RGB}{1,4,8,15,16} support dithering
23
24 unscaled special converters (YV12=I420=IYUV, Y800=Y8)
25 YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
26 x -> x
27 YUV9 -> YV12
28 YUV9/YV12 -> Y800
29 Y800 -> YUV9/YV12
30 BGR24 -> BGR32 & RGB24 -> RGB32
31 BGR32 -> BGR24 & RGB32 -> RGB24
32 BGR15 -> BGR16
33 */
34
35 /*
36 tested special converters (most are tested actually but i didnt write it down ...)
37 YV12 -> BGR16
38 YV12 -> YV12
39 BGR15 -> BGR16
40 BGR16 -> BGR16
41 YVU9 -> YV12
42
43 untested special converters
44 YV12/I420 -> BGR15/BGR24/BGR32 (its the yuv2rgb stuff, so it should be ok)
45 YV12/I420 -> YV12/I420
46 YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
47 BGR24 -> BGR32 & RGB24 -> RGB32
48 BGR32 -> BGR24 & RGB32 -> RGB24
49 BGR24 -> YV12
50 */
51
52 #include <inttypes.h>
53 #include <string.h>
54 #include <math.h>
55 #include <stdio.h>
56 #include "../config.h"
57 #include "../mangle.h"
58 #include <assert.h>
59 #ifdef HAVE_MALLOC_H
60 #include <malloc.h>
61 #else
62 #include <stdlib.h>
63 #endif
64 #include "swscale.h"
65 #include "swscale_internal.h"
66 #include "../cpudetect.h"
67 #include "../bswap.h"
68 #include "../libvo/img_format.h"
69 #include "rgb2rgb.h"
70 #include "../libvo/fastmemcpy.h"
71
72 #undef MOVNTQ
73 #undef PAVGB
74
75 //#undef HAVE_MMX2
76 //#define HAVE_3DNOW
77 //#undef HAVE_MMX
78 //#undef ARCH_X86
79 //#define WORDS_BIGENDIAN
80 #define DITHER1XBPP
81
82 #define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
83
84 #define RET 0xC3 //near return opcode for X86
85
86 #ifdef MP_DEBUG
87 #define ASSERT(x) assert(x);
88 #else
89 #define ASSERT(x) ;
90 #endif
91
92 #ifdef M_PI
93 #define PI M_PI
94 #else
95 #define PI 3.14159265358979323846
96 #endif
97
98 //FIXME replace this with something faster
99 #define isPlanarYUV(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YVU9 \
100 || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P)
101 #define isYUV(x) ((x)==IMGFMT_UYVY || (x)==IMGFMT_YUY2 || isPlanarYUV(x))
102 #define isGray(x) ((x)==IMGFMT_Y800)
103 #define isRGB(x) (((x)&IMGFMT_RGB_MASK)==IMGFMT_RGB)
104 #define isBGR(x) (((x)&IMGFMT_BGR_MASK)==IMGFMT_BGR)
105 #define isSupportedIn(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY\
106 || (x)==IMGFMT_BGR32|| (x)==IMGFMT_BGR24|| (x)==IMGFMT_BGR16|| (x)==IMGFMT_BGR15\
107 || (x)==IMGFMT_RGB32|| (x)==IMGFMT_RGB24\
108 || (x)==IMGFMT_Y800 || (x)==IMGFMT_YVU9\
109 || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P)
110 #define isSupportedOut(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY\
111 || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P\
112 || isRGB(x) || isBGR(x)\
113 || (x)==IMGFMT_Y800 || (x)==IMGFMT_YVU9)
114 #define isPacked(x) ((x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY ||isRGB(x) || isBGR(x))
115
116 #define RGB2YUV_SHIFT 16
117 #define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
118 #define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
119 #define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
120 #define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
121 #define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
122 #define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
123 #define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
124 #define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
125 #define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))
126
127 extern const int32_t Inverse_Table_6_9[8][4];
128
129 /*
130 NOTES
131 Special versions: fast Y 1:1 scaling (no interpolation in y direction)
132
133 TODO
134 more intelligent missalignment avoidance for the horizontal scaler
135 write special vertical cubic upscale version
136 Optimize C code (yv12 / minmax)
137 add support for packed pixel yuv input & output
138 add support for Y8 output
139 optimize bgr24 & bgr32
140 add BGR4 output support
141 write special BGR->BGR scaler
142 */
143
144 #define ABS(a) ((a) > 0 ? (a) : (-(a)))
145 #define MIN(a,b) ((a) > (b) ? (b) : (a))
146 #define MAX(a,b) ((a) < (b) ? (b) : (a))
147
148 #ifdef ARCH_X86
149 static uint64_t __attribute__((aligned(8))) bF8= 0xF8F8F8F8F8F8F8F8LL;
150 static uint64_t __attribute__((aligned(8))) bFC= 0xFCFCFCFCFCFCFCFCLL;
151 static uint64_t __attribute__((aligned(8))) w10= 0x0010001000100010LL;
152 static uint64_t __attribute__((aligned(8))) w02= 0x0002000200020002LL;
153 static uint64_t __attribute__((aligned(8))) bm00001111=0x00000000FFFFFFFFLL;
154 static uint64_t __attribute__((aligned(8))) bm00000111=0x0000000000FFFFFFLL;
155 static uint64_t __attribute__((aligned(8))) bm11111000=0xFFFFFFFFFF000000LL;
156 static uint64_t __attribute__((aligned(8))) bm01010101=0x00FF00FF00FF00FFLL;
157
158 static volatile uint64_t __attribute__((aligned(8))) b5Dither;
159 static volatile uint64_t __attribute__((aligned(8))) g5Dither;
160 static volatile uint64_t __attribute__((aligned(8))) g6Dither;
161 static volatile uint64_t __attribute__((aligned(8))) r5Dither;
162
163 static uint64_t __attribute__((aligned(8))) dither4[2]={
164 0x0103010301030103LL,
165 0x0200020002000200LL,};
166
167 static uint64_t __attribute__((aligned(8))) dither8[2]={
168 0x0602060206020602LL,
169 0x0004000400040004LL,};
170
171 static uint64_t __attribute__((aligned(8))) b16Mask= 0x001F001F001F001FLL;
172 static uint64_t __attribute__((aligned(8))) g16Mask= 0x07E007E007E007E0LL;
173 static uint64_t __attribute__((aligned(8))) r16Mask= 0xF800F800F800F800LL;
174 static uint64_t __attribute__((aligned(8))) b15Mask= 0x001F001F001F001FLL;
175 static uint64_t __attribute__((aligned(8))) g15Mask= 0x03E003E003E003E0LL;
176 static uint64_t __attribute__((aligned(8))) r15Mask= 0x7C007C007C007C00LL;
177
178 static uint64_t __attribute__((aligned(8))) M24A= 0x00FF0000FF0000FFLL;
179 static uint64_t __attribute__((aligned(8))) M24B= 0xFF0000FF0000FF00LL;
180 static uint64_t __attribute__((aligned(8))) M24C= 0x0000FF0000FF0000LL;
181
182 #ifdef FAST_BGR2YV12
183 static const uint64_t bgr2YCoeff __attribute__((aligned(8))) = 0x000000210041000DULL;
184 static const uint64_t bgr2UCoeff __attribute__((aligned(8))) = 0x0000FFEEFFDC0038ULL;
185 static const uint64_t bgr2VCoeff __attribute__((aligned(8))) = 0x00000038FFD2FFF8ULL;
186 #else
187 static const uint64_t bgr2YCoeff __attribute__((aligned(8))) = 0x000020E540830C8BULL;
188 static const uint64_t bgr2UCoeff __attribute__((aligned(8))) = 0x0000ED0FDAC23831ULL;
189 static const uint64_t bgr2VCoeff __attribute__((aligned(8))) = 0x00003831D0E6F6EAULL;
190 #endif
191 static const uint64_t bgr2YOffset __attribute__((aligned(8))) = 0x1010101010101010ULL;
192 static const uint64_t bgr2UVOffset __attribute__((aligned(8)))= 0x8080808080808080ULL;
193 static const uint64_t w1111 __attribute__((aligned(8))) = 0x0001000100010001ULL;
194 #endif
195
196 // clipping helper table for C implementations:
197 static unsigned char clip_table[768];
198
199 static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
200
201 extern const uint8_t dither_2x2_4[2][8];
202 extern const uint8_t dither_2x2_8[2][8];
203 extern const uint8_t dither_8x8_32[8][8];
204 extern const uint8_t dither_8x8_73[8][8];
205 extern const uint8_t dither_8x8_220[8][8];
206
207 #ifdef ARCH_X86
208 void in_asm_used_var_warning_killer()
209 {
210 volatile int i= bF8+bFC+w10+
211 bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+
212 M24A+M24B+M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0]+bm01010101;
213 if(i) i=0;
214 }
215 #endif
216
217 static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
218 int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
219 uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
220 {
221 //FIXME Optimize (just quickly writen not opti..)
222 int i;
223 for(i=0; i<dstW; i++)
224 {
225 int val=1<<18;
226 int j;
227 for(j=0; j<lumFilterSize; j++)
228 val += lumSrc[j][i] * lumFilter[j];
229
230 dest[i]= MIN(MAX(val>>19, 0), 255);
231 }
232
233 if(uDest != NULL)
234 for(i=0; i<chrDstW; i++)
235 {
236 int u=1<<18;
237 int v=1<<18;
238 int j;
239 for(j=0; j<chrFilterSize; j++)
240 {
241 u += chrSrc[j][i] * chrFilter[j];
242 v += chrSrc[j][i + 2048] * chrFilter[j];
243 }
244
245 uDest[i]= MIN(MAX(u>>19, 0), 255);
246 vDest[i]= MIN(MAX(v>>19, 0), 255);
247 }
248 }
249
250
251 #define YSCALE_YUV_2_PACKEDX_C(type) \
252 for(i=0; i<(dstW>>1); i++){\
253 int j;\
254 int Y1=1<<18;\
255 int Y2=1<<18;\
256 int U=1<<18;\
257 int V=1<<18;\
258 type *r, *b, *g;\
259 const int i2= 2*i;\
260 \
261 for(j=0; j<lumFilterSize; j++)\
262 {\
263 Y1 += lumSrc[j][i2] * lumFilter[j];\
264 Y2 += lumSrc[j][i2+1] * lumFilter[j];\
265 }\
266 for(j=0; j<chrFilterSize; j++)\
267 {\
268 U += chrSrc[j][i] * chrFilter[j];\
269 V += chrSrc[j][i+2048] * chrFilter[j];\
270 }\
271 Y1>>=19;\
272 Y2>>=19;\
273 U >>=19;\
274 V >>=19;\
275 if((Y1|Y2|U|V)&256)\
276 {\
277 if(Y1>255) Y1=255;\
278 else if(Y1<0)Y1=0;\
279 if(Y2>255) Y2=255;\
280 else if(Y2<0)Y2=0;\
281 if(U>255) U=255;\
282 else if(U<0) U=0;\
283 if(V>255) V=255;\
284 else if(V<0) V=0;\
285 }
286
287 #define YSCALE_YUV_2_RGBX_C(type) \
288 YSCALE_YUV_2_PACKEDX_C(type)\
289 r = c->table_rV[V];\
290 g = c->table_gU[U] + c->table_gV[V];\
291 b = c->table_bU[U];\
292
293 #define YSCALE_YUV_2_PACKED2_C \
294 for(i=0; i<(dstW>>1); i++){\
295 const int i2= 2*i;\
296 int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19;\
297 int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19;\
298 int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19;\
299 int V= (uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19;\
300
301 #define YSCALE_YUV_2_RGB2_C(type) \
302 YSCALE_YUV_2_PACKED2_C\
303 type *r, *b, *g;\
304 r = c->table_rV[V];\
305 g = c->table_gU[U] + c->table_gV[V];\
306 b = c->table_bU[U];\
307
308 #define YSCALE_YUV_2_PACKED1_C \
309 for(i=0; i<(dstW>>1); i++){\
310 const int i2= 2*i;\
311 int Y1= buf0[i2 ]>>7;\
312 int Y2= buf0[i2+1]>>7;\
313 int U= (uvbuf1[i ])>>7;\
314 int V= (uvbuf1[i+2048])>>7;\
315
316 #define YSCALE_YUV_2_RGB1_C(type) \
317 YSCALE_YUV_2_PACKED1_C\
318 type *r, *b, *g;\
319 r = c->table_rV[V];\
320 g = c->table_gU[U] + c->table_gV[V];\
321 b = c->table_bU[U];\
322
323 #define YSCALE_YUV_2_PACKED1B_C \
324 for(i=0; i<(dstW>>1); i++){\
325 const int i2= 2*i;\
326 int Y1= buf0[i2 ]>>7;\
327 int Y2= buf0[i2+1]>>7;\
328 int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\
329 int V= (uvbuf0[i+2048] + uvbuf1[i+2048])>>8;\
330
331 #define YSCALE_YUV_2_RGB1B_C(type) \
332 YSCALE_YUV_2_PACKED1B_C\
333 type *r, *b, *g;\
334 r = c->table_rV[V];\
335 g = c->table_gU[U] + c->table_gV[V];\
336 b = c->table_bU[U];\
337
338 #define YSCALE_YUV_2_ANYRGB_C(func, func2)\
339 switch(c->dstFormat)\
340 {\
341 case IMGFMT_BGR32:\
342 case IMGFMT_RGB32:\
343 func(uint32_t)\
344 ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
345 ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
346 } \
347 break;\
348 case IMGFMT_RGB24:\
349 func(uint8_t)\
350 ((uint8_t*)dest)[0]= r[Y1];\
351 ((uint8_t*)dest)[1]= g[Y1];\
352 ((uint8_t*)dest)[2]= b[Y1];\
353 ((uint8_t*)dest)[3]= r[Y2];\
354 ((uint8_t*)dest)[4]= g[Y2];\
355 ((uint8_t*)dest)[5]= b[Y2];\
356 ((uint8_t*)dest)+=6;\
357 }\
358 break;\
359 case IMGFMT_BGR24:\
360 func(uint8_t)\
361 ((uint8_t*)dest)[0]= b[Y1];\
362 ((uint8_t*)dest)[1]= g[Y1];\
363 ((uint8_t*)dest)[2]= r[Y1];\
364 ((uint8_t*)dest)[3]= b[Y2];\
365 ((uint8_t*)dest)[4]= g[Y2];\
366 ((uint8_t*)dest)[5]= r[Y2];\
367 ((uint8_t*)dest)+=6;\
368 }\
369 break;\
370 case IMGFMT_RGB16:\
371 case IMGFMT_BGR16:\
372 {\
373 const int dr1= dither_2x2_8[y&1 ][0];\
374 const int dg1= dither_2x2_4[y&1 ][0];\
375 const int db1= dither_2x2_8[(y&1)^1][0];\
376 const int dr2= dither_2x2_8[y&1 ][1];\
377 const int dg2= dither_2x2_4[y&1 ][1];\
378 const int db2= dither_2x2_8[(y&1)^1][1];\
379 func(uint16_t)\
380 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
381 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
382 }\
383 }\
384 break;\
385 case IMGFMT_RGB15:\
386 case IMGFMT_BGR15:\
387 {\
388 const int dr1= dither_2x2_8[y&1 ][0];\
389 const int dg1= dither_2x2_8[y&1 ][1];\
390 const int db1= dither_2x2_8[(y&1)^1][0];\
391 const int dr2= dither_2x2_8[y&1 ][1];\
392 const int dg2= dither_2x2_8[y&1 ][0];\
393 const int db2= dither_2x2_8[(y&1)^1][1];\
394 func(uint16_t)\
395 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
396 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
397 }\
398 }\
399 break;\
400 case IMGFMT_RGB8:\
401 case IMGFMT_BGR8:\
402 {\
403 const uint8_t * const d64= dither_8x8_73[y&7];\
404 const uint8_t * const d32= dither_8x8_32[y&7];\
405 func(uint8_t)\
406 ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
407 ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
408 }\
409 }\
410 break;\
411 case IMGFMT_RGB4:\
412 case IMGFMT_BGR4:\
413 {\
414 const uint8_t * const d64= dither_8x8_73 [y&7];\
415 const uint8_t * const d128=dither_8x8_220[y&7];\
416 func(uint8_t)\
417 ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
418 + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
419 }\
420 }\
421 break;\
422 case IMGFMT_RG4B:\
423 case IMGFMT_BG4B:\
424 {\
425 const uint8_t * const d64= dither_8x8_73 [y&7];\
426 const uint8_t * const d128=dither_8x8_220[y&7];\
427 func(uint8_t)\
428 ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
429 ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
430 }\
431 }\
432 break;\
433 case IMGFMT_RGB1:\
434 case IMGFMT_BGR1:\
435 {\
436 const uint8_t * const d128=dither_8x8_220[y&7];\
437 uint8_t *g= c->table_gU[128] + c->table_gV[128];\
438 for(i=0; i<dstW-7; i+=8){\
439 int acc;\
440 acc = g[((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19) + d128[0]];\
441 acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
442 acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
443 acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
444 acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
445 acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
446 acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
447 acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
448 ((uint8_t*)dest)[0]= acc;\
449 ((uint8_t*)dest)++;\
450 }\
451 \
452 /*\
453 ((uint8_t*)dest)-= dstW>>4;\
454 {\
455 int acc=0;\
456 int left=0;\
457 static int top[1024];\
458 static int last_new[1024][1024];\
459 static int last_in3[1024][1024];\
460 static int drift[1024][1024];\
461 int topLeft=0;\
462 int shift=0;\
463 int count=0;\
464 const uint8_t * const d128=dither_8x8_220[y&7];\
465 int error_new=0;\
466 int error_in3=0;\
467 int f=0;\
468 \
469 for(i=dstW>>1; i<dstW; i++){\
470 int in= ((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19);\
471 int in2 = (76309 * (in - 16) + 32768) >> 16;\
472 int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
473 int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
474 + (last_new[y][i] - in3)*f/256;\
475 int new= old> 128 ? 255 : 0;\
476 \
477 error_new+= ABS(last_new[y][i] - new);\
478 error_in3+= ABS(last_in3[y][i] - in3);\
479 f= error_new - error_in3*4;\
480 if(f<0) f=0;\
481 if(f>256) f=256;\
482 \
483 topLeft= top[i];\
484 left= top[i]= old - new;\
485 last_new[y][i]= new;\
486 last_in3[y][i]= in3;\
487 \
488 acc+= acc + (new&1);\
489 if((i&7)==6){\
490 ((uint8_t*)dest)[0]= acc;\
491 ((uint8_t*)dest)++;\
492 }\
493 }\
494 }\
495 */\
496 }\
497 break;\
498 case IMGFMT_YUY2:\
499 func2\
500 ((uint8_t*)dest)[2*i2+0]= Y1;\
501 ((uint8_t*)dest)[2*i2+1]= U;\
502 ((uint8_t*)dest)[2*i2+2]= Y2;\
503 ((uint8_t*)dest)[2*i2+3]= V;\
504 } \
505 break;\
506 case IMGFMT_UYVY:\
507 func2\
508 ((uint8_t*)dest)[2*i2+0]= U;\
509 ((uint8_t*)dest)[2*i2+1]= Y1;\
510 ((uint8_t*)dest)[2*i2+2]= V;\
511 ((uint8_t*)dest)[2*i2+3]= Y2;\
512 } \
513 break;\
514 }\
515
516
517 static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
518 int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
519 uint8_t *dest, int dstW, int y)
520 {
521 int i;
522 switch(c->dstFormat)
523 {
524 case IMGFMT_RGB32:
525 case IMGFMT_BGR32:
526 YSCALE_YUV_2_RGBX_C(uint32_t)
527 ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];
528 ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];
529 }
530 break;
531 case IMGFMT_RGB24:
532 YSCALE_YUV_2_RGBX_C(uint8_t)
533 ((uint8_t*)dest)[0]= r[Y1];
534 ((uint8_t*)dest)[1]= g[Y1];
535 ((uint8_t*)dest)[2]= b[Y1];
536 ((uint8_t*)dest)[3]= r[Y2];
537 ((uint8_t*)dest)[4]= g[Y2];
538 ((uint8_t*)dest)[5]= b[Y2];
539 ((uint8_t*)dest)+=6;
540 }
541 break;
542 case IMGFMT_BGR24:
543 YSCALE_YUV_2_RGBX_C(uint8_t)
544 ((uint8_t*)dest)[0]= b[Y1];
545 ((uint8_t*)dest)[1]= g[Y1];
546 ((uint8_t*)dest)[2]= r[Y1];
547 ((uint8_t*)dest)[3]= b[Y2];
548 ((uint8_t*)dest)[4]= g[Y2];
549 ((uint8_t*)dest)[5]= r[Y2];
550 ((uint8_t*)dest)+=6;
551 }
552 break;
553 case IMGFMT_RGB16:
554 case IMGFMT_BGR16:
555 {
556 const int dr1= dither_2x2_8[y&1 ][0];
557 const int dg1= dither_2x2_4[y&1 ][0];
558 const int db1= dither_2x2_8[(y&1)^1][0];
559 const int dr2= dither_2x2_8[y&1 ][1];
560 const int dg2= dither_2x2_4[y&1 ][1];
561 const int db2= dither_2x2_8[(y&1)^1][1];
562 YSCALE_YUV_2_RGBX_C(uint16_t)
563 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
564 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
565 }
566 }
567 break;
568 case IMGFMT_RGB15:
569 case IMGFMT_BGR15:
570 {
571 const int dr1= dither_2x2_8[y&1 ][0];
572 const int dg1= dither_2x2_8[y&1 ][1];
573 const int db1= dither_2x2_8[(y&1)^1][0];
574 const int dr2= dither_2x2_8[y&1 ][1];
575 const int dg2= dither_2x2_8[y&1 ][0];
576 const int db2= dither_2x2_8[(y&1)^1][1];
577 YSCALE_YUV_2_RGBX_C(uint16_t)
578 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
579 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
580 }
581 }
582 break;
583 case IMGFMT_RGB8:
584 case IMGFMT_BGR8:
585 {
586 const uint8_t * const d64= dither_8x8_73[y&7];
587 const uint8_t * const d32= dither_8x8_32[y&7];
588 YSCALE_YUV_2_RGBX_C(uint8_t)
589 ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];
590 ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];
591 }
592 }
593 break;
594 case IMGFMT_RGB4:
595 case IMGFMT_BGR4:
596 {
597 const uint8_t * const d64= dither_8x8_73 [y&7];
598 const uint8_t * const d128=dither_8x8_220[y&7];
599 YSCALE_YUV_2_RGBX_C(uint8_t)
600 ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]
601 +((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);
602 }
603 }
604 break;
605 case IMGFMT_RG4B:
606 case IMGFMT_BG4B:
607 {
608 const uint8_t * const d64= dither_8x8_73 [y&7];
609 const uint8_t * const d128=dither_8x8_220[y&7];
610 YSCALE_YUV_2_RGBX_C(uint8_t)
611 ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];
612 ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];
613 }
614 }
615 break;
616 case IMGFMT_RGB1:
617 case IMGFMT_BGR1:
618 {
619 const uint8_t * const d128=dither_8x8_220[y&7];
620 uint8_t *g= c->table_gU[128] + c->table_gV[128];
621 int acc=0;
622 for(i=0; i<dstW-1; i+=2){
623 int j;
624 int Y1=1<<18;
625 int Y2=1<<18;
626
627 for(j=0; j<lumFilterSize; j++)
628 {
629 Y1 += lumSrc[j][i] * lumFilter[j];
630 Y2 += lumSrc[j][i+1] * lumFilter[j];
631 }
632 Y1>>=19;
633 Y2>>=19;
634 if((Y1|Y2)&256)
635 {
636 if(Y1>255) Y1=255;
637 else if(Y1<0)Y1=0;
638 if(Y2>255) Y2=255;
639 else if(Y2<0)Y2=0;
640 }
641 acc+= acc + g[Y1+d128[(i+0)&7]];
642 acc+= acc + g[Y2+d128[(i+1)&7]];
643 if((i&7)==6){
644 ((uint8_t*)dest)[0]= acc;
645 ((uint8_t*)dest)++;
646 }
647 }
648 }
649 break;
650 case IMGFMT_YUY2:
651 YSCALE_YUV_2_PACKEDX_C(void)
652 ((uint8_t*)dest)[2*i2+0]= Y1;
653 ((uint8_t*)dest)[2*i2+1]= U;
654 ((uint8_t*)dest)[2*i2+2]= Y2;
655 ((uint8_t*)dest)[2*i2+3]= V;
656 }
657 break;
658 case IMGFMT_UYVY:
659 YSCALE_YUV_2_PACKEDX_C(void)
660 ((uint8_t*)dest)[2*i2+0]= U;
661 ((uint8_t*)dest)[2*i2+1]= Y1;
662 ((uint8_t*)dest)[2*i2+2]= V;
663 ((uint8_t*)dest)[2*i2+3]= Y2;
664 }
665 break;
666 }
667 }
668
669
670 //Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
671 //Plain C versions
672 #if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT)
673 #define COMPILE_C
674 #endif
675
676 #ifdef ARCH_X86
677
678 #if (defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
679 #define COMPILE_MMX
680 #endif
681
682 #if defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)
683 #define COMPILE_MMX2
684 #endif
685
686 #if (defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
687 #define COMPILE_3DNOW
688 #endif
689 #endif //ARCH_X86
690
691 #undef HAVE_MMX
692 #undef HAVE_MMX2
693 #undef HAVE_3DNOW
694
695 #ifdef COMPILE_C
696 #undef HAVE_MMX
697 #undef HAVE_MMX2
698 #undef HAVE_3DNOW
699 #define RENAME(a) a ## _C
700 #include "swscale_template.c"
701 #endif
702
703 #ifdef ARCH_X86
704
705 //X86 versions
706 /*
707 #undef RENAME
708 #undef HAVE_MMX
709 #undef HAVE_MMX2
710 #undef HAVE_3DNOW
711 #define ARCH_X86
712 #define RENAME(a) a ## _X86
713 #include "swscale_template.c"
714 */
715 //MMX versions
716 #ifdef COMPILE_MMX
717 #undef RENAME
718 #define HAVE_MMX
719 #undef HAVE_MMX2
720 #undef HAVE_3DNOW
721 #define RENAME(a) a ## _MMX
722 #include "swscale_template.c"
723 #endif
724
725 //MMX2 versions
726 #ifdef COMPILE_MMX2
727 #undef RENAME
728 #define HAVE_MMX
729 #define HAVE_MMX2
730 #undef HAVE_3DNOW
731 #define RENAME(a) a ## _MMX2
732 #include "swscale_template.c"
733 #endif
734
735 //3DNOW versions
736 #ifdef COMPILE_3DNOW
737 #undef RENAME
738 #define HAVE_MMX
739 #undef HAVE_MMX2
740 #define HAVE_3DNOW
741 #define RENAME(a) a ## _3DNow
742 #include "swscale_template.c"
743 #endif
744
745 #endif //ARCH_X86
746
747 // minor note: the HAVE_xyz is messed up after that line so don't use it
748
749 static double getSplineCoeff(double a, double b, double c, double d, double dist)
750 {
751 // printf("%f %f %f %f %f\n", a,b,c,d,dist);
752 if(dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
753 else return getSplineCoeff( 0.0,
754 b+ 2.0*c + 3.0*d,
755 c + 3.0*d,
756 -b- 3.0*c - 6.0*d,
757 dist-1.0);
758 }
759
760 static inline void initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
761 int srcW, int dstW, int filterAlign, int one, int flags,
762 SwsVector *srcFilter, SwsVector *dstFilter)
763 {
764 int i;
765 int filterSize;
766 int filter2Size;
767 int minFilterSize;
768 double *filter=NULL;
769 double *filter2=NULL;
770 #ifdef ARCH_X86
771 if(flags & SWS_CPU_CAPS_MMX)
772 asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions)
773 #endif
774
775 // Note the +1 is for the MMXscaler which reads over the end
776 *filterPos = (int16_t*)memalign(8, (dstW+1)*sizeof(int16_t));
777
778 if(ABS(xInc - 0x10000) <10) // unscaled
779 {
780 int i;
781 filterSize= 1;
782 filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
783 for(i=0; i<dstW*filterSize; i++) filter[i]=0;
784
785 for(i=0; i<dstW; i++)
786 {
787 filter[i*filterSize]=1;
788 (*filterPos)[i]=i;
789 }
790
791 }
792 else if(flags&SWS_POINT) // lame looking point sampling mode
793 {
794 int i;
795 int xDstInSrc;
796 filterSize= 1;
797 filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
798
799 xDstInSrc= xInc/2 - 0x8000;
800 for(i=0; i<dstW; i++)
801 {
802 int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
803
804 (*filterPos)[i]= xx;
805 filter[i]= 1.0;
806 xDstInSrc+= xInc;
807 }
808 }
809 else if((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
810 {
811 int i;
812 int xDstInSrc;
813 if (flags&SWS_BICUBIC) filterSize= 4;
814 else if(flags&SWS_X ) filterSize= 4;
815 else filterSize= 2; // SWS_BILINEAR / SWS_AREA
816 filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
817
818 xDstInSrc= xInc/2 - 0x8000;
819 for(i=0; i<dstW; i++)
820 {
821 int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
822 int j;
823
824 (*filterPos)[i]= xx;
825 //Bilinear upscale / linear interpolate / Area averaging
826 for(j=0; j<filterSize; j++)
827 {
828 double d= ABS((xx<<16) - xDstInSrc)/(double)(1<<16);
829 double coeff= 1.0 - d;
830 if(coeff<0) coeff=0;
831 filter[i*filterSize + j]= coeff;
832 xx++;
833 }
834 xDstInSrc+= xInc;
835 }
836 }
837 else
838 {
839 double xDstInSrc;
840 double sizeFactor, filterSizeInSrc;
841 const double xInc1= (double)xInc / (double)(1<<16);
842 int param= (flags&SWS_PARAM_MASK)>>SWS_PARAM_SHIFT;
843
844 if (flags&SWS_BICUBIC) sizeFactor= 4.0;
845 else if(flags&SWS_X) sizeFactor= 8.0;
846 else if(flags&SWS_AREA) sizeFactor= 1.0; //downscale only, for upscale it is bilinear
847 else if(flags&SWS_GAUSS) sizeFactor= 8.0; // infinite ;)
848 else if(flags&SWS_LANCZOS) sizeFactor= param ? 2.0*param : 6.0;
849 else if(flags&SWS_SINC) sizeFactor= 20.0; // infinite ;)
850 else if(flags&SWS_SPLINE) sizeFactor= 20.0; // infinite ;)
851 else if(flags&SWS_BILINEAR) sizeFactor= 2.0;
852 else {
853 sizeFactor= 0.0; //GCC warning killer
854 ASSERT(0)
855 }
856
857 if(xInc1 <= 1.0) filterSizeInSrc= sizeFactor; // upscale
858 else filterSizeInSrc= sizeFactor*srcW / (double)dstW;
859
860 filterSize= (int)ceil(1 + filterSizeInSrc); // will be reduced later if possible
861 if(filterSize > srcW-2) filterSize=srcW-2;
862
863 filter= (double*)memalign(16, dstW*sizeof(double)*filterSize);
864
865 xDstInSrc= xInc1 / 2.0 - 0.5;
866 for(i=0; i<dstW; i++)
867 {
868 int xx= (int)(xDstInSrc - (filterSize-1)*0.5 + 0.5);
869 int j;
870 (*filterPos)[i]= xx;
871 for(j=0; j<filterSize; j++)
872 {
873 double d= ABS(xx - xDstInSrc)/filterSizeInSrc*sizeFactor;
874 double coeff;
875 if(flags & SWS_BICUBIC)
876 {
877 double A= param ? -param*0.01 : -0.60;
878
879 // Equation is from VirtualDub
880 if(d<1.0)
881 coeff = (1.0 - (A+3.0)*d*d + (A+2.0)*d*d*d);
882 else if(d<2.0)
883 coeff = (-4.0*A + 8.0*A*d - 5.0*A*d*d + A*d*d*d);
884 else
885 coeff=0.0;
886 }
887 /* else if(flags & SWS_X)
888 {
889 double p= param ? param*0.01 : 0.3;
890 coeff = d ? sin(d*PI)/(d*PI) : 1.0;
891 coeff*= pow(2.0, - p*d*d);
892 }*/
893 else if(flags & SWS_X)
894 {
895 double A= param ? param*0.1 : 1.0;
896
897 if(d<1.0)
898 coeff = cos(d*PI);
899 else
900 coeff=-1.0;
901 if(coeff<0.0) coeff= -pow(-coeff, A);
902 else coeff= pow( coeff, A);
903 coeff= coeff*0.5 + 0.5;
904 }
905 else if(flags & SWS_AREA)
906 {
907 double srcPixelSize= 1.0/xInc1;
908 if(d + srcPixelSize/2 < 0.5) coeff= 1.0;
909 else if(d - srcPixelSize/2 < 0.5) coeff= (0.5-d)/srcPixelSize + 0.5;
910 else coeff=0.0;
911 }
912 else if(flags & SWS_GAUSS)
913 {
914 double p= param ? param*0.1 : 3.0;
915 coeff = pow(2.0, - p*d*d);
916 }
917 else if(flags & SWS_SINC)
918 {
919 coeff = d ? sin(d*PI)/(d*PI) : 1.0;
920 }
921 else if(flags & SWS_LANCZOS)
922 {
923 double p= param ? param : 3.0;
924 coeff = d ? sin(d*PI)*sin(d*PI/p)/(d*d*PI*PI/p) : 1.0;
925 if(d>p) coeff=0;
926 }
927 else if(flags & SWS_BILINEAR)
928 {
929 coeff= 1.0 - d;
930 if(coeff<0) coeff=0;
931 }
932 else if(flags & SWS_SPLINE)
933 {
934 double p=-2.196152422706632;
935 coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, d);
936 }
937 else {
938 coeff= 0.0; //GCC warning killer
939 ASSERT(0)
940 }
941
942 filter[i*filterSize + j]= coeff;
943 xx++;
944 }
945 xDstInSrc+= xInc1;
946 }
947 }
948
949 /* apply src & dst Filter to filter -> filter2
950 free(filter);
951 */
952 ASSERT(filterSize>0)
953 filter2Size= filterSize;
954 if(srcFilter) filter2Size+= srcFilter->length - 1;
955 if(dstFilter) filter2Size+= dstFilter->length - 1;
956 ASSERT(filter2Size>0)
957 filter2= (double*)memalign(8, filter2Size*dstW*sizeof(double));
958
959 for(i=0; i<dstW; i++)
960 {
961 int j;
962 SwsVector scaleFilter;
963 SwsVector *outVec;
964
965 scaleFilter.coeff= filter + i*filterSize;
966 scaleFilter.length= filterSize;
967
968 if(srcFilter) outVec= sws_getConvVec(srcFilter, &scaleFilter);
969 else outVec= &scaleFilter;
970
971 ASSERT(outVec->length == filter2Size)
972 //FIXME dstFilter
973
974 for(j=0; j<outVec->length; j++)
975 {
976 filter2[i*filter2Size + j]= outVec->coeff[j];
977 }
978
979 (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
980
981 if(outVec != &scaleFilter) sws_freeVec(outVec);
982 }
983 free(filter); filter=NULL;
984
985 /* try to reduce the filter-size (step1 find size and shift left) */
986 // Assume its near normalized (*0.5 or *2.0 is ok but * 0.001 is not)
987 minFilterSize= 0;
988 for(i=dstW-1; i>=0; i--)
989 {
990 int min= filter2Size;
991 int j;
992 double cutOff=0.0;
993
994 /* get rid off near zero elements on the left by shifting left */
995 for(j=0; j<filter2Size; j++)
996 {
997 int k;
998 cutOff += ABS(filter2[i*filter2Size]);
999
1000 if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1001
1002 /* preserve Monotonicity because the core can't handle the filter otherwise */
1003 if(i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
1004
1005 // Move filter coeffs left
1006 for(k=1; k<filter2Size; k++)
1007 filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
1008 filter2[i*filter2Size + k - 1]= 0.0;
1009 (*filterPos)[i]++;
1010 }
1011
1012 cutOff=0.0;
1013 /* count near zeros on the right */
1014 for(j=filter2Size-1; j>0; j--)
1015 {
1016 cutOff += ABS(filter2[i*filter2Size + j]);
1017
1018 if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1019 min--;
1020 }
1021
1022 if(min>minFilterSize) minFilterSize= min;
1023 }
1024
1025 ASSERT(minFilterSize > 0)
1026 filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
1027 ASSERT(filterSize > 0)
1028 filter= (double*)memalign(8, filterSize*dstW*sizeof(double));
1029 *outFilterSize= filterSize;
1030
1031 if(flags&SWS_PRINT_INFO)
1032 MSG_INFO("SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
1033 /* try to reduce the filter-size (step2 reduce it) */
1034 for(i=0; i<dstW; i++)
1035 {
1036 int j;
1037
1038 for(j=0; j<filterSize; j++)
1039 {
1040 if(j>=filter2Size) filter[i*filterSize + j]= 0.0;
1041 else filter[i*filterSize + j]= filter2[i*filter2Size + j];
1042 }
1043 }
1044 free(filter2); filter2=NULL;
1045
1046
1047 //FIXME try to align filterpos if possible
1048
1049 //fix borders
1050 for(i=0; i<dstW; i++)
1051 {
1052 int j;
1053 if((*filterPos)[i] < 0)
1054 {
1055 // Move filter coeffs left to compensate for filterPos
1056 for(j=1; j<filterSize; j++)
1057 {
1058 int left= MAX(j + (*filterPos)[i], 0);
1059 filter[i*filterSize + left] += filter[i*filterSize + j];
1060 filter[i*filterSize + j]=0;
1061 }
1062 (*filterPos)[i]= 0;
1063 }
1064
1065 if((*filterPos)[i] + filterSize > srcW)
1066 {
1067 int shift= (*filterPos)[i] + filterSize - srcW;
1068 // Move filter coeffs right to compensate for filterPos
1069 for(j=filterSize-2; j>=0; j--)
1070 {
1071 int right= MIN(j + shift, filterSize-1);
1072 filter[i*filterSize +right] += filter[i*filterSize +j];
1073 filter[i*filterSize +j]=0;
1074 }
1075 (*filterPos)[i]= srcW - filterSize;
1076 }
1077 }
1078
1079 // Note the +1 is for the MMXscaler which reads over the end
1080 *outFilter= (int16_t*)memalign(8, *outFilterSize*(dstW+1)*sizeof(int16_t));
1081 memset(*outFilter, 0, *outFilterSize*(dstW+1)*sizeof(int16_t));
1082
1083 /* Normalize & Store in outFilter */
1084 for(i=0; i<dstW; i++)
1085 {
1086 int j;
1087 double error=0;
1088 double sum=0;
1089 double scale= one;
1090
1091 for(j=0; j<filterSize; j++)
1092 {
1093 sum+= filter[i*filterSize + j];
1094 }
1095 scale/= sum;
1096 for(j=0; j<*outFilterSize; j++)
1097 {
1098 double v= filter[i*filterSize + j]*scale + error;
1099 int intV= floor(v + 0.5);
1100 (*outFilter)[i*(*outFilterSize) + j]= intV;
1101 error = v - intV;
1102 }
1103 }
1104
1105 (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
1106 for(i=0; i<*outFilterSize; i++)
1107 {
1108 int j= dstW*(*outFilterSize);
1109 (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
1110 }
1111
1112 free(filter);
1113 }
1114
1115 #ifdef ARCH_X86
1116 static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
1117 {
1118 uint8_t *fragmentA;
1119 int imm8OfPShufW1A;
1120 int imm8OfPShufW2A;
1121 int fragmentLengthA;
1122 uint8_t *fragmentB;
1123 int imm8OfPShufW1B;
1124 int imm8OfPShufW2B;
1125 int fragmentLengthB;
1126 int fragmentPos;
1127
1128 int xpos, i;
1129
1130 // create an optimized horizontal scaling routine
1131
1132 //code fragment
1133
1134 asm volatile(
1135 "jmp 9f \n\t"
1136 // Begin
1137 "0: \n\t"
1138 "movq (%%edx, %%eax), %%mm3 \n\t"
1139 "movd (%%ecx, %%esi), %%mm0 \n\t"
1140 "movd 1(%%ecx, %%esi), %%mm1 \n\t"
1141 "punpcklbw %%mm7, %%mm1 \n\t"
1142 "punpcklbw %%mm7, %%mm0 \n\t"
1143 "pshufw $0xFF, %%mm1, %%mm1 \n\t"
1144 "1: \n\t"
1145 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
1146 "2: \n\t"
1147 "psubw %%mm1, %%mm0 \n\t"
1148 "movl 8(%%ebx, %%eax), %%esi \n\t"
1149 "pmullw %%mm3, %%mm0 \n\t"
1150 "psllw $7, %%mm1 \n\t"
1151 "paddw %%mm1, %%mm0 \n\t"
1152
1153 "movq %%mm0, (%%edi, %%eax) \n\t"
1154
1155 "addl $8, %%eax \n\t"
1156 // End
1157 "9: \n\t"
1158 // "int $3\n\t"
1159 "leal 0b, %0 \n\t"
1160 "leal 1b, %1 \n\t"
1161 "leal 2b, %2 \n\t"
1162 "decl %1 \n\t"
1163 "decl %2 \n\t"
1164 "subl %0, %1 \n\t"
1165 "subl %0, %2 \n\t"
1166 "leal 9b, %3 \n\t"
1167 "subl %0, %3 \n\t"
1168
1169
1170 :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
1171 "=r" (fragmentLengthA)
1172 );
1173
1174 asm volatile(
1175 "jmp 9f \n\t"
1176 // Begin
1177 "0: \n\t"
1178 "movq (%%edx, %%eax), %%mm3 \n\t"
1179 "movd (%%ecx, %%esi), %%mm0 \n\t"
1180 "punpcklbw %%mm7, %%mm0 \n\t"
1181 "pshufw $0xFF, %%mm0, %%mm1 \n\t"
1182 "1: \n\t"
1183 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
1184 "2: \n\t"
1185 "psubw %%mm1, %%mm0 \n\t"
1186 "movl 8(%%ebx, %%eax), %%esi \n\t"
1187 "pmullw %%mm3, %%mm0 \n\t"
1188 "psllw $7, %%mm1 \n\t"
1189 "paddw %%mm1, %%mm0 \n\t"
1190
1191 "movq %%mm0, (%%edi, %%eax) \n\t"
1192
1193 "addl $8, %%eax \n\t"
1194 // End
1195 "9: \n\t"
1196 // "int $3\n\t"
1197 "leal 0b, %0 \n\t"
1198 "leal 1b, %1 \n\t"
1199 "leal 2b, %2 \n\t"
1200 "decl %1 \n\t"
1201 "decl %2 \n\t"
1202 "subl %0, %1 \n\t"
1203 "subl %0, %2 \n\t"
1204 "leal 9b, %3 \n\t"
1205 "subl %0, %3 \n\t"
1206
1207
1208 :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
1209 "=r" (fragmentLengthB)
1210 );
1211
1212 xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
1213 fragmentPos=0;
1214
1215 for(i=0; i<dstW/numSplits; i++)
1216 {
1217 int xx=xpos>>16;
1218
1219 if((i&3) == 0)
1220 {
1221 int a=0;
1222 int b=((xpos+xInc)>>16) - xx;
1223 int c=((xpos+xInc*2)>>16) - xx;
1224 int d=((xpos+xInc*3)>>16) - xx;
1225
1226 filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
1227 filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
1228 filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
1229 filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
1230 filterPos[i/2]= xx;
1231
1232 if(d+1<4)
1233 {
1234 int maxShift= 3-(d+1);
1235 int shift=0;
1236
1237 memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
1238
1239 funnyCode[fragmentPos + imm8OfPShufW1B]=
1240 (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
1241 funnyCode[fragmentPos + imm8OfPShufW2B]=
1242 a | (b<<2) | (c<<4) | (d<<6);
1243
1244 if(i+3>=dstW) shift=maxShift; //avoid overread
1245 else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
1246
1247 if(shift && i>=shift)
1248 {
1249 funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
1250 funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
1251 filterPos[i/2]-=shift;
1252 }
1253
1254 fragmentPos+= fragmentLengthB;
1255 }
1256 else
1257 {
1258 int maxShift= 3-d;
1259 int shift=0;
1260
1261 memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
1262
1263 funnyCode[fragmentPos + imm8OfPShufW1A]=
1264 funnyCode[fragmentPos + imm8OfPShufW2A]=
1265 a | (b<<2) | (c<<4) | (d<<6);
1266
1267 if(i+4>=dstW) shift=maxShift; //avoid overread
1268 else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
1269
1270 if(shift && i>=shift)
1271 {
1272 funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
1273 funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
1274 filterPos[i/2]-=shift;
1275 }
1276
1277 fragmentPos+= fragmentLengthA;
1278 }
1279
1280 funnyCode[fragmentPos]= RET;
1281 }
1282 xpos+=xInc;
1283 }
1284 filterPos[i/2]= xpos>>16; // needed to jump to the next part
1285 }
1286 #endif // ARCH_X86
1287
1288 static void globalInit(){
1289 // generating tables:
1290 int i;
1291 for(i=0; i<768; i++){
1292 int c= MIN(MAX(i-256, 0), 255);
1293 clip_table[i]=c;
1294 }
1295 }
1296
1297 static SwsFunc getSwsFunc(int flags){
1298
1299 #ifdef RUNTIME_CPUDETECT
1300 #ifdef ARCH_X86
1301 // ordered per speed fasterst first
1302 if(flags & SWS_CPU_CAPS_MMX2)
1303 return swScale_MMX2;
1304 else if(flags & SWS_CPU_CAPS_3DNOW)
1305 return swScale_3DNow;
1306 else if(flags & SWS_CPU_CAPS_MMX)
1307 return swScale_MMX;
1308 else
1309 return swScale_C;
1310
1311 #else
1312 return swScale_C;
1313 #endif
1314 #else //RUNTIME_CPUDETECT
1315 #ifdef HAVE_MMX2
1316 return swScale_MMX2;
1317 #elif defined (HAVE_3DNOW)
1318 return swScale_3DNow;
1319 #elif defined (HAVE_MMX)
1320 return swScale_MMX;
1321 #else
1322 return swScale_C;
1323 #endif
1324 #endif //!RUNTIME_CPUDETECT
1325 }
1326
1327 static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1328 int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1329 uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1330 /* Copy Y plane */
1331 if(dstStride[0]==srcStride[0])
1332 memcpy(dst, src[0], srcSliceH*dstStride[0]);
1333 else
1334 {
1335 int i;
1336 uint8_t *srcPtr= src[0];
1337 uint8_t *dstPtr= dst;
1338 for(i=0; i<srcSliceH; i++)
1339 {
1340 memcpy(dstPtr, srcPtr, srcStride[0]);
1341 srcPtr+= srcStride[0];
1342 dstPtr+= dstStride[0];
1343 }
1344 }
1345 dst = dstParam[1] + dstStride[1]*srcSliceY;
1346 interleaveBytes( src[1],src[2],dst,c->srcW,srcSliceH,srcStride[1],srcStride[2],dstStride[0] );
1347
1348 return srcSliceH;
1349 }
1350
1351 static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1352 int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1353 uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1354
1355 yv12toyuy2( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1356
1357 return srcSliceH;
1358 }
1359
1360 static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1361 int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1362 uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1363
1364 yv12touyvy( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1365
1366 return srcSliceH;
1367 }
1368
1369 /* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
1370 static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1371 int srcSliceH, uint8_t* dst[], int dstStride[]){
1372 const int srcFormat= c->srcFormat;
1373 const int dstFormat= c->dstFormat;
1374 const int srcBpp= ((srcFormat&0xFF) + 7)>>3;
1375 const int dstBpp= ((dstFormat&0xFF) + 7)>>3;
1376 const int srcId= (srcFormat&0xFF)>>2; // 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8
1377 const int dstId= (dstFormat&0xFF)>>2;
1378 void (*conv)(const uint8_t *src, uint8_t *dst, unsigned src_size)=NULL;
1379
1380 /* BGR -> BGR */
1381 if( (isBGR(srcFormat) && isBGR(dstFormat))
1382 || (isRGB(srcFormat) && isRGB(dstFormat))){
1383 switch(srcId | (dstId<<4)){
1384 case 0x34: conv= rgb16to15; break;
1385 case 0x36: conv= rgb24to15; break;
1386 case 0x38: conv= rgb32to15; break;
1387 case 0x43: conv= rgb15to16; break;
1388 case 0x46: conv= rgb24to16; break;
1389 case 0x48: conv= rgb32to16; break;
1390 case 0x63: conv= rgb15to24; break;
1391 case 0x64: conv= rgb16to24; break;
1392 case 0x68: conv= rgb32to24; break;
1393 case 0x83: conv= rgb15to32; break;
1394 case 0x84: conv= rgb16to32; break;
1395 case 0x86: conv= rgb24to32; break;
1396 default: MSG_ERR("swScaler: internal error %s -> %s converter\n",
1397 vo_format_name(srcFormat), vo_format_name(dstFormat)); break;
1398 }
1399 }else if( (isBGR(srcFormat) && isRGB(dstFormat))
1400 || (isRGB(srcFormat) && isBGR(dstFormat))){
1401 switch(srcId | (dstId<<4)){
1402 case 0x33: conv= rgb15tobgr15; break;
1403 case 0x34: conv= rgb16tobgr15; break;
1404 case 0x36: conv= rgb24tobgr15; break;
1405 case 0x38: conv= rgb32tobgr15; break;
1406 case 0x43: conv= rgb15tobgr16; break;
1407 case 0x44: conv= rgb16tobgr16; break;
1408 case 0x46: conv= rgb24tobgr16; break;
1409 case 0x48: conv= rgb32tobgr16; break;
1410 case 0x63: conv= rgb15tobgr24; break;
1411 case 0x64: conv= rgb16tobgr24; break;
1412 case 0x66: conv= rgb24tobgr24; break;
1413 case 0x68: conv= rgb32tobgr24; break;
1414 case 0x83: conv= rgb15tobgr32; break;
1415 case 0x84: conv= rgb16tobgr32; break;
1416 case 0x86: conv= rgb24tobgr32; break;
1417 case 0x88: conv= rgb32tobgr32; break;
1418 default: MSG_ERR("swScaler: internal error %s -> %s converter\n",
1419 vo_format_name(srcFormat), vo_format_name(dstFormat)); break;
1420 }
1421 }else{
1422 MSG_ERR("swScaler: internal error %s -> %s converter\n",
1423 vo_format_name(srcFormat), vo_format_name(dstFormat));
1424 }
1425
1426 if(dstStride[0]*srcBpp == srcStride[0]*dstBpp)
1427 conv(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
1428 else
1429 {
1430 int i;
1431 uint8_t *srcPtr= src[0];
1432 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1433
1434 for(i=0; i<srcSliceH; i++)
1435 {
1436 conv(srcPtr, dstPtr, c->srcW*srcBpp);
1437 srcPtr+= srcStride[0];
1438 dstPtr+= dstStride[0];
1439 }
1440 }
1441 return srcSliceH;
1442 }
1443
1444 static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1445 int srcSliceH, uint8_t* dst[], int dstStride[]){
1446
1447 rgb24toyv12(
1448 src[0],
1449 dst[0]+ srcSliceY *dstStride[0],
1450 dst[1]+(srcSliceY>>1)*dstStride[1],
1451 dst[2]+(srcSliceY>>1)*dstStride[2],
1452 c->srcW, srcSliceH,
1453 dstStride[0], dstStride[1], srcStride[0]);
1454 return srcSliceH;
1455 }
1456
1457 static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1458 int srcSliceH, uint8_t* dst[], int dstStride[]){
1459 int i;
1460
1461 /* copy Y */
1462 if(srcStride[0]==dstStride[0])
1463 memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
1464 else{
1465 uint8_t *srcPtr= src[0];
1466 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1467
1468 for(i=0; i<srcSliceH; i++)
1469 {
1470 memcpy(dstPtr, srcPtr, c->srcW);
1471 srcPtr+= srcStride[0];
1472 dstPtr+= dstStride[0];
1473 }
1474 }
1475
1476 if(c->dstFormat==IMGFMT_YV12){
1477 planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
1478 planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
1479 }else{
1480 planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
1481 planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
1482 }
1483 return srcSliceH;
1484 }
1485
1486 /**
1487 * bring pointers in YUV order instead of YVU
1488 */
1489 static inline void sws_orderYUV(int format, uint8_t * sortedP[], int sortedStride[], uint8_t * p[], int stride[]){
1490 if(format == IMGFMT_YV12 || format == IMGFMT_YVU9
1491 || format == IMGFMT_444P || format == IMGFMT_422P || format == IMGFMT_411P){
1492 sortedP[0]= p[0];
1493 sortedP[1]= p[2];
1494 sortedP[2]= p[1];
1495 sortedStride[0]= stride[0];
1496 sortedStride[1]= stride[2];
1497 sortedStride[2]= stride[1];
1498 }
1499 else if(isPacked(format) || isGray(format) || format == IMGFMT_Y8)
1500 {
1501 sortedP[0]= p[0];
1502 sortedP[1]=
1503 sortedP[2]= NULL;
1504 sortedStride[0]= stride[0];
1505 sortedStride[1]=
1506 sortedStride[2]= 0;
1507 }
1508 else if(format == IMGFMT_I420 || format == IMGFMT_IYUV)
1509 {
1510 sortedP[0]= p[0];
1511 sortedP[1]= p[1];
1512 sortedP[2]= p[2];
1513 sortedStride[0]= stride[0];
1514 sortedStride[1]= stride[1];
1515 sortedStride[2]= stride[2];
1516 }else{
1517 MSG_ERR("internal error in orderYUV\n");
1518 }
1519 }
1520
1521 /* unscaled copy like stuff (assumes nearly identical formats) */
1522 static int simpleCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1523 int srcSliceH, uint8_t* dst[], int dstStride[]){
1524
1525 if(isPacked(c->srcFormat))
1526 {
1527 if(dstStride[0]==srcStride[0])
1528 memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
1529 else
1530 {
1531 int i;
1532 uint8_t *srcPtr= src[0];
1533 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1534 int length=0;
1535
1536 /* universal length finder */
1537 while(length+c->srcW <= ABS(dstStride[0])
1538 && length+c->srcW <= ABS(srcStride[0])) length+= c->srcW;
1539 ASSERT(length!=0);
1540
1541 for(i=0; i<srcSliceH; i++)
1542 {
1543 memcpy(dstPtr, srcPtr, length);
1544 srcPtr+= srcStride[0];
1545 dstPtr+= dstStride[0];
1546 }
1547 }
1548 }
1549 else
1550 { /* Planar YUV or gray */
1551 int plane;
1552 for(plane=0; plane<3; plane++)
1553 {
1554 int length= plane==0 ? c->srcW : -((-c->srcW )>>c->chrDstHSubSample);
1555 int y= plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
1556 int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
1557
1558 if((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
1559 {
1560 if(!isGray(c->dstFormat))
1561 memset(dst[plane], 128, dstStride[plane]*height);
1562 }
1563 else
1564 {
1565 if(dstStride[plane]==srcStride[plane])
1566 memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
1567 else
1568 {
1569 int i;
1570 uint8_t *srcPtr= src[plane];
1571 uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
1572 for(i=0; i<height; i++)
1573 {
1574 memcpy(dstPtr, srcPtr, length);
1575 srcPtr+= srcStride[plane];
1576 dstPtr+= dstStride[plane];
1577 }
1578 }
1579 }
1580 }
1581 }
1582 return srcSliceH;
1583 }
1584
1585 static int remove_dup_fourcc(int fourcc)
1586 {
1587 switch(fourcc)
1588 {
1589 case IMGFMT_I420:
1590 case IMGFMT_IYUV: return IMGFMT_YV12;
1591 case IMGFMT_Y8 : return IMGFMT_Y800;
1592 case IMGFMT_IF09: return IMGFMT_YVU9;
1593 default: return fourcc;
1594 }
1595 }
1596
1597 static void getSubSampleFactors(int *h, int *v, int format){
1598 switch(format){
1599 case IMGFMT_UYVY:
1600 case IMGFMT_YUY2:
1601 *h=1;
1602 *v=0;
1603 break;
1604 case IMGFMT_YV12:
1605 case IMGFMT_Y800: //FIXME remove after different subsamplings are fully implemented
1606 *h=1;
1607 *v=1;
1608 break;
1609 case IMGFMT_YVU9:
1610 *h=2;
1611 *v=2;
1612 break;
1613 case IMGFMT_444P:
1614 *h=0;
1615 *v=0;
1616 break;
1617 case IMGFMT_422P:
1618 *h=1;
1619 *v=0;
1620 break;
1621 case IMGFMT_411P:
1622 *h=2;
1623 *v=0;
1624 break;
1625 default:
1626 *h=0;
1627 *v=0;
1628 break;
1629 }
1630 }
1631
1632 static uint16_t roundToInt16(int64_t f){
1633 int r= (f + (1<<15))>>16;
1634 if(r<-0x7FFF) return 0x8000;
1635 else if(r> 0x7FFF) return 0x7FFF;
1636 else return r;
1637 }
1638
1639 /**
1640 * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
1641 * @param fullRange if 1 then the luma range is 0..255 if 0 its 16..235
1642 * @return -1 if not supported
1643 */
1644 int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
1645 int64_t crv = inv_table[0];
1646 int64_t cbu = inv_table[1];
1647 int64_t cgu = -inv_table[2];
1648 int64_t cgv = -inv_table[3];
1649 int64_t cy = 1<<16;
1650 int64_t oy = 0;
1651
1652 if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1653 memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
1654 memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
1655
1656 c->brightness= brightness;
1657 c->contrast = contrast;
1658 c->saturation= saturation;
1659 c->srcRange = srcRange;
1660 c->dstRange = dstRange;
1661
1662 c->uOffset= 0x0400040004000400LL;
1663 c->vOffset= 0x0400040004000400LL;
1664
1665 if(!srcRange){
1666 cy= (cy*255) / 219;
1667 oy= 16<<16;
1668 }
1669
1670 cy = (cy *contrast )>>16;
1671 crv= (crv*contrast * saturation)>>32;
1672 cbu= (cbu*contrast * saturation)>>32;
1673 cgu= (cgu*contrast * saturation)>>32;
1674 cgv= (cgv*contrast * saturation)>>32;
1675
1676 oy -= 256*brightness;
1677
1678 c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
1679 c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
1680 c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
1681 c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
1682 c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
1683 c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
1684
1685 yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
1686 //FIXME factorize
1687
1688 return 0;
1689 }
1690
1691 /**
1692 * @return -1 if not supported
1693 */
1694 int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
1695 if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1696
1697 *inv_table = c->srcColorspaceTable;
1698 *table = c->dstColorspaceTable;
1699 *srcRange = c->srcRange;
1700 *dstRange = c->dstRange;
1701 *brightness= c->brightness;
1702 *contrast = c->contrast;
1703 *saturation= c->saturation;
1704
1705 return 0;
1706 }
1707
1708 SwsContext *sws_getContext(int srcW, int srcH, int origSrcFormat, int dstW, int dstH, int origDstFormat, int flags,
1709 SwsFilter *srcFilter, SwsFilter *dstFilter){
1710
1711 SwsContext *c;
1712 int i;
1713 int usesVFilter, usesHFilter;
1714 int unscaled, needsDither;
1715 int srcFormat, dstFormat;
1716 SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
1717 #ifdef ARCH_X86
1718 if(flags & SWS_CPU_CAPS_MMX)
1719 asm volatile("emms\n\t"::: "memory");
1720 #endif
1721
1722 #ifndef RUNTIME_CPUDETECT //ensure that the flags match the compiled variant if cpudetect is off
1723 flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW);
1724 #ifdef HAVE_MMX2
1725 flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
1726 #elif defined (HAVE_3DNOW)
1727 flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
1728 #elif defined (HAVE_MMX)
1729 flags |= SWS_CPU_CAPS_MMX;
1730 #endif
1731 #endif
1732 if(clip_table[512] != 255) globalInit();
1733 if(rgb15to16 == NULL) sws_rgb2rgb_init(flags);
1734
1735 /* avoid duplicate Formats, so we don't need to check to much */
1736 srcFormat = remove_dup_fourcc(origSrcFormat);
1737 dstFormat = remove_dup_fourcc(origDstFormat);
1738
1739 unscaled = (srcW == dstW && srcH == dstH);
1740 needsDither= (isBGR(dstFormat) || isRGB(dstFormat))
1741 && (dstFormat&0xFF)<24
1742 && ((dstFormat&0xFF)<(srcFormat&0xFF) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
1743
1744 if(!isSupportedIn(srcFormat))
1745 {
1746 MSG_ERR("swScaler: %s is not supported as input format\n", vo_format_name(srcFormat));
1747 return NULL;
1748 }
1749 if(!isSupportedOut(dstFormat))
1750 {
1751 MSG_ERR("swScaler: %s is not supported as output format\n", vo_format_name(dstFormat));
1752 return NULL;
1753 }
1754
1755 /* sanity check */
1756 if(srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
1757 {
1758 MSG_ERR("swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
1759 srcW, srcH, dstW, dstH);
1760 return NULL;
1761 }
1762
1763 if(!dstFilter) dstFilter= &dummyFilter;
1764 if(!srcFilter) srcFilter= &dummyFilter;
1765
1766 c= memalign(64, sizeof(SwsContext));
1767 memset(c, 0, sizeof(SwsContext));
1768
1769 c->srcW= srcW;
1770 c->srcH= srcH;
1771 c->dstW= dstW;
1772 c->dstH= dstH;
1773 c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
1774 c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
1775 c->flags= flags;
1776 c->dstFormat= dstFormat;
1777 c->srcFormat= srcFormat;
1778 c->origDstFormat= origDstFormat;
1779 c->origSrcFormat= origSrcFormat;
1780 c->vRounder= 4* 0x0001000100010001ULL;
1781
1782 usesHFilter= usesVFilter= 0;
1783 if(dstFilter->lumV!=NULL && dstFilter->lumV->length>1) usesVFilter=1;
1784 if(dstFilter->lumH!=NULL && dstFilter->lumH->length>1) usesHFilter=1;
1785 if(dstFilter->chrV!=NULL && dstFilter->chrV->length>1) usesVFilter=1;
1786 if(dstFilter->chrH!=NULL && dstFilter->chrH->length>1) usesHFilter=1;
1787 if(srcFilter->lumV!=NULL && srcFilter->lumV->length>1) usesVFilter=1;
1788 if(srcFilter->lumH!=NULL && srcFilter->lumH->length>1) usesHFilter=1;
1789 if(srcFilter->chrV!=NULL && srcFilter->chrV->length>1) usesVFilter=1;
1790 if(srcFilter->chrH!=NULL && srcFilter->chrH->length>1) usesHFilter=1;
1791
1792 getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
1793 getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
1794
1795 // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
1796 if((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
1797
1798 // drop some chroma lines if the user wants it
1799 c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
1800 c->chrSrcVSubSample+= c->vChrDrop;
1801
1802 // drop every 2. pixel for chroma calculation unless user wants full chroma
1803 if((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP))
1804 c->chrSrcHSubSample=1;
1805
1806 c->chrIntHSubSample= c->chrDstHSubSample;
1807 c->chrIntVSubSample= c->chrSrcVSubSample;
1808
1809 // note the -((-x)>>y) is so that we allways round toward +inf
1810 c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
1811 c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
1812 c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
1813 c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
1814
1815 sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], 0, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, 0, 0, 1<<16, 1<<16);
1816
1817 /* unscaled special Cases */
1818 if(unscaled && !usesHFilter && !usesVFilter)
1819 {
1820 /* yv12_to_nv12 */
1821 if(srcFormat == IMGFMT_YV12 && dstFormat == IMGFMT_NV12)
1822 {
1823 c->swScale= PlanarToNV12Wrapper;
1824 }
1825 /* yuv2bgr */
1826 if((srcFormat==IMGFMT_YV12 || srcFormat==IMGFMT_422P) && (isBGR(dstFormat) || isRGB(dstFormat)))
1827 {
1828 c->swScale= yuv2rgb_get_func_ptr(c);
1829 }
1830
1831 if( srcFormat==IMGFMT_YVU9 && dstFormat==IMGFMT_YV12 )
1832 {
1833 c->swScale= yvu9toyv12Wrapper;
1834 }
1835
1836 /* bgr24toYV12 */
1837 if(srcFormat==IMGFMT_BGR24 && dstFormat==IMGFMT_YV12)
1838 c->swScale= bgr24toyv12Wrapper;
1839
1840 /* rgb/bgr -> rgb/bgr (no dither needed forms) */
1841 if( (isBGR(srcFormat) || isRGB(srcFormat))
1842 && (isBGR(dstFormat) || isRGB(dstFormat))
1843 && !needsDither)
1844 c->swScale= rgb2rgbWrapper;
1845
1846 /* LQ converters if -sws 0 or -sws 4*/
1847 if(c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
1848 /* rgb/bgr -> rgb/bgr (dither needed forms) */
1849 if( (isBGR(srcFormat) || isRGB(srcFormat))
1850 && (isBGR(dstFormat) || isRGB(dstFormat))
1851 && needsDither)
1852 c->swScale= rgb2rgbWrapper;
1853
1854 /* yv12_to_yuy2 */
1855 if(srcFormat == IMGFMT_YV12 &&
1856 (dstFormat == IMGFMT_YUY2 || dstFormat == IMGFMT_UYVY))
1857 {
1858 if (dstFormat == IMGFMT_YUY2)
1859 c->swScale= PlanarToYuy2Wrapper;
1860 else
1861 c->swScale= PlanarToUyvyWrapper;
1862 }
1863 }
1864
1865 /* simple copy */
1866 if( srcFormat == dstFormat
1867 || (isPlanarYUV(srcFormat) && isGray(dstFormat))
1868 || (isPlanarYUV(dstFormat) && isGray(srcFormat))
1869 )
1870 {
1871 c->swScale= simpleCopy;
1872 }
1873
1874 if(c->swScale){
1875 if(flags&SWS_PRINT_INFO)
1876 MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n",
1877 vo_format_name(srcFormat), vo_format_name(dstFormat));
1878 return c;
1879 }
1880 }
1881
1882 if(flags & SWS_CPU_CAPS_MMX2)
1883 {
1884 c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
1885 if(!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
1886 {
1887 if(flags&SWS_PRINT_INFO)
1888 MSG_INFO("SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
1889 }
1890 if(usesHFilter) c->canMMX2BeUsed=0;
1891 }
1892 else
1893 c->canMMX2BeUsed=0;
1894
1895 c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
1896 c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
1897
1898 // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
1899 // but only for the FAST_BILINEAR mode otherwise do correct scaling
1900 // n-2 is the last chrominance sample available
1901 // this is not perfect, but noone shuld notice the difference, the more correct variant
1902 // would be like the vertical one, but that would require some special code for the
1903 // first and last pixel
1904 if(flags&SWS_FAST_BILINEAR)
1905 {
1906 if(c->canMMX2BeUsed)
1907 {
1908 c->lumXInc+= 20;
1909 c->chrXInc+= 20;
1910 }
1911 //we don't use the x86asm scaler if mmx is available
1912 else if(flags & SWS_CPU_CAPS_MMX)
1913 {
1914 c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
1915 c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
1916 }
1917 }
1918
1919 /* precalculate horizontal scaler filter coefficients */
1920 {
1921 const int filterAlign= (flags & SWS_CPU_CAPS_MMX) ? 4 : 1;
1922
1923 initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
1924 srcW , dstW, filterAlign, 1<<14,
1925 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
1926 srcFilter->lumH, dstFilter->lumH);
1927 initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
1928 c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
1929 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
1930 srcFilter->chrH, dstFilter->chrH);
1931
1932 #ifdef ARCH_X86
1933 // can't downscale !!!
1934 if(c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
1935 {
1936 c->lumMmx2Filter = (int16_t*)memalign(8, (dstW /8+8)*sizeof(int16_t));
1937 c->chrMmx2Filter = (int16_t*)memalign(8, (c->chrDstW /4+8)*sizeof(int16_t));
1938 c->lumMmx2FilterPos= (int32_t*)memalign(8, (dstW /2/8+8)*sizeof(int32_t));
1939 c->chrMmx2FilterPos= (int32_t*)memalign(8, (c->chrDstW/2/4+8)*sizeof(int32_t));
1940
1941 initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
1942 initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
1943 }
1944 #endif
1945 } // Init Horizontal stuff
1946
1947
1948
1949 /* precalculate vertical scaler filter coefficients */
1950 initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
1951 srcH , dstH, 1, (1<<12)-4,
1952 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
1953 srcFilter->lumV, dstFilter->lumV);
1954 initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
1955 c->chrSrcH, c->chrDstH, 1, (1<<12)-4,
1956 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
1957 srcFilter->chrV, dstFilter->chrV);
1958
1959 // Calculate Buffer Sizes so that they won't run out while handling these damn slices
1960 c->vLumBufSize= c->vLumFilterSize;
1961 c->vChrBufSize= c->vChrFilterSize;
1962 for(i=0; i<dstH; i++)
1963 {
1964 int chrI= i*c->chrDstH / dstH;
1965 int nextSlice= MAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
1966 ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
1967
1968 nextSlice>>= c->chrSrcVSubSample;
1969 nextSlice<<= c->chrSrcVSubSample;
1970 if(c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
1971 c->vLumBufSize= nextSlice - c->vLumFilterPos[i ];
1972 if(c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
1973 c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
1974 }
1975
1976 // allocate pixbufs (we use dynamic allocation because otherwise we would need to
1977 c->lumPixBuf= (int16_t**)memalign(4, c->vLumBufSize*2*sizeof(int16_t*));
1978 c->chrPixBuf= (int16_t**)memalign(4, c->vChrBufSize*2*sizeof(int16_t*));
1979 //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
1980 for(i=0; i<c->vLumBufSize; i++)
1981 c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= (uint16_t*)memalign(8, 4000);
1982 for(i=0; i<c->vChrBufSize; i++)
1983 c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= (uint16_t*)memalign(8, 8000);
1984
1985 //try to avoid drawing green stuff between the right end and the stride end
1986 for(i=0; i<c->vLumBufSize; i++) memset(c->lumPixBuf[i], 0, 4000);
1987 for(i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000);
1988
1989 ASSERT(c->chrDstH <= dstH)
1990
1991 if(flags&SWS_PRINT_INFO)
1992 {
1993 #ifdef DITHER1XBPP
1994 char *dither= " dithered";
1995 #else
1996 char *dither= "";
1997 #endif
1998 if(flags&SWS_FAST_BILINEAR)
1999 MSG_INFO("\nSwScaler: FAST_BILINEAR scaler, ");
2000 else if(flags&SWS_BILINEAR)
2001 MSG_INFO("\nSwScaler: BILINEAR scaler, ");
2002 else if(flags&SWS_BICUBIC)
2003 MSG_INFO("\nSwScaler: BICUBIC scaler, ");
2004 else if(flags&SWS_X)
2005 MSG_INFO("\nSwScaler: Experimental scaler, ");
2006 else if(flags&SWS_POINT)
2007 MSG_INFO("\nSwScaler: Nearest Neighbor / POINT scaler, ");
2008 else if(flags&SWS_AREA)
2009 MSG_INFO("\nSwScaler: Area Averageing scaler, ");
2010 else if(flags&SWS_BICUBLIN)
2011 MSG_INFO("\nSwScaler: luma BICUBIC / chroma BILINEAR scaler, ");
2012 else if(flags&SWS_GAUSS)
2013 MSG_INFO("\nSwScaler: Gaussian scaler, ");
2014 else if(flags&SWS_SINC)
2015 MSG_INFO("\nSwScaler: Sinc scaler, ");
2016 else if(flags&SWS_LANCZOS)
2017 MSG_INFO("\nSwScaler: Lanczos scaler, ");
2018 else if(flags&SWS_SPLINE)
2019 MSG_INFO("\nSwScaler: Bicubic spline scaler, ");
2020 else
2021 MSG_INFO("\nSwScaler: ehh flags invalid?! ");
2022
2023 if(dstFormat==IMGFMT_BGR15 || dstFormat==IMGFMT_BGR16)
2024 MSG_INFO("from %s to%s %s ",
2025 vo_format_name(srcFormat), dither, vo_format_name(dstFormat));
2026 else
2027 MSG_INFO("from %s to %s ",
2028 vo_format_name(srcFormat), vo_format_name(dstFormat));
2029
2030 if(flags & SWS_CPU_CAPS_MMX2)
2031 MSG_INFO("using MMX2\n");
2032 else if(flags & SWS_CPU_CAPS_3DNOW)
2033 MSG_INFO("using 3DNOW\n");
2034 else if(flags & SWS_CPU_CAPS_MMX)
2035 MSG_INFO("using MMX\n");
2036 else
2037 MSG_INFO("using C\n");
2038 }
2039
2040 if(flags & SWS_PRINT_INFO)
2041 {
2042 if(flags & SWS_CPU_CAPS_MMX)
2043 {
2044 if(c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
2045 MSG_V("SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
2046 else
2047 {
2048 if(c->hLumFilterSize==4)
2049 MSG_V("SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
2050 else if(c->hLumFilterSize==8)
2051 MSG_V("SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
2052 else
2053 MSG_V("SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");
2054
2055 if(c->hChrFilterSize==4)
2056 MSG_V("SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
2057 else if(c->hChrFilterSize==8)
2058 MSG_V("SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
2059 else
2060 MSG_V("SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
2061 }
2062 }
2063 else
2064 {
2065 #ifdef ARCH_X86
2066 MSG_V("SwScaler: using X86-Asm scaler for horizontal scaling\n");
2067 #else
2068 if(flags & SWS_FAST_BILINEAR)
2069 MSG_V("SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
2070 else
2071 MSG_V("SwScaler: using C scaler for horizontal scaling\n");
2072 #endif
2073 }
2074 if(isPlanarYUV(dstFormat))
2075 {
2076 if(c->vLumFilterSize==1)
2077 MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2078 else
2079 MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2080 }
2081 else
2082 {
2083 if(c->vLumFilterSize==1 && c->vChrFilterSize==2)
2084 MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
2085 "SwScaler: 2-tap scaler for vertical chrominance scaling (BGR)\n",(flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2086 else if(c->vLumFilterSize==2 && c->vChrFilterSize==2)
2087 MSG_V("SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2088 else
2089 MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2090 }
2091
2092 if(dstFormat==IMGFMT_BGR24)
2093 MSG_V("SwScaler: using %s YV12->BGR24 Converter\n",
2094 (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
2095 else if(dstFormat==IMGFMT_BGR32)
2096 MSG_V("SwScaler: using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2097 else if(dstFormat==IMGFMT_BGR16)
2098 MSG_V("SwScaler: using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2099 else if(dstFormat==IMGFMT_BGR15)
2100 MSG_V("SwScaler: using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2101
2102 MSG_V("SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
2103 }
2104 if(flags & SWS_PRINT_INFO)
2105 {
2106 MSG_DBG2("SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2107 c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
2108 MSG_DBG2("SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2109 c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
2110 }
2111
2112 c->swScale= getSwsFunc(flags);
2113 return c;
2114 }
2115
2116 /**
2117 * swscale warper, so we don't need to export the SwsContext.
2118 * assumes planar YUV to be in YUV order instead of YVU
2119 */
2120 int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
2121 int srcSliceH, uint8_t* dst[], int dstStride[]){
2122 return c->swScale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
2123 }
2124
2125 /**
2126 * swscale warper, so we don't need to export the SwsContext
2127 */
2128 int sws_scale(SwsContext *c, uint8_t* srcParam[], int srcStrideParam[], int srcSliceY,
2129 int srcSliceH, uint8_t* dstParam[], int dstStrideParam[]){
2130 int srcStride[3];
2131 int dstStride[3];
2132 uint8_t *src[3];
2133 uint8_t *dst[3];
2134 sws_orderYUV(c->origSrcFormat, src, srcStride, srcParam, srcStrideParam);
2135 sws_orderYUV(c->origDstFormat, dst, dstStride, dstParam, dstStrideParam);
2136 //printf("sws: slice %d %d\n", srcSliceY, srcSliceH);
2137
2138 return c->swScale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
2139 }
2140
2141 SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
2142 float lumaSharpen, float chromaSharpen,
2143 float chromaHShift, float chromaVShift,
2144 int verbose)
2145 {
2146 SwsFilter *filter= malloc(sizeof(SwsFilter));
2147
2148 if(lumaGBlur!=0.0){
2149 filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
2150 filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
2151 }else{
2152 filter->lumH= sws_getIdentityVec();
2153 filter->lumV= sws_getIdentityVec();
2154 }
2155
2156 if(chromaGBlur!=0.0){
2157 filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
2158 filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
2159 }else{
2160 filter->chrH= sws_getIdentityVec();
2161 filter->chrV= sws_getIdentityVec();
2162 }
2163
2164 if(chromaSharpen!=0.0){
2165 SwsVector *g= sws_getConstVec(-1.0, 3);
2166 SwsVector *id= sws_getConstVec(10.0/chromaSharpen, 1);
2167 g->coeff[1]=2.0;
2168 sws_addVec(id, g);
2169 sws_convVec(filter->chrH, id);
2170 sws_convVec(filter->chrV, id);
2171 sws_freeVec(g);
2172 sws_freeVec(id);
2173 }
2174
2175 if(lumaSharpen!=0.0){
2176 SwsVector *g= sws_getConstVec(-1.0, 3);
2177 SwsVector *id= sws_getConstVec(10.0/lumaSharpen, 1);
2178 g->coeff[1]=2.0;
2179 sws_addVec(id, g);
2180 sws_convVec(filter->lumH, id);
2181 sws_convVec(filter->lumV, id);
2182 sws_freeVec(g);
2183 sws_freeVec(id);
2184 }
2185
2186 if(chromaHShift != 0.0)
2187 sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
2188
2189 if(chromaVShift != 0.0)
2190 sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
2191
2192 sws_normalizeVec(filter->chrH, 1.0);
2193 sws_normalizeVec(filter->chrV, 1.0);
2194 sws_normalizeVec(filter->lumH, 1.0);
2195 sws_normalizeVec(filter->lumV, 1.0);
2196
2197 if(verbose) sws_printVec(filter->chrH);
2198 if(verbose) sws_printVec(filter->lumH);
2199
2200 return filter;
2201 }
2202
2203 /**
2204 * returns a normalized gaussian curve used to filter stuff
2205 * quality=3 is high quality, lowwer is lowwer quality
2206 */
2207 SwsVector *sws_getGaussianVec(double variance, double quality){
2208 const int length= (int)(variance*quality + 0.5) | 1;
2209 int i;
2210 double *coeff= memalign(sizeof(double), length*sizeof(double));
2211 double middle= (length-1)*0.5;
2212 SwsVector *vec= malloc(sizeof(SwsVector));
2213
2214 vec->coeff= coeff;
2215 vec->length= length;
2216
2217 for(i=0; i<length; i++)
2218 {
2219 double dist= i-middle;
2220 coeff[i]= exp( -dist*dist/(2*variance*variance) ) / sqrt(2*variance*PI);
2221 }
2222
2223 sws_normalizeVec(vec, 1.0);
2224
2225 return vec;
2226 }
2227
2228 SwsVector *sws_getConstVec(double c, int length){
2229 int i;
2230 double *coeff= memalign(sizeof(double), length*sizeof(double));
2231 SwsVector *vec= malloc(sizeof(SwsVector));
2232
2233 vec->coeff= coeff;
2234 vec->length= length;
2235
2236 for(i=0; i<length; i++)
2237 coeff[i]= c;
2238
2239 return vec;
2240 }
2241
2242
2243 SwsVector *sws_getIdentityVec(void){
2244 double *coeff= memalign(sizeof(double), sizeof(double));
2245 SwsVector *vec= malloc(sizeof(SwsVector));
2246 coeff[0]= 1.0;
2247
2248 vec->coeff= coeff;
2249 vec->length= 1;
2250
2251 return vec;
2252 }
2253
2254 void sws_normalizeVec(SwsVector *a, double height){
2255 int i;
2256 double sum=0;
2257 double inv;
2258
2259 for(i=0; i<a->length; i++)
2260 sum+= a->coeff[i];
2261
2262 inv= height/sum;
2263
2264 for(i=0; i<a->length; i++)
2265 a->coeff[i]*= inv;
2266 }
2267
2268 void sws_scaleVec(SwsVector *a, double scalar){
2269 int i;
2270
2271 for(i=0; i<a->length; i++)
2272 a->coeff[i]*= scalar;
2273 }
2274
2275 static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
2276 int length= a->length + b->length - 1;
2277 double *coeff= memalign(sizeof(double), length*sizeof(double));
2278 int i, j;
2279 SwsVector *vec= malloc(sizeof(SwsVector));
2280
2281 vec->coeff= coeff;
2282 vec->length= length;
2283
2284 for(i=0; i<length; i++) coeff[i]= 0.0;
2285
2286 for(i=0; i<a->length; i++)
2287 {
2288 for(j=0; j<b->length; j++)
2289 {
2290 coeff[i+j]+= a->coeff[i]*b->coeff[j];
2291 }
2292 }
2293
2294 return vec;
2295 }
2296
2297 static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
2298 int length= MAX(a->length, b->length);
2299 double *coeff= memalign(sizeof(double), length*sizeof(double));
2300 int i;
2301 SwsVector *vec= malloc(sizeof(SwsVector));
2302
2303 vec->coeff= coeff;
2304 vec->length= length;
2305
2306 for(i=0; i<length; i++) coeff[i]= 0.0;
2307
2308 for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2309 for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
2310
2311 return vec;
2312 }
2313
2314 static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
2315 int length= MAX(a->length, b->length);
2316 double *coeff= memalign(sizeof(double), length*sizeof(double));
2317 int i;
2318 SwsVector *vec= malloc(sizeof(SwsVector));
2319
2320 vec->coeff= coeff;
2321 vec->length= length;
2322
2323 for(i=0; i<length; i++) coeff[i]= 0.0;
2324
2325 for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2326 for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
2327
2328 return vec;
2329 }
2330
2331 /* shift left / or right if "shift" is negative */
2332 static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
2333 int length= a->length + ABS(shift)*2;
2334 double *coeff= memalign(sizeof(double), length*sizeof(double));
2335 int i;
2336 SwsVector *vec= malloc(sizeof(SwsVector));
2337
2338 vec->coeff= coeff;
2339 vec->length= length;
2340
2341 for(i=0; i<length; i++) coeff[i]= 0.0;
2342
2343 for(i=0; i<a->length; i++)
2344 {
2345 coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
2346 }
2347
2348 return vec;
2349 }
2350
2351 void sws_shiftVec(SwsVector *a, int shift){
2352 SwsVector *shifted= sws_getShiftedVec(a, shift);
2353 free(a->coeff);
2354 a->coeff= shifted->coeff;
2355 a->length= shifted->length;
2356 free(shifted);
2357 }
2358
2359 void sws_addVec(SwsVector *a, SwsVector *b){
2360 SwsVector *sum= sws_sumVec(a, b);
2361 free(a->coeff);
2362 a->coeff= sum->coeff;
2363 a->length= sum->length;
2364 free(sum);
2365 }
2366
2367 void sws_subVec(SwsVector *a, SwsVector *b){
2368 SwsVector *diff= sws_diffVec(a, b);
2369 free(a->coeff);
2370 a->coeff= diff->coeff;
2371 a->length= diff->length;
2372 free(diff);
2373 }
2374
2375 void sws_convVec(SwsVector *a, SwsVector *b){
2376 SwsVector *conv= sws_getConvVec(a, b);
2377 free(a->coeff);
2378 a->coeff= conv->coeff;
2379 a->length= conv->length;
2380 free(conv);
2381 }
2382
2383 SwsVector *sws_cloneVec(SwsVector *a){
2384 double *coeff= memalign(sizeof(double), a->length*sizeof(double));
2385 int i;
2386 SwsVector *vec= malloc(sizeof(SwsVector));
2387
2388 vec->coeff= coeff;
2389 vec->length= a->length;
2390
2391 for(i=0; i<a->length; i++) coeff[i]= a->coeff[i];
2392
2393 return vec;
2394 }
2395
2396 void sws_printVec(SwsVector *a){
2397 int i;
2398 double max=0;
2399 double min=0;
2400 double range;
2401
2402 for(i=0; i<a->length; i++)
2403 if(a->coeff[i]>max) max= a->coeff[i];
2404
2405 for(i=0; i<a->length; i++)
2406 if(a->coeff[i]<min) min= a->coeff[i];
2407
2408 range= max - min;
2409
2410 for(i=0; i<a->length; i++)
2411 {
2412 int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
2413 MSG_DBG2("%1.3f ", a->coeff[i]);
2414 for(;x>0; x--) MSG_DBG2(" ");
2415 MSG_DBG2("|\n");
2416 }
2417 }
2418
2419 void sws_freeVec(SwsVector *a){
2420 if(!a) return;
2421 if(a->coeff) free(a->coeff);
2422 a->coeff=NULL;
2423 a->length=0;
2424 free(a);
2425 }
2426
2427 void sws_freeFilter(SwsFilter *filter){
2428 if(!filter) return;
2429
2430 if(filter->lumH) sws_freeVec(filter->lumH);
2431 if(filter->lumV) sws_freeVec(filter->lumV);
2432 if(filter->chrH) sws_freeVec(filter->chrH);
2433 if(filter->chrV) sws_freeVec(filter->chrV);
2434 free(filter);
2435 }
2436
2437
2438 void sws_freeContext(SwsContext *c){
2439 int i;
2440 if(!c) return;
2441
2442 if(c->lumPixBuf)
2443 {
2444 for(i=0; i<c->vLumBufSize; i++)
2445 {
2446 if(c->lumPixBuf[i]) free(c->lumPixBuf[i]);
2447 c->lumPixBuf[i]=NULL;
2448 }
2449 free(c->lumPixBuf);
2450 c->lumPixBuf=NULL;
2451 }
2452
2453 if(c->chrPixBuf)
2454 {
2455 for(i=0; i<c->vChrBufSize; i++)
2456 {
2457 if(c->chrPixBuf[i]) free(c->chrPixBuf[i]);
2458 c->chrPixBuf[i]=NULL;
2459 }
2460 free(c->chrPixBuf);
2461 c->chrPixBuf=NULL;
2462 }
2463
2464 if(c->vLumFilter) free(c->vLumFilter);
2465 c->vLumFilter = NULL;
2466 if(c->vChrFilter) free(c->vChrFilter);
2467 c->vChrFilter = NULL;
2468 if(c->hLumFilter) free(c->hLumFilter);
2469 c->hLumFilter = NULL;
2470 if(c->hChrFilter) free(c->hChrFilter);
2471 c->hChrFilter = NULL;
2472
2473 if(c->vLumFilterPos) free(c->vLumFilterPos);
2474 c->vLumFilterPos = NULL;
2475 if(c->vChrFilterPos) free(c->vChrFilterPos);
2476 c->vChrFilterPos = NULL;
2477 if(c->hLumFilterPos) free(c->hLumFilterPos);
2478 c->hLumFilterPos = NULL;
2479 if(c->hChrFilterPos) free(c->hChrFilterPos);
2480 c->hChrFilterPos = NULL;
2481
2482 if(c->lumMmx2Filter) free(c->lumMmx2Filter);
2483 c->lumMmx2Filter=NULL;
2484 if(c->chrMmx2Filter) free(c->chrMmx2Filter);
2485 c->chrMmx2Filter=NULL;
2486 if(c->lumMmx2FilterPos) free(c->lumMmx2FilterPos);
2487 c->lumMmx2FilterPos=NULL;
2488 if(c->chrMmx2FilterPos) free(c->chrMmx2FilterPos);
2489 c->chrMmx2FilterPos=NULL;
2490 if(c->yuvTable) free(c->yuvTable);
2491 c->yuvTable=NULL;
2492
2493 free(c);
2494 }
2495