g722: split decoder and encoder into separate files
authorJustin Ruggles <justin.ruggles@gmail.com>
Sat, 22 Oct 2011 21:49:50 +0000 (17:49 -0400)
committerJustin Ruggles <justin.ruggles@gmail.com>
Sun, 23 Oct 2011 15:42:34 +0000 (11:42 -0400)
libavcodec/Makefile
libavcodec/g722.c
libavcodec/g722.h [new file with mode: 0644]
libavcodec/g722dec.c [new file with mode: 0644]
libavcodec/g722enc.c [copied from libavcodec/g722.c with 50% similarity]

index 81881e4..bd4275a 100644 (file)
@@ -495,8 +495,8 @@ OBJS-$(CONFIG_ADPCM_EA_R1_DECODER)        += adpcm.o
 OBJS-$(CONFIG_ADPCM_EA_R2_DECODER)        += adpcm.o
 OBJS-$(CONFIG_ADPCM_EA_R3_DECODER)        += adpcm.o
 OBJS-$(CONFIG_ADPCM_EA_XAS_DECODER)       += adpcm.o
-OBJS-$(CONFIG_ADPCM_G722_DECODER)         += g722.o
-OBJS-$(CONFIG_ADPCM_G722_ENCODER)         += g722.o
+OBJS-$(CONFIG_ADPCM_G722_DECODER)         += g722.o g722dec.o
+OBJS-$(CONFIG_ADPCM_G722_ENCODER)         += g722.o g722enc.o
 OBJS-$(CONFIG_ADPCM_G726_DECODER)         += g726.o
 OBJS-$(CONFIG_ADPCM_G726_ENCODER)         += g726.o
 OBJS-$(CONFIG_ADPCM_IMA_AMV_DECODER)      += adpcm.o adpcm_data.o
dissimilarity index 73%
index 74d5552..7b9ff72 100644 (file)
-/*
- * G.722 ADPCM audio encoder/decoder
- *
- * Copyright (c) CMU 1993 Computer Science, Speech Group
- *                        Chengxiang Lu and Alex Hauptmann
- * Copyright (c) 2005 Steve Underwood <steveu at coppice.org>
- * Copyright (c) 2009 Kenan Gillet
- * Copyright (c) 2010 Martin Storsjo
- *
- * This file is part of Libav.
- *
- * Libav is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * Libav is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with Libav; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
-/**
- * @file
- * G.722 ADPCM audio codec
- *
- * This G.722 decoder is a bit-exact implementation of the ITU G.722
- * specification for all three specified bitrates - 64000bps, 56000bps
- * and 48000bps. It passes the ITU tests.
- *
- * @note For the 56000bps and 48000bps bitrates, the lowest 1 or 2 bits
- *       respectively of each byte are ignored.
- */
-
-#include "avcodec.h"
-#include "mathops.h"
-#include "get_bits.h"
-
-#define PREV_SAMPLES_BUF_SIZE 1024
-
-#define FREEZE_INTERVAL 128
-
-typedef struct {
-    int16_t prev_samples[PREV_SAMPLES_BUF_SIZE]; ///< memory of past decoded samples
-    int     prev_samples_pos;        ///< the number of values in prev_samples
-
-    /**
-     * The band[0] and band[1] correspond respectively to the lower band and higher band.
-     */
-    struct G722Band {
-        int16_t s_predictor;         ///< predictor output value
-        int32_t s_zero;              ///< previous output signal from zero predictor
-        int8_t  part_reconst_mem[2]; ///< signs of previous partially reconstructed signals
-        int16_t prev_qtzd_reconst;   ///< previous quantized reconstructed signal (internal value, using low_inv_quant4)
-        int16_t pole_mem[2];         ///< second-order pole section coefficient buffer
-        int32_t diff_mem[6];         ///< quantizer difference signal memory
-        int16_t zero_mem[6];         ///< Seventh-order zero section coefficient buffer
-        int16_t log_factor;          ///< delayed 2-logarithmic quantizer factor
-        int16_t scale_factor;        ///< delayed quantizer scale factor
-    } band[2];
-
-    struct TrellisNode {
-        struct G722Band state;
-        uint32_t ssd;
-        int path;
-    } *node_buf[2], **nodep_buf[2];
-
-    struct TrellisPath {
-        int value;
-        int prev;
-    } *paths[2];
-} G722Context;
-
-
-static const int8_t sign_lookup[2] = { -1, 1 };
-
-static const int16_t inv_log2_table[32] = {
-    2048, 2093, 2139, 2186, 2233, 2282, 2332, 2383,
-    2435, 2489, 2543, 2599, 2656, 2714, 2774, 2834,
-    2896, 2960, 3025, 3091, 3158, 3228, 3298, 3371,
-    3444, 3520, 3597, 3676, 3756, 3838, 3922, 4008
-};
-static const int16_t high_log_factor_step[2] = { 798, -214 };
-static const int16_t high_inv_quant[4] = { -926, -202, 926, 202 };
-/**
- * low_log_factor_step[index] == wl[rl42[index]]
- */
-static const int16_t low_log_factor_step[16] = {
-     -60, 3042, 1198, 538, 334, 172,  58, -30,
-    3042, 1198,  538, 334, 172,  58, -30, -60
-};
-static const int16_t low_inv_quant4[16] = {
-       0, -2557, -1612, -1121,  -786,  -530,  -323,  -150,
-    2557,  1612,  1121,   786,   530,   323,   150,     0
-};
-static const int16_t low_inv_quant6[64] = {
-     -17,   -17,   -17,   -17, -3101, -2738, -2376, -2088,
-   -1873, -1689, -1535, -1399, -1279, -1170, -1072,  -982,
-    -899,  -822,  -750,  -682,  -618,  -558,  -501,  -447,
-    -396,  -347,  -300,  -254,  -211,  -170,  -130,   -91,
-    3101,  2738,  2376,  2088,  1873,  1689,  1535,  1399,
-    1279,  1170,  1072,   982,   899,   822,   750,   682,
-     618,   558,   501,   447,   396,   347,   300,   254,
-     211,   170,   130,    91,    54,    17,   -54,   -17
-};
-
-/**
- * quadrature mirror filter (QMF) coefficients
- *
- * ITU-T G.722 Table 11
- */
-static const int16_t qmf_coeffs[12] = {
-    3, -11, 12, 32, -210, 951, 3876, -805, 362, -156, 53, -11,
-};
-
-
-/**
- * adaptive predictor
- *
- * @param cur_diff the dequantized and scaled delta calculated from the
- *                 current codeword
- */
-static void do_adaptive_prediction(struct G722Band *band, const int cur_diff)
-{
-    int sg[2], limit, i, cur_qtzd_reconst;
-
-    const int cur_part_reconst = band->s_zero + cur_diff < 0;
-
-    sg[0] = sign_lookup[cur_part_reconst != band->part_reconst_mem[0]];
-    sg[1] = sign_lookup[cur_part_reconst == band->part_reconst_mem[1]];
-    band->part_reconst_mem[1] = band->part_reconst_mem[0];
-    band->part_reconst_mem[0] = cur_part_reconst;
-
-    band->pole_mem[1] = av_clip((sg[0] * av_clip(band->pole_mem[0], -8191, 8191) >> 5) +
-                                (sg[1] << 7) + (band->pole_mem[1] * 127 >> 7), -12288, 12288);
-
-    limit = 15360 - band->pole_mem[1];
-    band->pole_mem[0] = av_clip(-192 * sg[0] + (band->pole_mem[0] * 255 >> 8), -limit, limit);
-
-
-    if (cur_diff) {
-        for (i = 0; i < 6; i++)
-            band->zero_mem[i] = ((band->zero_mem[i]*255) >> 8) +
-                                ((band->diff_mem[i]^cur_diff) < 0 ? -128 : 128);
-    } else
-        for (i = 0; i < 6; i++)
-            band->zero_mem[i] = (band->zero_mem[i]*255) >> 8;
-
-    for (i = 5; i > 0; i--)
-        band->diff_mem[i] = band->diff_mem[i-1];
-    band->diff_mem[0] = av_clip_int16(cur_diff << 1);
-
-    band->s_zero = 0;
-    for (i = 5; i >= 0; i--)
-        band->s_zero += (band->zero_mem[i]*band->diff_mem[i]) >> 15;
-
-
-    cur_qtzd_reconst = av_clip_int16((band->s_predictor + cur_diff) << 1);
-    band->s_predictor = av_clip_int16(band->s_zero +
-                                      (band->pole_mem[0] * cur_qtzd_reconst >> 15) +
-                                      (band->pole_mem[1] * band->prev_qtzd_reconst >> 15));
-    band->prev_qtzd_reconst = cur_qtzd_reconst;
-}
-
-static int inline linear_scale_factor(const int log_factor)
-{
-    const int wd1 = inv_log2_table[(log_factor >> 6) & 31];
-    const int shift = log_factor >> 11;
-    return shift < 0 ? wd1 >> -shift : wd1 << shift;
-}
-
-static void update_low_predictor(struct G722Band *band, const int ilow)
-{
-    do_adaptive_prediction(band,
-                           band->scale_factor * low_inv_quant4[ilow] >> 10);
-
-    // quantizer adaptation
-    band->log_factor   = av_clip((band->log_factor * 127 >> 7) +
-                                 low_log_factor_step[ilow], 0, 18432);
-    band->scale_factor = linear_scale_factor(band->log_factor - (8 << 11));
-}
-
-static void update_high_predictor(struct G722Band *band, const int dhigh,
-                                  const int ihigh)
-{
-    do_adaptive_prediction(band, dhigh);
-
-    // quantizer adaptation
-    band->log_factor   = av_clip((band->log_factor * 127 >> 7) +
-                                 high_log_factor_step[ihigh&1], 0, 22528);
-    band->scale_factor = linear_scale_factor(band->log_factor - (10 << 11));
-}
-
-static void apply_qmf(const int16_t *prev_samples, int *xout1, int *xout2)
-{
-    int i;
-
-    *xout1 = 0;
-    *xout2 = 0;
-    for (i = 0; i < 12; i++) {
-        MAC16(*xout2, prev_samples[2*i  ], qmf_coeffs[i   ]);
-        MAC16(*xout1, prev_samples[2*i+1], qmf_coeffs[11-i]);
-    }
-}
-
-static av_cold int g722_init(AVCodecContext * avctx)
-{
-    G722Context *c = avctx->priv_data;
-
-    if (avctx->channels != 1) {
-        av_log(avctx, AV_LOG_ERROR, "Only mono tracks are allowed.\n");
-        return AVERROR_INVALIDDATA;
-    }
-    avctx->sample_fmt = AV_SAMPLE_FMT_S16;
-
-    switch (avctx->bits_per_coded_sample) {
-    case 8:
-    case 7:
-    case 6:
-        break;
-    default:
-        av_log(avctx, AV_LOG_WARNING, "Unsupported bits_per_coded_sample [%d], "
-                                      "assuming 8\n",
-                                      avctx->bits_per_coded_sample);
-    case 0:
-        avctx->bits_per_coded_sample = 8;
-        break;
-    }
-
-    c->band[0].scale_factor = 8;
-    c->band[1].scale_factor = 2;
-    c->prev_samples_pos = 22;
-
-    if (avctx->lowres)
-        avctx->sample_rate /= 2;
-
-    if (avctx->trellis) {
-        int frontier = 1 << avctx->trellis;
-        int max_paths = frontier * FREEZE_INTERVAL;
-        int i;
-        for (i = 0; i < 2; i++) {
-            c->paths[i] = av_mallocz(max_paths * sizeof(**c->paths));
-            c->node_buf[i] = av_mallocz(2 * frontier * sizeof(**c->node_buf));
-            c->nodep_buf[i] = av_mallocz(2 * frontier * sizeof(**c->nodep_buf));
-        }
-    }
-
-    return 0;
-}
-
-static av_cold int g722_close(AVCodecContext *avctx)
-{
-    G722Context *c = avctx->priv_data;
-    int i;
-    for (i = 0; i < 2; i++) {
-        av_freep(&c->paths[i]);
-        av_freep(&c->node_buf[i]);
-        av_freep(&c->nodep_buf[i]);
-    }
-    return 0;
-}
-
-#if CONFIG_ADPCM_G722_DECODER
-static const int16_t low_inv_quant5[32] = {
-     -35,   -35, -2919, -2195, -1765, -1458, -1219, -1023,
-    -858,  -714,  -587,  -473,  -370,  -276,  -190,  -110,
-    2919,  2195,  1765,  1458,  1219,  1023,   858,   714,
-     587,   473,   370,   276,   190,   110,    35,   -35
-};
-
-static const int16_t *low_inv_quants[3] = { low_inv_quant6, low_inv_quant5,
-                                 low_inv_quant4 };
-
-static int g722_decode_frame(AVCodecContext *avctx, void *data,
-                             int *data_size, AVPacket *avpkt)
-{
-    G722Context *c = avctx->priv_data;
-    int16_t *out_buf = data;
-    int j, out_len = 0;
-    const int skip = 8 - avctx->bits_per_coded_sample;
-    const int16_t *quantizer_table = low_inv_quants[skip];
-    GetBitContext gb;
-
-    init_get_bits(&gb, avpkt->data, avpkt->size * 8);
-
-    for (j = 0; j < avpkt->size; j++) {
-        int ilow, ihigh, rlow;
-
-        ihigh = get_bits(&gb, 2);
-        ilow = get_bits(&gb, 6 - skip);
-        skip_bits(&gb, skip);
-
-        rlow = av_clip((c->band[0].scale_factor * quantizer_table[ilow] >> 10)
-                      + c->band[0].s_predictor, -16384, 16383);
-
-        update_low_predictor(&c->band[0], ilow >> (2 - skip));
-
-        if (!avctx->lowres) {
-            const int dhigh = c->band[1].scale_factor *
-                              high_inv_quant[ihigh] >> 10;
-            const int rhigh = av_clip(dhigh + c->band[1].s_predictor,
-                                      -16384, 16383);
-            int xout1, xout2;
-
-            update_high_predictor(&c->band[1], dhigh, ihigh);
-
-            c->prev_samples[c->prev_samples_pos++] = rlow + rhigh;
-            c->prev_samples[c->prev_samples_pos++] = rlow - rhigh;
-            apply_qmf(c->prev_samples + c->prev_samples_pos - 24,
-                      &xout1, &xout2);
-            out_buf[out_len++] = av_clip_int16(xout1 >> 12);
-            out_buf[out_len++] = av_clip_int16(xout2 >> 12);
-            if (c->prev_samples_pos >= PREV_SAMPLES_BUF_SIZE) {
-                memmove(c->prev_samples,
-                        c->prev_samples + c->prev_samples_pos - 22,
-                        22 * sizeof(c->prev_samples[0]));
-                c->prev_samples_pos = 22;
-            }
-        } else
-            out_buf[out_len++] = rlow;
-    }
-    *data_size = out_len << 1;
-    return avpkt->size;
-}
-
-AVCodec ff_adpcm_g722_decoder = {
-    .name           = "g722",
-    .type           = AVMEDIA_TYPE_AUDIO,
-    .id             = CODEC_ID_ADPCM_G722,
-    .priv_data_size = sizeof(G722Context),
-    .init           = g722_init,
-    .decode         = g722_decode_frame,
-    .long_name      = NULL_IF_CONFIG_SMALL("G.722 ADPCM"),
-    .max_lowres     = 1,
-};
-#endif
-
-#if CONFIG_ADPCM_G722_ENCODER
-static const int16_t low_quant[33] = {
-      35,   72,  110,  150,  190,  233,  276,  323,
-     370,  422,  473,  530,  587,  650,  714,  786,
-     858,  940, 1023, 1121, 1219, 1339, 1458, 1612,
-    1765, 1980, 2195, 2557, 2919
-};
-
-static inline void filter_samples(G722Context *c, const int16_t *samples,
-                                  int *xlow, int *xhigh)
-{
-    int xout1, xout2;
-    c->prev_samples[c->prev_samples_pos++] = samples[0];
-    c->prev_samples[c->prev_samples_pos++] = samples[1];
-    apply_qmf(c->prev_samples + c->prev_samples_pos - 24, &xout1, &xout2);
-    *xlow  = xout1 + xout2 >> 13;
-    *xhigh = xout1 - xout2 >> 13;
-    if (c->prev_samples_pos >= PREV_SAMPLES_BUF_SIZE) {
-        memmove(c->prev_samples,
-                c->prev_samples + c->prev_samples_pos - 22,
-                22 * sizeof(c->prev_samples[0]));
-        c->prev_samples_pos = 22;
-    }
-}
-
-static inline int encode_high(const struct G722Band *state, int xhigh)
-{
-    int diff = av_clip_int16(xhigh - state->s_predictor);
-    int pred = 141 * state->scale_factor >> 8;
-           /* = diff >= 0 ? (diff < pred) + 2 : diff >= -pred */
-    return ((diff ^ (diff >> (sizeof(diff)*8-1))) < pred) + 2*(diff >= 0);
-}
-
-static inline int encode_low(const struct G722Band* state, int xlow)
-{
-    int diff  = av_clip_int16(xlow - state->s_predictor);
-           /* = diff >= 0 ? diff : -(diff + 1) */
-    int limit = diff ^ (diff >> (sizeof(diff)*8-1));
-    int i = 0;
-    limit = limit + 1 << 10;
-    if (limit > low_quant[8] * state->scale_factor)
-        i = 9;
-    while (i < 29 && limit > low_quant[i] * state->scale_factor)
-        i++;
-    return (diff < 0 ? (i < 2 ? 63 : 33) : 61) - i;
-}
-
-static int g722_encode_trellis(AVCodecContext *avctx,
-                               uint8_t *dst, int buf_size, void *data)
-{
-    G722Context *c = avctx->priv_data;
-    const int16_t *samples = data;
-    int i, j, k;
-    int frontier = 1 << avctx->trellis;
-    struct TrellisNode **nodes[2];
-    struct TrellisNode **nodes_next[2];
-    int pathn[2] = {0, 0}, froze = -1;
-    struct TrellisPath *p[2];
-
-    for (i = 0; i < 2; i++) {
-        nodes[i] = c->nodep_buf[i];
-        nodes_next[i] = c->nodep_buf[i] + frontier;
-        memset(c->nodep_buf[i], 0, 2 * frontier * sizeof(*c->nodep_buf));
-        nodes[i][0] = c->node_buf[i] + frontier;
-        nodes[i][0]->ssd = 0;
-        nodes[i][0]->path = 0;
-        nodes[i][0]->state = c->band[i];
-    }
-
-    for (i = 0; i < buf_size >> 1; i++) {
-        int xlow, xhigh;
-        struct TrellisNode *next[2];
-        int heap_pos[2] = {0, 0};
-
-        for (j = 0; j < 2; j++) {
-            next[j] = c->node_buf[j] + frontier*(i & 1);
-            memset(nodes_next[j], 0, frontier * sizeof(**nodes_next));
-        }
-
-        filter_samples(c, &samples[2*i], &xlow, &xhigh);
-
-        for (j = 0; j < frontier && nodes[0][j]; j++) {
-            /* Only k >> 2 affects the future adaptive state, therefore testing
-             * small steps that don't change k >> 2 is useless, the orignal
-             * value from encode_low is better than them. Since we step k
-             * in steps of 4, make sure range is a multiple of 4, so that
-             * we don't miss the original value from encode_low. */
-            int range = j < frontier/2 ? 4 : 0;
-            struct TrellisNode *cur_node = nodes[0][j];
-
-            int ilow = encode_low(&cur_node->state, xlow);
-
-            for (k = ilow - range; k <= ilow + range && k <= 63; k += 4) {
-                int decoded, dec_diff, pos;
-                uint32_t ssd;
-                struct TrellisNode* node;
-
-                if (k < 0)
-                    continue;
-
-                decoded = av_clip((cur_node->state.scale_factor *
-                                  low_inv_quant6[k] >> 10)
-                                + cur_node->state.s_predictor, -16384, 16383);
-                dec_diff = xlow - decoded;
-
-#define STORE_NODE(index, UPDATE, VALUE)\
-                ssd = cur_node->ssd + dec_diff*dec_diff;\
-                /* Check for wraparound. Using 64 bit ssd counters would \
-                 * be simpler, but is slower on x86 32 bit. */\
-                if (ssd < cur_node->ssd)\
-                    continue;\
-                if (heap_pos[index] < frontier) {\
-                    pos = heap_pos[index]++;\
-                    assert(pathn[index] < FREEZE_INTERVAL * frontier);\
-                    node = nodes_next[index][pos] = next[index]++;\
-                    node->path = pathn[index]++;\
-                } else {\
-                    /* Try to replace one of the leaf nodes with the new \
-                     * one, but not always testing the same leaf position */\
-                    pos = (frontier>>1) + (heap_pos[index] & ((frontier>>1) - 1));\
-                    if (ssd >= nodes_next[index][pos]->ssd)\
-                        continue;\
-                    heap_pos[index]++;\
-                    node = nodes_next[index][pos];\
-                }\
-                node->ssd = ssd;\
-                node->state = cur_node->state;\
-                UPDATE;\
-                c->paths[index][node->path].value = VALUE;\
-                c->paths[index][node->path].prev = cur_node->path;\
-                /* Sift the newly inserted node up in the heap to restore \
-                 * the heap property */\
-                while (pos > 0) {\
-                    int parent = (pos - 1) >> 1;\
-                    if (nodes_next[index][parent]->ssd <= ssd)\
-                        break;\
-                    FFSWAP(struct TrellisNode*, nodes_next[index][parent],\
-                                                nodes_next[index][pos]);\
-                    pos = parent;\
-                }
-                STORE_NODE(0, update_low_predictor(&node->state, k >> 2), k);
-            }
-        }
-
-        for (j = 0; j < frontier && nodes[1][j]; j++) {
-            int ihigh;
-            struct TrellisNode *cur_node = nodes[1][j];
-
-            /* We don't try to get any initial guess for ihigh via
-             * encode_high - since there's only 4 possible values, test
-             * them all. Testing all of these gives a much, much larger
-             * gain than testing a larger range around ilow. */
-            for (ihigh = 0; ihigh < 4; ihigh++) {
-                int dhigh, decoded, dec_diff, pos;
-                uint32_t ssd;
-                struct TrellisNode* node;
-
-                dhigh = cur_node->state.scale_factor *
-                        high_inv_quant[ihigh] >> 10;
-                decoded = av_clip(dhigh + cur_node->state.s_predictor,
-                                  -16384, 16383);
-                dec_diff = xhigh - decoded;
-
-                STORE_NODE(1, update_high_predictor(&node->state, dhigh, ihigh), ihigh);
-            }
-        }
-
-        for (j = 0; j < 2; j++) {
-            FFSWAP(struct TrellisNode**, nodes[j], nodes_next[j]);
-
-            if (nodes[j][0]->ssd > (1 << 16)) {
-                for (k = 1; k < frontier && nodes[j][k]; k++)
-                    nodes[j][k]->ssd -= nodes[j][0]->ssd;
-                nodes[j][0]->ssd = 0;
-            }
-        }
-
-        if (i == froze + FREEZE_INTERVAL) {
-            p[0] = &c->paths[0][nodes[0][0]->path];
-            p[1] = &c->paths[1][nodes[1][0]->path];
-            for (j = i; j > froze; j--) {
-                dst[j] = p[1]->value << 6 | p[0]->value;
-                p[0] = &c->paths[0][p[0]->prev];
-                p[1] = &c->paths[1][p[1]->prev];
-            }
-            froze = i;
-            pathn[0] = pathn[1] = 0;
-            memset(nodes[0] + 1, 0, (frontier - 1)*sizeof(**nodes));
-            memset(nodes[1] + 1, 0, (frontier - 1)*sizeof(**nodes));
-        }
-    }
-
-    p[0] = &c->paths[0][nodes[0][0]->path];
-    p[1] = &c->paths[1][nodes[1][0]->path];
-    for (j = i; j > froze; j--) {
-        dst[j] = p[1]->value << 6 | p[0]->value;
-        p[0] = &c->paths[0][p[0]->prev];
-        p[1] = &c->paths[1][p[1]->prev];
-    }
-    c->band[0] = nodes[0][0]->state;
-    c->band[1] = nodes[1][0]->state;
-
-    return i;
-}
-
-static int g722_encode_frame(AVCodecContext *avctx,
-                             uint8_t *dst, int buf_size, void *data)
-{
-    G722Context *c = avctx->priv_data;
-    const int16_t *samples = data;
-    int i;
-
-    if (avctx->trellis)
-        return g722_encode_trellis(avctx, dst, buf_size, data);
-
-    for (i = 0; i < buf_size >> 1; i++) {
-        int xlow, xhigh, ihigh, ilow;
-        filter_samples(c, &samples[2*i], &xlow, &xhigh);
-        ihigh = encode_high(&c->band[1], xhigh);
-        ilow  = encode_low(&c->band[0], xlow);
-        update_high_predictor(&c->band[1], c->band[1].scale_factor *
-                              high_inv_quant[ihigh] >> 10, ihigh);
-        update_low_predictor(&c->band[0], ilow >> 2);
-        *dst++ = ihigh << 6 | ilow;
-    }
-    return i;
-}
-
-AVCodec ff_adpcm_g722_encoder = {
-    .name           = "g722",
-    .type           = AVMEDIA_TYPE_AUDIO,
-    .id             = CODEC_ID_ADPCM_G722,
-    .priv_data_size = sizeof(G722Context),
-    .init           = g722_init,
-    .close          = g722_close,
-    .encode         = g722_encode_frame,
-    .long_name      = NULL_IF_CONFIG_SMALL("G.722 ADPCM"),
-    .sample_fmts    = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE},
-};
-#endif
-
+/*
+ * G.722 ADPCM audio encoder/decoder
+ *
+ * Copyright (c) CMU 1993 Computer Science, Speech Group
+ *                        Chengxiang Lu and Alex Hauptmann
+ * Copyright (c) 2005 Steve Underwood <steveu at coppice.org>
+ * Copyright (c) 2009 Kenan Gillet
+ * Copyright (c) 2010 Martin Storsjo
+ *
+ * This file is part of Libav.
+ *
+ * Libav is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * Libav is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with Libav; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/**
+ * @file
+ * G.722 ADPCM audio codec
+ *
+ * This G.722 decoder is a bit-exact implementation of the ITU G.722
+ * specification for all three specified bitrates - 64000bps, 56000bps
+ * and 48000bps. It passes the ITU tests.
+ *
+ * @note For the 56000bps and 48000bps bitrates, the lowest 1 or 2 bits
+ *       respectively of each byte are ignored.
+ */
+
+#include "mathops.h"
+#include "g722.h"
+
+static const int8_t sign_lookup[2] = { -1, 1 };
+
+static const int16_t inv_log2_table[32] = {
+    2048, 2093, 2139, 2186, 2233, 2282, 2332, 2383,
+    2435, 2489, 2543, 2599, 2656, 2714, 2774, 2834,
+    2896, 2960, 3025, 3091, 3158, 3228, 3298, 3371,
+    3444, 3520, 3597, 3676, 3756, 3838, 3922, 4008
+};
+static const int16_t high_log_factor_step[2] = { 798, -214 };
+const int16_t ff_g722_high_inv_quant[4] = { -926, -202, 926, 202 };
+/**
+ * low_log_factor_step[index] == wl[rl42[index]]
+ */
+static const int16_t low_log_factor_step[16] = {
+     -60, 3042, 1198, 538, 334, 172,  58, -30,
+    3042, 1198,  538, 334, 172,  58, -30, -60
+};
+const int16_t ff_g722_low_inv_quant4[16] = {
+       0, -2557, -1612, -1121,  -786,  -530,  -323,  -150,
+    2557,  1612,  1121,   786,   530,   323,   150,     0
+};
+const int16_t ff_g722_low_inv_quant6[64] = {
+     -17,   -17,   -17,   -17, -3101, -2738, -2376, -2088,
+   -1873, -1689, -1535, -1399, -1279, -1170, -1072,  -982,
+    -899,  -822,  -750,  -682,  -618,  -558,  -501,  -447,
+    -396,  -347,  -300,  -254,  -211,  -170,  -130,   -91,
+    3101,  2738,  2376,  2088,  1873,  1689,  1535,  1399,
+    1279,  1170,  1072,   982,   899,   822,   750,   682,
+     618,   558,   501,   447,   396,   347,   300,   254,
+     211,   170,   130,    91,    54,    17,   -54,   -17
+};
+
+/**
+ * quadrature mirror filter (QMF) coefficients
+ *
+ * ITU-T G.722 Table 11
+ */
+static const int16_t qmf_coeffs[12] = {
+    3, -11, 12, 32, -210, 951, 3876, -805, 362, -156, 53, -11,
+};
+
+
+/**
+ * adaptive predictor
+ *
+ * @param cur_diff the dequantized and scaled delta calculated from the
+ *                 current codeword
+ */
+static void do_adaptive_prediction(struct G722Band *band, const int cur_diff)
+{
+    int sg[2], limit, i, cur_qtzd_reconst;
+
+    const int cur_part_reconst = band->s_zero + cur_diff < 0;
+
+    sg[0] = sign_lookup[cur_part_reconst != band->part_reconst_mem[0]];
+    sg[1] = sign_lookup[cur_part_reconst == band->part_reconst_mem[1]];
+    band->part_reconst_mem[1] = band->part_reconst_mem[0];
+    band->part_reconst_mem[0] = cur_part_reconst;
+
+    band->pole_mem[1] = av_clip((sg[0] * av_clip(band->pole_mem[0], -8191, 8191) >> 5) +
+                                (sg[1] << 7) + (band->pole_mem[1] * 127 >> 7), -12288, 12288);
+
+    limit = 15360 - band->pole_mem[1];
+    band->pole_mem[0] = av_clip(-192 * sg[0] + (band->pole_mem[0] * 255 >> 8), -limit, limit);
+
+
+    if (cur_diff) {
+        for (i = 0; i < 6; i++)
+            band->zero_mem[i] = ((band->zero_mem[i]*255) >> 8) +
+                                ((band->diff_mem[i]^cur_diff) < 0 ? -128 : 128);
+    } else
+        for (i = 0; i < 6; i++)
+            band->zero_mem[i] = (band->zero_mem[i]*255) >> 8;
+
+    for (i = 5; i > 0; i--)
+        band->diff_mem[i] = band->diff_mem[i-1];
+    band->diff_mem[0] = av_clip_int16(cur_diff << 1);
+
+    band->s_zero = 0;
+    for (i = 5; i >= 0; i--)
+        band->s_zero += (band->zero_mem[i]*band->diff_mem[i]) >> 15;
+
+
+    cur_qtzd_reconst = av_clip_int16((band->s_predictor + cur_diff) << 1);
+    band->s_predictor = av_clip_int16(band->s_zero +
+                                      (band->pole_mem[0] * cur_qtzd_reconst >> 15) +
+                                      (band->pole_mem[1] * band->prev_qtzd_reconst >> 15));
+    band->prev_qtzd_reconst = cur_qtzd_reconst;
+}
+
+static int inline linear_scale_factor(const int log_factor)
+{
+    const int wd1 = inv_log2_table[(log_factor >> 6) & 31];
+    const int shift = log_factor >> 11;
+    return shift < 0 ? wd1 >> -shift : wd1 << shift;
+}
+
+void ff_g722_update_low_predictor(struct G722Band *band, const int ilow)
+{
+    do_adaptive_prediction(band,
+                           band->scale_factor * ff_g722_low_inv_quant4[ilow] >> 10);
+
+    // quantizer adaptation
+    band->log_factor   = av_clip((band->log_factor * 127 >> 7) +
+                                 low_log_factor_step[ilow], 0, 18432);
+    band->scale_factor = linear_scale_factor(band->log_factor - (8 << 11));
+}
+
+void ff_g722_update_high_predictor(struct G722Band *band, const int dhigh,
+                                  const int ihigh)
+{
+    do_adaptive_prediction(band, dhigh);
+
+    // quantizer adaptation
+    band->log_factor   = av_clip((band->log_factor * 127 >> 7) +
+                                 high_log_factor_step[ihigh&1], 0, 22528);
+    band->scale_factor = linear_scale_factor(band->log_factor - (10 << 11));
+}
+
+void ff_g722_apply_qmf(const int16_t *prev_samples, int *xout1, int *xout2)
+{
+    int i;
+
+    *xout1 = 0;
+    *xout2 = 0;
+    for (i = 0; i < 12; i++) {
+        MAC16(*xout2, prev_samples[2*i  ], qmf_coeffs[i   ]);
+        MAC16(*xout1, prev_samples[2*i+1], qmf_coeffs[11-i]);
+    }
+}
diff --git a/libavcodec/g722.h b/libavcodec/g722.h
new file mode 100644 (file)
index 0000000..5edb6c8
--- /dev/null
@@ -0,0 +1,74 @@
+/*
+ * Copyright (c) CMU 1993 Computer Science, Speech Group
+ *                        Chengxiang Lu and Alex Hauptmann
+ * Copyright (c) 2005 Steve Underwood <steveu at coppice.org>
+ * Copyright (c) 2009 Kenan Gillet
+ * Copyright (c) 2010 Martin Storsjo
+ *
+ * This file is part of Libav.
+ *
+ * Libav is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * Libav is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with Libav; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+#ifndef AVCODEC_G722_H
+#define AVCODEC_G722_H
+
+#include <stdint.h>
+
+#define PREV_SAMPLES_BUF_SIZE 1024
+
+typedef struct {
+    int16_t prev_samples[PREV_SAMPLES_BUF_SIZE]; ///< memory of past decoded samples
+    int     prev_samples_pos;        ///< the number of values in prev_samples
+
+    /**
+     * The band[0] and band[1] correspond respectively to the lower band and higher band.
+     */
+    struct G722Band {
+        int16_t s_predictor;         ///< predictor output value
+        int32_t s_zero;              ///< previous output signal from zero predictor
+        int8_t  part_reconst_mem[2]; ///< signs of previous partially reconstructed signals
+        int16_t prev_qtzd_reconst;   ///< previous quantized reconstructed signal (internal value, using low_inv_quant4)
+        int16_t pole_mem[2];         ///< second-order pole section coefficient buffer
+        int32_t diff_mem[6];         ///< quantizer difference signal memory
+        int16_t zero_mem[6];         ///< Seventh-order zero section coefficient buffer
+        int16_t log_factor;          ///< delayed 2-logarithmic quantizer factor
+        int16_t scale_factor;        ///< delayed quantizer scale factor
+    } band[2];
+
+    struct TrellisNode {
+        struct G722Band state;
+        uint32_t ssd;
+        int path;
+    } *node_buf[2], **nodep_buf[2];
+
+    struct TrellisPath {
+        int value;
+        int prev;
+    } *paths[2];
+} G722Context;
+
+extern const int16_t ff_g722_high_inv_quant[4];
+extern const int16_t ff_g722_low_inv_quant4[16];
+extern const int16_t ff_g722_low_inv_quant6[64];
+
+void ff_g722_update_low_predictor(struct G722Band *band, const int ilow);
+
+void ff_g722_update_high_predictor(struct G722Band *band, const int dhigh,
+                                   const int ihigh);
+
+void ff_g722_apply_qmf(const int16_t *prev_samples, int *xout1, int *xout2);
+
+#endif /* AVCODEC_G722_H */
diff --git a/libavcodec/g722dec.c b/libavcodec/g722dec.c
new file mode 100644 (file)
index 0000000..51f87c9
--- /dev/null
@@ -0,0 +1,147 @@
+/*
+ * Copyright (c) CMU 1993 Computer Science, Speech Group
+ *                        Chengxiang Lu and Alex Hauptmann
+ * Copyright (c) 2005 Steve Underwood <steveu at coppice.org>
+ * Copyright (c) 2009 Kenan Gillet
+ * Copyright (c) 2010 Martin Storsjo
+ *
+ * This file is part of Libav.
+ *
+ * Libav is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * Libav is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with Libav; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/**
+ * @file
+ * G.722 ADPCM audio decoder
+ *
+ * This G.722 decoder is a bit-exact implementation of the ITU G.722
+ * specification for all three specified bitrates - 64000bps, 56000bps
+ * and 48000bps. It passes the ITU tests.
+ *
+ * @note For the 56000bps and 48000bps bitrates, the lowest 1 or 2 bits
+ *       respectively of each byte are ignored.
+ */
+
+#include "avcodec.h"
+#include "get_bits.h"
+#include "g722.h"
+
+static av_cold int g722_decode_init(AVCodecContext * avctx)
+{
+    G722Context *c = avctx->priv_data;
+
+    if (avctx->channels != 1) {
+        av_log(avctx, AV_LOG_ERROR, "Only mono tracks are allowed.\n");
+        return AVERROR_INVALIDDATA;
+    }
+    avctx->sample_fmt = AV_SAMPLE_FMT_S16;
+
+    switch (avctx->bits_per_coded_sample) {
+    case 8:
+    case 7:
+    case 6:
+        break;
+    default:
+        av_log(avctx, AV_LOG_WARNING, "Unsupported bits_per_coded_sample [%d], "
+                                      "assuming 8\n",
+                                      avctx->bits_per_coded_sample);
+    case 0:
+        avctx->bits_per_coded_sample = 8;
+        break;
+    }
+
+    c->band[0].scale_factor = 8;
+    c->band[1].scale_factor = 2;
+    c->prev_samples_pos = 22;
+
+    if (avctx->lowres)
+        avctx->sample_rate /= 2;
+
+    return 0;
+}
+
+static const int16_t low_inv_quant5[32] = {
+     -35,   -35, -2919, -2195, -1765, -1458, -1219, -1023,
+    -858,  -714,  -587,  -473,  -370,  -276,  -190,  -110,
+    2919,  2195,  1765,  1458,  1219,  1023,   858,   714,
+     587,   473,   370,   276,   190,   110,    35,   -35
+};
+
+static const int16_t *low_inv_quants[3] = { ff_g722_low_inv_quant6,
+                                                    low_inv_quant5,
+                                            ff_g722_low_inv_quant4 };
+
+static int g722_decode_frame(AVCodecContext *avctx, void *data,
+                             int *data_size, AVPacket *avpkt)
+{
+    G722Context *c = avctx->priv_data;
+    int16_t *out_buf = data;
+    int j, out_len = 0;
+    const int skip = 8 - avctx->bits_per_coded_sample;
+    const int16_t *quantizer_table = low_inv_quants[skip];
+    GetBitContext gb;
+
+    init_get_bits(&gb, avpkt->data, avpkt->size * 8);
+
+    for (j = 0; j < avpkt->size; j++) {
+        int ilow, ihigh, rlow;
+
+        ihigh = get_bits(&gb, 2);
+        ilow = get_bits(&gb, 6 - skip);
+        skip_bits(&gb, skip);
+
+        rlow = av_clip((c->band[0].scale_factor * quantizer_table[ilow] >> 10)
+                      + c->band[0].s_predictor, -16384, 16383);
+
+        ff_g722_update_low_predictor(&c->band[0], ilow >> (2 - skip));
+
+        if (!avctx->lowres) {
+            const int dhigh = c->band[1].scale_factor *
+                              ff_g722_high_inv_quant[ihigh] >> 10;
+            const int rhigh = av_clip(dhigh + c->band[1].s_predictor,
+                                      -16384, 16383);
+            int xout1, xout2;
+
+            ff_g722_update_high_predictor(&c->band[1], dhigh, ihigh);
+
+            c->prev_samples[c->prev_samples_pos++] = rlow + rhigh;
+            c->prev_samples[c->prev_samples_pos++] = rlow - rhigh;
+            ff_g722_apply_qmf(c->prev_samples + c->prev_samples_pos - 24,
+                              &xout1, &xout2);
+            out_buf[out_len++] = av_clip_int16(xout1 >> 12);
+            out_buf[out_len++] = av_clip_int16(xout2 >> 12);
+            if (c->prev_samples_pos >= PREV_SAMPLES_BUF_SIZE) {
+                memmove(c->prev_samples,
+                        c->prev_samples + c->prev_samples_pos - 22,
+                        22 * sizeof(c->prev_samples[0]));
+                c->prev_samples_pos = 22;
+            }
+        } else
+            out_buf[out_len++] = rlow;
+    }
+    *data_size = out_len << 1;
+    return avpkt->size;
+}
+
+AVCodec ff_adpcm_g722_decoder = {
+    .name           = "g722",
+    .type           = AVMEDIA_TYPE_AUDIO,
+    .id             = CODEC_ID_ADPCM_G722,
+    .priv_data_size = sizeof(G722Context),
+    .init           = g722_decode_init,
+    .decode         = g722_decode_frame,
+    .long_name      = NULL_IF_CONFIG_SMALL("G.722 ADPCM"),
+    .max_lowres     = 1,
+};
similarity index 50%
copy from libavcodec/g722.c
copy to libavcodec/g722enc.c
index 74d5552..bdc30d5 100644 (file)
@@ -1,6 +1,4 @@
 /*
- * G.722 ADPCM audio encoder/decoder
- *
  * Copyright (c) CMU 1993 Computer Science, Speech Group
  *                        Chengxiang Lu and Alex Hauptmann
  * Copyright (c) 2005 Steve Underwood <steveu at coppice.org>
 
 /**
  * @file
- * G.722 ADPCM audio codec
- *
- * This G.722 decoder is a bit-exact implementation of the ITU G.722
- * specification for all three specified bitrates - 64000bps, 56000bps
- * and 48000bps. It passes the ITU tests.
- *
- * @note For the 56000bps and 48000bps bitrates, the lowest 1 or 2 bits
- *       respectively of each byte are ignored.
+ * G.722 ADPCM audio encoder
  */
 
 #include "avcodec.h"
-#include "mathops.h"
-#include "get_bits.h"
-
-#define PREV_SAMPLES_BUF_SIZE 1024
+#include "g722.h"
 
 #define FREEZE_INTERVAL 128
 
-typedef struct {
-    int16_t prev_samples[PREV_SAMPLES_BUF_SIZE]; ///< memory of past decoded samples
-    int     prev_samples_pos;        ///< the number of values in prev_samples
-
-    /**
-     * The band[0] and band[1] correspond respectively to the lower band and higher band.
-     */
-    struct G722Band {
-        int16_t s_predictor;         ///< predictor output value
-        int32_t s_zero;              ///< previous output signal from zero predictor
-        int8_t  part_reconst_mem[2]; ///< signs of previous partially reconstructed signals
-        int16_t prev_qtzd_reconst;   ///< previous quantized reconstructed signal (internal value, using low_inv_quant4)
-        int16_t pole_mem[2];         ///< second-order pole section coefficient buffer
-        int32_t diff_mem[6];         ///< quantizer difference signal memory
-        int16_t zero_mem[6];         ///< Seventh-order zero section coefficient buffer
-        int16_t log_factor;          ///< delayed 2-logarithmic quantizer factor
-        int16_t scale_factor;        ///< delayed quantizer scale factor
-    } band[2];
-
-    struct TrellisNode {
-        struct G722Band state;
-        uint32_t ssd;
-        int path;
-    } *node_buf[2], **nodep_buf[2];
-
-    struct TrellisPath {
-        int value;
-        int prev;
-    } *paths[2];
-} G722Context;
-
-
-static const int8_t sign_lookup[2] = { -1, 1 };
-
-static const int16_t inv_log2_table[32] = {
-    2048, 2093, 2139, 2186, 2233, 2282, 2332, 2383,
-    2435, 2489, 2543, 2599, 2656, 2714, 2774, 2834,
-    2896, 2960, 3025, 3091, 3158, 3228, 3298, 3371,
-    3444, 3520, 3597, 3676, 3756, 3838, 3922, 4008
-};
-static const int16_t high_log_factor_step[2] = { 798, -214 };
-static const int16_t high_inv_quant[4] = { -926, -202, 926, 202 };
-/**
- * low_log_factor_step[index] == wl[rl42[index]]
- */
-static const int16_t low_log_factor_step[16] = {
-     -60, 3042, 1198, 538, 334, 172,  58, -30,
-    3042, 1198,  538, 334, 172,  58, -30, -60
-};
-static const int16_t low_inv_quant4[16] = {
-       0, -2557, -1612, -1121,  -786,  -530,  -323,  -150,
-    2557,  1612,  1121,   786,   530,   323,   150,     0
-};
-static const int16_t low_inv_quant6[64] = {
-     -17,   -17,   -17,   -17, -3101, -2738, -2376, -2088,
-   -1873, -1689, -1535, -1399, -1279, -1170, -1072,  -982,
-    -899,  -822,  -750,  -682,  -618,  -558,  -501,  -447,
-    -396,  -347,  -300,  -254,  -211,  -170,  -130,   -91,
-    3101,  2738,  2376,  2088,  1873,  1689,  1535,  1399,
-    1279,  1170,  1072,   982,   899,   822,   750,   682,
-     618,   558,   501,   447,   396,   347,   300,   254,
-     211,   170,   130,    91,    54,    17,   -54,   -17
-};
-
-/**
- * quadrature mirror filter (QMF) coefficients
- *
- * ITU-T G.722 Table 11
- */
-static const int16_t qmf_coeffs[12] = {
-    3, -11, 12, 32, -210, 951, 3876, -805, 362, -156, 53, -11,
-};
-
-
-/**
- * adaptive predictor
- *
- * @param cur_diff the dequantized and scaled delta calculated from the
- *                 current codeword
- */
-static void do_adaptive_prediction(struct G722Band *band, const int cur_diff)
-{
-    int sg[2], limit, i, cur_qtzd_reconst;
-
-    const int cur_part_reconst = band->s_zero + cur_diff < 0;
-
-    sg[0] = sign_lookup[cur_part_reconst != band->part_reconst_mem[0]];
-    sg[1] = sign_lookup[cur_part_reconst == band->part_reconst_mem[1]];
-    band->part_reconst_mem[1] = band->part_reconst_mem[0];
-    band->part_reconst_mem[0] = cur_part_reconst;
-
-    band->pole_mem[1] = av_clip((sg[0] * av_clip(band->pole_mem[0], -8191, 8191) >> 5) +
-                                (sg[1] << 7) + (band->pole_mem[1] * 127 >> 7), -12288, 12288);
-
-    limit = 15360 - band->pole_mem[1];
-    band->pole_mem[0] = av_clip(-192 * sg[0] + (band->pole_mem[0] * 255 >> 8), -limit, limit);
-
-
-    if (cur_diff) {
-        for (i = 0; i < 6; i++)
-            band->zero_mem[i] = ((band->zero_mem[i]*255) >> 8) +
-                                ((band->diff_mem[i]^cur_diff) < 0 ? -128 : 128);
-    } else
-        for (i = 0; i < 6; i++)
-            band->zero_mem[i] = (band->zero_mem[i]*255) >> 8;
-
-    for (i = 5; i > 0; i--)
-        band->diff_mem[i] = band->diff_mem[i-1];
-    band->diff_mem[0] = av_clip_int16(cur_diff << 1);
-
-    band->s_zero = 0;
-    for (i = 5; i >= 0; i--)
-        band->s_zero += (band->zero_mem[i]*band->diff_mem[i]) >> 15;
-
-
-    cur_qtzd_reconst = av_clip_int16((band->s_predictor + cur_diff) << 1);
-    band->s_predictor = av_clip_int16(band->s_zero +
-                                      (band->pole_mem[0] * cur_qtzd_reconst >> 15) +
-                                      (band->pole_mem[1] * band->prev_qtzd_reconst >> 15));
-    band->prev_qtzd_reconst = cur_qtzd_reconst;
-}
-
-static int inline linear_scale_factor(const int log_factor)
-{
-    const int wd1 = inv_log2_table[(log_factor >> 6) & 31];
-    const int shift = log_factor >> 11;
-    return shift < 0 ? wd1 >> -shift : wd1 << shift;
-}
-
-static void update_low_predictor(struct G722Band *band, const int ilow)
-{
-    do_adaptive_prediction(band,
-                           band->scale_factor * low_inv_quant4[ilow] >> 10);
-
-    // quantizer adaptation
-    band->log_factor   = av_clip((band->log_factor * 127 >> 7) +
-                                 low_log_factor_step[ilow], 0, 18432);
-    band->scale_factor = linear_scale_factor(band->log_factor - (8 << 11));
-}
-
-static void update_high_predictor(struct G722Band *band, const int dhigh,
-                                  const int ihigh)
-{
-    do_adaptive_prediction(band, dhigh);
-
-    // quantizer adaptation
-    band->log_factor   = av_clip((band->log_factor * 127 >> 7) +
-                                 high_log_factor_step[ihigh&1], 0, 22528);
-    band->scale_factor = linear_scale_factor(band->log_factor - (10 << 11));
-}
-
-static void apply_qmf(const int16_t *prev_samples, int *xout1, int *xout2)
-{
-    int i;
-
-    *xout1 = 0;
-    *xout2 = 0;
-    for (i = 0; i < 12; i++) {
-        MAC16(*xout2, prev_samples[2*i  ], qmf_coeffs[i   ]);
-        MAC16(*xout1, prev_samples[2*i+1], qmf_coeffs[11-i]);
-    }
-}
-
-static av_cold int g722_init(AVCodecContext * avctx)
+static av_cold int g722_encode_init(AVCodecContext * avctx)
 {
     G722Context *c = avctx->priv_data;
 
@@ -215,29 +40,11 @@ static av_cold int g722_init(AVCodecContext * avctx)
         av_log(avctx, AV_LOG_ERROR, "Only mono tracks are allowed.\n");
         return AVERROR_INVALIDDATA;
     }
-    avctx->sample_fmt = AV_SAMPLE_FMT_S16;
-
-    switch (avctx->bits_per_coded_sample) {
-    case 8:
-    case 7:
-    case 6:
-        break;
-    default:
-        av_log(avctx, AV_LOG_WARNING, "Unsupported bits_per_coded_sample [%d], "
-                                      "assuming 8\n",
-                                      avctx->bits_per_coded_sample);
-    case 0:
-        avctx->bits_per_coded_sample = 8;
-        break;
-    }
 
     c->band[0].scale_factor = 8;
     c->band[1].scale_factor = 2;
     c->prev_samples_pos = 22;
 
-    if (avctx->lowres)
-        avctx->sample_rate /= 2;
-
     if (avctx->trellis) {
         int frontier = 1 << avctx->trellis;
         int max_paths = frontier * FREEZE_INTERVAL;
@@ -252,7 +59,7 @@ static av_cold int g722_init(AVCodecContext * avctx)
     return 0;
 }
 
-static av_cold int g722_close(AVCodecContext *avctx)
+static av_cold int g722_encode_close(AVCodecContext *avctx)
 {
     G722Context *c = avctx->priv_data;
     int i;
@@ -264,82 +71,6 @@ static av_cold int g722_close(AVCodecContext *avctx)
     return 0;
 }
 
-#if CONFIG_ADPCM_G722_DECODER
-static const int16_t low_inv_quant5[32] = {
-     -35,   -35, -2919, -2195, -1765, -1458, -1219, -1023,
-    -858,  -714,  -587,  -473,  -370,  -276,  -190,  -110,
-    2919,  2195,  1765,  1458,  1219,  1023,   858,   714,
-     587,   473,   370,   276,   190,   110,    35,   -35
-};
-
-static const int16_t *low_inv_quants[3] = { low_inv_quant6, low_inv_quant5,
-                                 low_inv_quant4 };
-
-static int g722_decode_frame(AVCodecContext *avctx, void *data,
-                             int *data_size, AVPacket *avpkt)
-{
-    G722Context *c = avctx->priv_data;
-    int16_t *out_buf = data;
-    int j, out_len = 0;
-    const int skip = 8 - avctx->bits_per_coded_sample;
-    const int16_t *quantizer_table = low_inv_quants[skip];
-    GetBitContext gb;
-
-    init_get_bits(&gb, avpkt->data, avpkt->size * 8);
-
-    for (j = 0; j < avpkt->size; j++) {
-        int ilow, ihigh, rlow;
-
-        ihigh = get_bits(&gb, 2);
-        ilow = get_bits(&gb, 6 - skip);
-        skip_bits(&gb, skip);
-
-        rlow = av_clip((c->band[0].scale_factor * quantizer_table[ilow] >> 10)
-                      + c->band[0].s_predictor, -16384, 16383);
-
-        update_low_predictor(&c->band[0], ilow >> (2 - skip));
-
-        if (!avctx->lowres) {
-            const int dhigh = c->band[1].scale_factor *
-                              high_inv_quant[ihigh] >> 10;
-            const int rhigh = av_clip(dhigh + c->band[1].s_predictor,
-                                      -16384, 16383);
-            int xout1, xout2;
-
-            update_high_predictor(&c->band[1], dhigh, ihigh);
-
-            c->prev_samples[c->prev_samples_pos++] = rlow + rhigh;
-            c->prev_samples[c->prev_samples_pos++] = rlow - rhigh;
-            apply_qmf(c->prev_samples + c->prev_samples_pos - 24,
-                      &xout1, &xout2);
-            out_buf[out_len++] = av_clip_int16(xout1 >> 12);
-            out_buf[out_len++] = av_clip_int16(xout2 >> 12);
-            if (c->prev_samples_pos >= PREV_SAMPLES_BUF_SIZE) {
-                memmove(c->prev_samples,
-                        c->prev_samples + c->prev_samples_pos - 22,
-                        22 * sizeof(c->prev_samples[0]));
-                c->prev_samples_pos = 22;
-            }
-        } else
-            out_buf[out_len++] = rlow;
-    }
-    *data_size = out_len << 1;
-    return avpkt->size;
-}
-
-AVCodec ff_adpcm_g722_decoder = {
-    .name           = "g722",
-    .type           = AVMEDIA_TYPE_AUDIO,
-    .id             = CODEC_ID_ADPCM_G722,
-    .priv_data_size = sizeof(G722Context),
-    .init           = g722_init,
-    .decode         = g722_decode_frame,
-    .long_name      = NULL_IF_CONFIG_SMALL("G.722 ADPCM"),
-    .max_lowres     = 1,
-};
-#endif
-
-#if CONFIG_ADPCM_G722_ENCODER
 static const int16_t low_quant[33] = {
       35,   72,  110,  150,  190,  233,  276,  323,
      370,  422,  473,  530,  587,  650,  714,  786,
@@ -353,7 +84,7 @@ static inline void filter_samples(G722Context *c, const int16_t *samples,
     int xout1, xout2;
     c->prev_samples[c->prev_samples_pos++] = samples[0];
     c->prev_samples[c->prev_samples_pos++] = samples[1];
-    apply_qmf(c->prev_samples + c->prev_samples_pos - 24, &xout1, &xout2);
+    ff_g722_apply_qmf(c->prev_samples + c->prev_samples_pos - 24, &xout1, &xout2);
     *xlow  = xout1 + xout2 >> 13;
     *xhigh = xout1 - xout2 >> 13;
     if (c->prev_samples_pos >= PREV_SAMPLES_BUF_SIZE) {
@@ -440,7 +171,7 @@ static int g722_encode_trellis(AVCodecContext *avctx,
                     continue;
 
                 decoded = av_clip((cur_node->state.scale_factor *
-                                  low_inv_quant6[k] >> 10)
+                                  ff_g722_low_inv_quant6[k] >> 10)
                                 + cur_node->state.s_predictor, -16384, 16383);
                 dec_diff = xlow - decoded;
 
@@ -479,7 +210,7 @@ static int g722_encode_trellis(AVCodecContext *avctx,
                                                 nodes_next[index][pos]);\
                     pos = parent;\
                 }
-                STORE_NODE(0, update_low_predictor(&node->state, k >> 2), k);
+                STORE_NODE(0, ff_g722_update_low_predictor(&node->state, k >> 2), k);
             }
         }
 
@@ -497,12 +228,12 @@ static int g722_encode_trellis(AVCodecContext *avctx,
                 struct TrellisNode* node;
 
                 dhigh = cur_node->state.scale_factor *
-                        high_inv_quant[ihigh] >> 10;
+                        ff_g722_high_inv_quant[ihigh] >> 10;
                 decoded = av_clip(dhigh + cur_node->state.s_predictor,
                                   -16384, 16383);
                 dec_diff = xhigh - decoded;
 
-                STORE_NODE(1, update_high_predictor(&node->state, dhigh, ihigh), ihigh);
+                STORE_NODE(1, ff_g722_update_high_predictor(&node->state, dhigh, ihigh), ihigh);
             }
         }
 
@@ -559,9 +290,9 @@ static int g722_encode_frame(AVCodecContext *avctx,
         filter_samples(c, &samples[2*i], &xlow, &xhigh);
         ihigh = encode_high(&c->band[1], xhigh);
         ilow  = encode_low(&c->band[0], xlow);
-        update_high_predictor(&c->band[1], c->band[1].scale_factor *
-                              high_inv_quant[ihigh] >> 10, ihigh);
-        update_low_predictor(&c->band[0], ilow >> 2);
+        ff_g722_update_high_predictor(&c->band[1], c->band[1].scale_factor *
+                                      ff_g722_high_inv_quant[ihigh] >> 10, ihigh);
+        ff_g722_update_low_predictor(&c->band[0], ilow >> 2);
         *dst++ = ihigh << 6 | ilow;
     }
     return i;
@@ -572,11 +303,9 @@ AVCodec ff_adpcm_g722_encoder = {
     .type           = AVMEDIA_TYPE_AUDIO,
     .id             = CODEC_ID_ADPCM_G722,
     .priv_data_size = sizeof(G722Context),
-    .init           = g722_init,
-    .close          = g722_close,
+    .init           = g722_encode_init,
+    .close          = g722_encode_close,
     .encode         = g722_encode_frame,
     .long_name      = NULL_IF_CONFIG_SMALL("G.722 ADPCM"),
     .sample_fmts    = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE},
 };
-#endif
-